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A Related Work

The literature for the geometric properties of Riemannian Manifolds is immense and hence we
cannot hope to survey them here; for an appetizer, we refer the reader to Burago et al. [93] and Lee
[94] and references therein. On the other hand, as stated, it is not until recently that the long-run
non-asymptotic behavior of optimization algorithms in Riemannian manifolds (even the smooth ones)
has encountered a lot of interest. For concision, we have deferred here a detailed exposition of the
rest of recent results to Appendix A of the paper’s supplement. Additionally, in Appendix B we also
give a bunch of motivating examples which can be solved by Riemannian min-max optimization.

Minimization on Riemannian manifolds. Many application problems can be formulated as the
minimization or maximization of a smooth function over Riemannian manifold and has triggered a
line of research on the extension of the classical first-order and second-order methods to Riemannian
setting with asymptotic convergence to first-order stationary points in general [95]. Recent years
have witnessed the renewed interests on nonasymptotic convergence analysis of solution methods. In
particular, Boumal et al. [96] proved the global sublinear convergence results for Riemannian gradient
descent method and Riemannian trust region method, and further demonstrated that the Riemannian
trust region method converges to a second-order stationary point in polynomial time; see also
similar results in some other works [97–99]. We are also aware of recent works on problem-specific
methods [100–102] and primal-dual methods [103].

Compared to the smooth counterpart, Riemannian nonsmooth optimization is harder and relatively
less explored [104]. A few existing works focus on optimizing geodesically convex functions
over Riemannian manifold with subgradient methods [83, 105, 106]. In particular, Ferreira and
Oliveira [105] provided the first asymptotic convergence result while Zhang and Sra [83] and [106]
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proved an nonasymptotic global convergence rate of O(ϵ−2) for Riemannian subgradient methods.
Further, Ferreira and Oliveira [107] assumed that the proximal mapping over Riemannian manifold is
computationally tractable and proved the global sublinear convergence of Riemannian proximal point
method. Focusing on optimization over Stiefel manifold, Chen et al. [108] studied the composite
objective function and proposed Riemannian proximal gradient method which only needs to compute
the proximal mapping of nonsmooth component function over the tangent space of Stiefel manifold. Li
et al. [109] consider optimizing a weakly convex function over Stiefel manifold and proposed
Riemannian subgradient methods that drive a near-optimal stationarity measure below ϵ within the
number of iterations bounded by O(ϵ−4).

There are some results on stochastic optimization over Riemannian manifold. In particular, Bonnabel
[29] proved the first asymptotic convergence result for Riemannian stochastic gradient descent, which
is extended by a line of subsequent works [110–113]. If the Riemannian Hessian is not positive
definite, some recent works have suggested frameworks to escape saddle points [25, 114].

Min-Max optimization in Euclidean spaces. Focusing on solving specifically min-max problems,
the algorithms under euclidean geometry have a very rich history in optimization that goes back at
least to the original proximal point algorithms [115, 116] for variational inequality (VI) problems; At
a high level, if the objective function is Lipschitz and strictly convex-concave, the simple forward-
backward schemes are known to converge – and if combined with a Polyak–Ruppert averaging
scheme [117–119], they achieve an O(1/ϵ2) complexity2 without the caveat of strictness [120].
If, in addition, the objective admits Lipschitz continuous gradients, then the extragradient (EG)
algorithm [121] achieves trajectory convergence without strict monotonicity requirements, while
the time-average iterate converges at O(1/ϵ) steps [122]. Finally, if the problem is strongly convex-
concave, forward-backward methods computes an ϵ-saddle point at O(1/ϵ) steps; and if the operator
is also Lipschitz continuous, classical results in operator theory show that simple forward-backward
methods suffice to achieve a linear convergence rate [120, 123].

Min-Max optimization on Riemannian manifolds. In the case of nonlinear geometry, the literature
has been devoted on two different orthogonal axes: a) the existence of saddle point for min-max
objective bi-functions and b) the design of algorithms for the computation of such points. For the
existence of saddle point, a long line of recent work tried to generalize the seminal minima theorem for
quasi-convex-quasi-concave problems of Sion [69]. The crucial bottleneck of this generalization to
Riemannian smooth manifolds had been the application of both Knaster–Kuratowski–Mazurkiewicz
(KKM) theorem and Helly’s theorem in non-flat spaces. Before Zhang et al. [1], the existence of
saddle points had been identified for the special case of Hadamard manifolds [73–75, 106].

Similar with the existence results, initially the developed methods referred to the computation of
singularities in monotone variational operators typically in hyperbolic Hadamard manifolds with
negative curvature [124]. More recently, Huang et al. [77] proposed a Riemannian gradient descent
ascent method (RGDA), yet the analysis is restricted to N being a convex subset of the Euclidean
space and f(x, y) being strongly concave in y. It is worth mentioning that for the case Hadamard and
generally hyperbolic manifolds, extra-gradient style algorithms have been proposed [125, 126] in the
literature, establishing mainly their asymptotic convergence. However it was not until recent Zhang
et al. [1] that the riemannian correction trick has been analyzed for the case of the extra-gradient
algorithm. Bearing in our mind the higher-order methods, Han et al. [78] has recently proposed the
Riemannian Hamiltonian Descent and versions of Newton’s method for for geodesic convex geodesic
concave functions. Since in this work, we focus only on first-order methods, we don’t compare with
the aforementioned Hamiltonian alternative since it incorporates always the extra computational
burden of second-derivatives and hessian over a manifold.

B Motivating Examples

We provide some examples of Riemannian min-max optimization to give a sense of their expressivity.
Two of the examples are the generic models from the optimization literature [95, 127, 128] and the

2For the rest of the presentation, we adopt the convention of presenting the fine-grained complexity perfor-
mance measure for computing an O(ϵ)-close solution instead of the convergence rate of a method. Thus a rate
of the form ∥xt−x∗∥ ≤ O(1/t1/p) typically corresponds to O(1/ϵp) gradient computations and the geometric
rate ∥xt − x∗∥ ≤ O(exp(−µt)) matches usually up with the O(ln(1/ϵ)) computational complexity.
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two others are the formulations of application problems arising from machine learning and data
analytics [34, 129, 130].

Example B.1 (Riemannian optimization with nonlinear constraints) We can consider a rather
straightforward generalization of constrained optimization problem from Euclidean spaces to Rie-
mannian manifolds [131]. This formulation finds a wide range of real-world applications, e.g.,
non-negative principle component analysis, weighted max-cut and so on. LettingM be a finite-
dimensional Riemannian manifold with unique geodesic, we focus on the following problem:

min
x∈M

f(x), s.t. g(x) ≤ 0, h(x) = 0,

where g := (g1, g2, . . . , gm) :M 7→ Rm and h := (h1, h2, . . . , hn) :M 7→ Rn are two mappings.
Then, we can introduce the dual variables λ and µ and reformulate the aforementioned constrained
optimization problem as follows,

min
x∈M

max
(λ,µ)∈Rm

+ ×Rn
f(x) + ⟨λ, g(x)⟩+ ⟨µ, h(x)⟩.

Suppose that f and all of gi and hi are geodesically convex and smooth, the above problem is a
geodesic-convex-Euclidean-concave min-max optimization problem.

Example B.2 (Distributionally robust Riemannian optimization) Distributionally robust opti-
mization (DRO) is an effective method to deal with the noisy data, adversarial data, and imbalanced
data. We consider the problem of DRO over Riemannian manifold; indeed, given a set of data samples
{ξi}Ni=1, the problem of DRO over Riemannian manifoldM can be written in the form of

min
x∈M

max
p∈S

N∑
i=1

piℓ(x; ξi)− ∥p− 1
N 1∥2,

where p = (p1, p2, . . . , pN ) and S = {p ∈ RN :
∑N

i=1 pi = 1, pi ≥ 0}. In general, ℓ(x; ξi) denotes
the loss function over Riemannian manifoldM. If ℓ is geodesically convex and smooth, the above
problem is a geodesic-convex-Euclidean-concave min-max optimization problem.

Example B.3 (Robust matrix Karcher mean problem) We consider a robust version of classical
matrix Karcher mean problem. More specifically, the Karcher mean of N symmetric positive definite
matrices {Ai}Ni=1 is defined as the matrix X ∈ M = {X ∈ Rn×n : X ≻ 0, X = X⊤} that
minimizes the sum of squared distance induced by the Riemannian metric:

d(X,Y ) = ∥ log(X−1/2Y X−1/2)∥F .

The loss function is thus defined by

f(X; {Ai}Ni=1) =

N∑
i=1

(d(X,Ai))
2.

which is known to be nonconvex in Euclidean spaces but geodesically strongly convex. Then, the
robust version of classical matrix Karcher mean problem is aiming at solving the following problem:

min
X∈M

max
Yi∈M

f(X; {Yi}Ni=1)− γ

(
N∑
i=1

(d(Yi, Ai))
2

)
,

where γ > 0 stands for the trade-off between the computation of Karcher mean over a set of {Yi}Ni=1

and the difference between the observed samples {Ai}Ni=1 and {Yi}Ni=1. It is clear that the above
problem is a geodesically strongly-convex-strongly-concave min-max optimization problem.

Example B.4 (Projection robust optimal transport problem) We consider the projection robust
optimal transport (OT) problem – a robust variant of the OT problem – that achieves superior
sample complexity bound [132]. Let {x1, x2, . . . , xn} ⊆ Rd and {y1, y2, . . . , yn} ⊆ Rd denote sets
of n atoms, and let (r1, r2, . . . , rn) and (c1, c2, . . . , cn) denote weight vectors. We define discrete
probability measures µ =

∑n
i=1 riδxi

and ν =
∑n

j=1 cjδyj
. In this setting, the computation of
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the k-dimensional projection robust OT distance between µ and ν resorts to solving the following
problem:

max
U∈St(d,k)

min
π∈Π(µ,ν)

n∑
i=1

n∑
j=1

πi,j∥U⊤xi − U⊤yj∥2,

where St(d, k) = {U ∈ Rd×k | U⊤U = Ik} is a Stiefel manifold and Π(r, c) = {π ∈ Rn×n
+ |∑n

j=1 πij = ri,
∑n

i=1 πij = cj} is a transportation polytope. It is worth mentioning that the above
problem is a geodesically-nonconvex-Euclidean-concave min-max optimization problem with special
structures, making the computation of stationary points tractable. While the global convergence
guarantee for our algorithm does not apply, the above problem might be locally geodesically-convex-
Euclidean-concave such that our algorithm with sufficiently good initialization works here.

In addition to these examples, it is worth mentioning that Riemannian min-max optimization prob-
lems contain all general min-max optimization problems in Euclidean spaces and all Riemannian
minimization or maximization optimization problems. It is also an abstraction of many machine
learning problems, e.g,. principle component analysis [2], dictionary learning [3, 4], deep neural
networks (DNNs) [5] and low-rank matrix learning [133, 134]; indeed, the problem of principle
component analysis resorts to optimization problems on Grassmann manifolds for example.

C Metric Geometry

To generalize the first-order methods in Euclidean setting, we introduce several basic concepts in
metric geometry [93], which are known to include both Euclidean spaces and Riemannian manifolds
as special cases. Formally, we have

Definition C.1 (Metric Space) A metric space (X, d) is a pair of a set X and a distance function
d(·, ·) satisfying: (i) d(x, x′) ≥ 0 for any x, x′ ∈ X; (ii) d(x, x′) = d(x′, x) for any x, x′ ∈ X; and
(iii) d(x, x′′) ≤ d(x, x′) + d(x′, x′′) for any x, x′, x′′ ∈ X . In other words, the distance function
d(·, ·) is non-negative, symmetrical and satisfies the triangle inequality.

A path γ : [0, 1] 7→ X is a continuous mapping from the interval [0, 1] to X and the length of
γ is defined as length(γ) := limn→+∞ sup0=t0<...<tn=1

∑n
i=1 d(γ(ti−1), γ(ti)). Note that the

triangle inequality implies that sup0=t0<...<tn=1

∑n
i=1 d(γ(ti−1), γ(ti)) is nondecreasing. Then,

the length of a path γ is well defined since the limit is either +∞ or a finite scalar. Moreover, for
∀ϵ > 0, there exists n ∈ N and the partition 0 = t0 < . . . < tn = 1 of the interval [0, 1] such that
length(γ) ≤

∑n
i=1 d(γ(ti−1), γ(ti)) + ϵ.

Definition C.2 (Length Space) A metric space (X, d) is a length space if, for any x, x′ ∈ X and
ϵ > 0, there exists a path γ : [0, 1] 7→ X connecting x and x′ such that length(γ) ≤ d(x, x′) + ϵ.

We can see from Definition C.2 that a set of length spaces is strict subclass of metric spaces; indeed,
for some x, x′ ∈ X , there does not exist a path γ such that its length can be approximated by d(x, x′)
for some tolerance ϵ > 0. In metric geometry, a geodesic is a path which is locally a distance
minimizer everywhere. More precisely, a path γ is a geodesic if there is a constant ν > 0 such that
for any t ∈ [0, 1] there is a neighborhood I of [0, 1] such that,

d(γ(t1), γ(t2)) = ν|t1 − t2|, for any t1, t2 ∈ I.

Note that the above generalizes the notion of geodesic for Riemannian manifolds. Then, we are ready
to introduce the geodesic space and uniquely geodesic space [135].

Definition C.3 A metric space (X, d) is a geodesic space if, for any x, x′ ∈ X , there exists a
geodesic γ : [0, 1] 7→ X connecting x and x′. Furthermore, it is called uniquely geodesic if the
geodesic connecting x and x′ is unique for any x, x′ ∈ X .

Trigonometric geometry in nonlinear spaces is intrinsically different from Euclidean space. In
particular, we remark that the law of cosines in Euclidean space (with ∥ · ∥ as ℓ2-norm) is crucial for
analyzing the convergence property of optimization algorithms, e.g.,

∥a∥2 = ∥b∥2 + ∥c∥2 − 2bc cos(A),
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where a, b, c are sides of a geodesic triangle in Euclidean space and A is the angle between b and
c. However, such nice property does not hold for nonlinear spaces due to the lack of flat geometry,
further motivating us to extend the law of cosines under nonlinear trigonometric geometry. That is
to say, given a geodesic triangle in X with sides a, b, c where A is the angle between b and c, we
hope to establish the relationship between a2, b2, c2 and 2bc cos(A) in nonlinear spaces; see the main
context for the comparing inequalities.

Finally, we specify the definition of section curvature of Riemannian manifolds and clarify how such
quantity affects the trigonometric comparison inequalities. More specifically, the sectional curvature
is defined as the Gauss curvature of a 2-dimensional sub-manifold that are obtained from the image
of a two-dimensional subspace of a tangent space after exponential mapping. It is worth mentioning
that the above 2-dimensional sub-manifold is locally isometric to a 2-dimensional sphere, a Euclidean
plane, and a hyperbolic plane with the same Gauss curvature if its sectional curvature is positive, zero
and negative respectively. Then we are ready to summarize the existing trigonometric comparison
inequalities for Riemannian manifold with bounded sectional curvatures. Note that the following two
propositions are the full version of Proposition 2.1 and will be used in our subsequent proofs.

Proposition C.1 Suppose thatM is a Riemannian manifold with sectional curvature that is upper
bounded by κmax and let ∆ be a geodesic triangle inM with the side length a, b, c and A which is
the angle between b and c. If κmax > 0, we assume the diameter ofM is bounded by π√

κmax
. Then,

we have
a2 ≥ ξ(κmax, c) · b2 + c2 − 2bc cos(A),

where ξ(κ, c) := 1 for κ ≤ 0 and ξ(κ, c) := c
√
κ cot(c

√
κ) < 1 for κ > 0.

Proposition C.2 Suppose thatM is a Riemannian manifold with sectional curvature that is lower
bounded by κmin and let ∆ be a geodesic triangle inM with the side length a, b, c and A which is
the angle between b and c. Then, we have

a2 ≤ ξ(κmin, c) · b2 + c2 − 2bc cos(A),

where ξ(κ, c) := c
√
−κ coth(c

√
−κ) > 1 if κ < 0 and ξ(κ, c) := 1 if κ ≥ 0.

Remark C.1 Proposition C.1 and C.2 are simply the restatement of Alimisis et al. [82, Corollary 2.1]
and Zhang and Sra [83, Lemma 5]. The former inequality is obtained when the sectional curvature is
bounded from above while the latter inequality characterizes the relationship between the trigonomet-
ric lengths when the sectional curvature is bounded from below. If κmin = κmax = 0 (i.e., Euclidean
spaces), we have ξ(κmin, c) = ξ(κmax, c) = 1. The proof is based on Toponogov’s theorem and
Riccati comparison estimate [136, Proposition 25] and we refer the interested readers to Zhang and
Sra [83] and Alimisis et al. [82] for the details.

D Riemannian Gradient Descent Ascent for Nonsmooth Setting

In this section, we propose and analyze Riemannian gradient descent ascent (RGDA) method for
nonsmooth Riemannian min-max optimization and extend it to stochastic RGDA. We present our
results on the optimal last-iterate convergence guarantee for geodesically strongly-convex-strongly-
concave setting (both deterministic and stochastic) and time-average convergence guarantee for
geodesically convex-concave setting (both deterministic and stochastic).

D.1 Algorithmic scheme

Compared to Riemannian corrected extragradient (RCEG) method, our Riemannian gradient descent
ascent (RGDA) method is a relatively straightforward generalization of GDA in Euclidean spaces.
More specifically, we start with the scheme of GDA as follows (just considerM and N as convex
constraint sets in Euclidean spaces),

xt+1 ← projM(xt − ηt · gtx), yt+1 ← projN (yt + ηt · gty). (6)

where (gtx, g
t
y) ∈ (∂xf(xt, yt), ∂yf(xt, yt)) is one subgradient of f . By replacing the projection

operator by the corresponding exponential map and the gradient by the corresponding Riemannian
gradient, we have

xt+1 ← Expxt
(−ηt · gtx), yt+1 ← Expyt

(ηt · gty).
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Algorithm 3 RGDA
Input: initial points (x0, y0) and stepsizes ηt > 0.
for t = 0, 1, 2, . . . , T − 1 do

Query (gtx, g
t
y) ←

(subgradxf(xt, yt), subgradyf(xt, yt)) as Rieman-
nian subgradient of f at a point (xt, yt).

xt+1 ← Expxt
(−ηt · gtx).

yt+1 ← Expyt
(ηt · gty).

end for

Algorithm 4 SRGDA
Input: initial points (x0, y0) and stepsizes ηt >
0.
for t = 0, 1, 2, . . . , T − 1 do

Query (gtx, g
t
y) as a noisy estimator of Rie-

mannian subgradient of f at a point (xt, yt).
xt+1 ← Expxt

(−ηt · gtx).
yt+1 ← Expyt

(ηt · gty).
end for

where (gtx, g
t
y)← (subgradxf(xt, yt), subgradyf(xt, yt)) is one Riemannian subgradient of f . Then,

we summarize the resulting scheme of RGDA method in Algorithm 3 and its stochastic extension
with noisy estimators of Riemannian gradients of f in Algorithm 4.

D.2 Main results

We present our main results on the global convergence rate estimation for Algorithm 3 and 4 in terms
of Riemannian gradient and noisy Riemannian gradient evaluations. The following assumptions are
made throughout for geodesically strongly-convex-strongly-concave and geodesically convex-concave
settings.

Assumption D.1 The objective function f :M×N 7→ R and manifoldsM and N satisfy

1. f is geodesically L-Lipschitz and geodesically strongly-convex-strongly-concave with µ > 0.
2. The diameter of the domain {(x, y) ∈M×N : −∞ < f(x, y) < +∞} is bounded by D > 0.
3. The sectional curvatures ofM and N are both bounded in the range [κmin,+∞) with κmin ≤ 0.

Assumption D.2 The objective function f :M×N 7→ R and manifoldsM and N satisfy

1. f is geodesically L-Lipschitz and geodesically convex-concave.
2. The diameter of the domain {(x, y) ∈M×N : −∞ < f(x, y) < +∞} is bounded by D > 0.
3. The sectional curvatures ofM and N are both bounded in the range [κmin,+∞) with κmin ≤ 0.

Imposing the geodesically Lipschitzness condition is crucial to achieve finite-time convergence
guarantee if we do not assume the geodesically smoothness condition. Note that we only require the
lower bound for the sectional curvatures of manifolds and this is weaker than that presented in the
main context.

Letting (x⋆, y⋆) ∈ M × N be a global saddle point of f (it exists under either Assumption D.1
or D.2), we let D0 = (dM(x0, x

⋆))2+(dN (y0, y
⋆))2 > 0 and summarize our results for Algorithm 3

in the following theorems.

Theorem D.1 Under Assumption D.1 and let ηt > 0 satisfies that ηt = 1
µ min{1, 2

t }. There exists
some T > 0 such that the output of Algorithm 3 satisfies that (d(xT , x

⋆))2 + (d(yT , y
⋆))2 ≤ ϵ and

the total number of Riemannian subgradient evaluations is bounded by

O

(
ξ0L

2

µ2ϵ

)
,

where ξ0 = ξ(κmin, D) measures the lower bound for the change of non-flatness inM and N .

Theorem D.2 Under Assumption D.2 and let ηt > 0 satisfies that ηt = 1
L

√
D0

2ξ0T
. There exists some

T > 0 such that the output of Algorithm 3 satisfies that f(x̄T , y
⋆) − f(x⋆, ȳT ) ≤ ϵ and the total

number of Riemannian subgradient evaluations is bounded by

O

(
ξ0L

2D0

ϵ2

)
,
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where ξ0 = ξ(κmin, D) measures the lower bound for the change of non-flatness in M and N ,
and the time-average iterates (x̄T , ȳT ) ∈ M× N can be computed by (x̄0, ȳ0) = (0, 0) and the
inductive formula: x̄t+1 = Expx̄t

( 1
t+1 · Exp−1

x̄t
(xt)) and ȳt+1 = Expȳt

( 1
t+1 · Exp−1

ȳt
(yt)) for all

t = 0, 1, . . . , T − 1.

Remark D.1 Theorem D.1 and D.2 establish the last-iterate and time-average rates of convergence
of Algorithm 3 for solving Riemannian min-max optimization problems under Assumption D.1 and D.2
respectively. Further, the dependence on L and 1/ϵ can not be improved since it has matched the
lower bound established for the nonsmooth min-max optimization problems in Euclidean spaces.

In the scheme of SRGDA, we highlight that (gtx, g
t
y) is a noisy estimators of Riemannian subgradient

of f at (xt, yt). It is necessary to impose the conditions such that these estimators are unbiased and
has bounded variance. By abuse of notation, we assume that

gtx = subgradxf(xt, yt) + ξtx, gty = subgradyf(xt, yt) + ξty, (7)

where the noises (ξtx, ξ
t
y) satisfy that

E[ξtx] = 0, E[ξty] = 0, E[∥ξtx∥2 + ∥ξty∥2] ≤ σ2. (8)

We are ready to summarize our results for Algorithm 4 in the following theorems.

Theorem D.3 Under Assumption D.1 and let Eq. (7) and Eq. (8) hold with σ > 0 and let ηt > 0
satisfies that ηt = 1

µ min{1, 2
t }. There exists some T > 0 such that the output of Algorithm 4

satisfies that E[(d(xT , x
⋆))2 + (d(yT , y

⋆))2] ≤ ϵ and the total number of noisy Riemannian gradient
evaluations is bounded by

O

(
ξ0(L

2 + σ2)

µ2ϵ

)
,

where ξ0 = ξ(κmin, D) measures the lower bound for the change of non-flatness inM and N .

Theorem D.4 Under Assumption D.2 and let Eq. (7) and Eq. (8) hold with σ > 0 and let ηt > 0

satisfies that ηt = 1
2

√
D0

ξ0(L
2+σ2)T

. There exists some T > 0 such that the output of Algorithm 4

satisfies that E[f(x̄T , y
⋆) − f(x⋆, ȳT )] ≤ ϵ and the total number of noisy Riemannian gradient

evaluations is bounded by

O

(
ξ0(L

2 + σ2)D0

ϵ2

)
,

where ξ0 = ξ(κmin, D) measures the lower bound for the change of non-flatness in M and N ,
and the time-average iterates (x̄T , ȳT ) ∈ M× N can be computed by (x̄0, ȳ0) = (0, 0) and the
inductive formula: x̄t+1 = Expx̄t

( 1
t+1 · Exp−1

x̄t
(xt)) and ȳt+1 = Expȳt

( 1
t+1 · Exp−1

ȳt
(yt)) for all

t = 0, 1, . . . , T − 1.

Remark D.2 Theorem D.3 and D.4 establish the last-iterate and time-average rates of convergence
of Algorithm 4 for solving Riemannian min-max optimization problems under Assumption D.1 and D.2.
Moreover, the dependence on L and 1/ϵ can not be improved since it has matched the lower bound
established for nonsmooth stochastic min-max optimization problems in Euclidean spaces.

E Missing Proofs for Riemannian Corrected Extragradient Method

In this section, we present some technical lemmas for analyzing the convergence property of Algo-
rithm 1 and 2. We also give the proofs of Theorem 3.1, 3.2 and 3.3.

E.1 Technical lemmas

We provide two technical lemmas for analyzing Algorithm 1 and 2 respectively. Parts of the first
lemma were presented in Zhang et al. [1, Lemma C.1]. For the completeness, we provide the proof
details.
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Lemma E.1 Under Assumption 3.1 and let {(xt, yt), (x̂t, ŷt)}T−1
t=0 be generated by Algorithm 1 with

the stepsize η > 0. Then, we have

0 ≤ 1
2

(
(dM(xt, x

⋆))2 − (dM(xt+1, x
⋆))2 + (dN (yt, y

⋆))2 − (dN (yt+1, y
⋆))2

)
+2ξ0η

2ℓ2((dM(x̂t, xt))
2 + (dN (ŷt, yt))

2 − 1
2ξ0

(
(dM(x̂t, xt))

2 + (dN (ŷt, yt))
2
)

−µη
2

(
(dM(x̂t, x

⋆))2 + (dN (ŷt, y
⋆))2

)
.

where (x⋆, y⋆) ∈M×N is a global saddle point of f .

Proof. Since f is geodesically ℓ-smooth, we have the Riemannian gradients of f , i.e.,
(gradxf, gradyf), are well defined. Since f is geodesically strongly-concave-strongly-concave
with the modulus µ ≥ 0 (here µ = 0 means that f is geodesically concave-concave), we have

f(x̂t, y
⋆)− f(x⋆, ŷt) = f(x̂t, ŷt)− f(x⋆, ŷt)− (f(x̂t, ŷt)− f(x̂t, y

⋆))
Definition 2.2
≤ −⟨gradxf(x̂t, ŷt),Exp−1

x̂t
(x⋆)⟩+ ⟨gradyf(x̂t, ŷt),Exp−1

ŷt
(y⋆)⟩ − µ

2 (dM(x̂t, x
⋆))2 − µ

2 (dN (ŷt, y
⋆))2.

Since (x⋆, y⋆) ∈M×N is a global saddle point of f , we have f(x̂t, y
⋆)− f(x⋆, ŷt) ≥ 0. Recalling

also from the scheme of Algorithm 1 that we have

xt+1 ← Expx̂t
(−η · gradxf(x̂t, ŷt) + Exp−1

x̂t
(xt)),

yt+1 ← Expŷt
(η · gradyf(x̂t, ŷt) + Exp−1

ŷt
(yt)).

By the definition of an exponential map, we have

Exp−1
x̂t

(xt+1) = −η · gradxf(x̂t, ŷt) + Exp−1
x̂t

(xt),

Exp−1
ŷt

(yt+1) = η · gradyf(x̂t, ŷt) + Exp−1
ŷt

(yt).
(9)

This implies that

−⟨gradxf(x̂t, ŷt),Exp−1
x̂t

(x⋆)⟩ = 1
η (⟨Exp−1

x̂t
(xt+1),Exp−1

x̂t
(x⋆)⟩ − ⟨Exp−1

x̂t
(xt),Exp−1

x̂t
(x⋆)⟩),

⟨gradyf(x̂t, ŷt),Exp−1
ŷt

(y⋆)⟩ = 1
η (⟨Exp−1

ŷt
(yt+1),Exp−1

ŷt
(y⋆)⟩ − ⟨Exp−1

ŷt
(yt),Exp−1

ŷt
(y⋆)⟩).

Putting these pieces together yields that

0 ≤ 1
η (⟨Exp−1

x̂t
(xt+1),Exp−1

x̂t
(x⋆)⟩ − ⟨Exp−1

x̂t
(xt),Exp−1

x̂t
(x⋆)⟩)− µ

2 (dM(x̂t, x
⋆))2

+ 1
η (⟨Exp−1

ŷt
(yt+1),Exp−1

ŷt
(y⋆)⟩ − ⟨Exp−1

ŷt
(yt),Exp−1

ŷt
(y⋆)⟩)− µ

2 (dN (ŷt, y
⋆))2.

Equivalently, we have

0 ≤ ⟨Exp−1
x̂t

(xt+1),Exp−1
x̂t

(x⋆)⟩ − ⟨Exp−1
x̂t

(xt),Exp−1
x̂t

(x⋆)⟩ − µη
2 (dM(x̂t, x

⋆))2 (10)

+⟨Exp−1
ŷt

(yt+1),Exp−1
ŷt

(y⋆)⟩ − ⟨Exp−1
ŷt

(yt),Exp−1
ŷt

(y⋆)⟩ − µη
2 (dN (ŷt, y

⋆))2.

It suffices to bound the terms in the right-hand side of Eq. (10) by leveraging the celebrated comparison
inequalities on Riemannian manifold with bounded sectional curvature (see Proposition C.1 and C.2).
More specifically, we define the constants using ξ(·, ·) and ξ(·, ·) from Proposition C.1 and C.2 as
follows,

ξ0 = ξ(κmin, D), ξ
0
= ξ(κmax, D).

By Proposition C.1 and using that max{dM(x̂t, x
⋆), dN (ŷt, y

⋆)} ≤ D, we have

−⟨Exp−1
x̂t

(xt),Exp−1
x̂t

(x⋆)⟩ ≤ − 1
2

(
ξ
0
(dM(x̂t, xt))

2 + (dM(x̂t, x
⋆))2 − (dM(xt, x

⋆))2
)
,

−⟨Exp−1
ŷt

(yt),Exp−1
ŷt

(y⋆)⟩ ≤ −1
2

(
ξ
0
(dN (ŷt, yt))

2 + (dN (ŷt, y
⋆))2 − (dN (yt, y

⋆))2
)
.

(11)
By Proposition C.2 and using that max{dM(x̂t, x

⋆), dN (ŷt, y
⋆)} ≤ D, we have

⟨Exp−1
x̂t

(xt+1),Exp−1
x̂t

(x⋆)⟩ ≤ 1
2

(
ξ0(dM(x̂t, xt+1))

2 + (dM(x̂t, x
⋆))2 − (dM(xt+1, x

⋆))2
)
.

and

⟨Exp−1
ŷt

(yt+1),Exp−1
ŷt

(y⋆)⟩ ≤ 1
2

(
ξ0(dN (ŷt, yt+1))

2 + (dN (ŷt, y
⋆))2 − (dN (yt+1, y

⋆))2
)
.
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By the definition of an exponential map and Riemannian metric, we have

dM(x̂t, xt+1) = ∥Exp−1
x̂t

(xt+1)∥
Eq. (9)
= ∥η · gradxf(x̂t, ŷt)− Exp−1

x̂t
(xt)∥,

dN (ŷt, yt+1) = ∥Exp−1
ŷt

(yt+1)∥
Eq. (9)
= ∥η · gradyf(x̂t, ŷt) + Exp−1

ŷt
(yt)∥.

(12)

Further, we see from the scheme of Algorithm 1 that we have

x̂t ← Expxt
(−η · gradxf(xt, yt)),

ŷt ← Expyt
(η · gradyf(xt, yt)).

By the definition of an exponential map, we have

Exp−1
xt

(x̂t) = −η · gradxf(xt, yt), Exp−1
yt

(ŷt) = η · gradyf(xt, yt).

Using the definition of a parallel transport map and the above equations, we have

Exp−1
x̂t

(xt) = η · Γx̂t
xt

gradxf(xt, yt), Exp−1
ŷt

(yt) = −η · Γŷt
yt

gradyf(xt, yt)

Since f is geodesically ℓ-smooth, we have

∥gradxf(x̂t, ŷt)− Γx̂t
xt

gradxf(xt, yt)∥ ≤ ℓ(dM(x̂t, xt) + dN (ŷt, yt)),
∥gradyf(x̂t, ŷt)− Γŷt

yt
gradyf(xt, yt)∥ ≤ ℓ(dM(x̂t, xt) + dN (ŷt, yt)).

Plugging the above inequalities into Eq. (12) yields that

max {dM(x̂t, xt+1), dN (ŷt, yt+1)} ≤ ηℓ(dM(x̂t, xt) + dN (ŷt, yt)).

Therefore, we have

⟨Exp−1
x̂t

(xt+1),Exp−1
x̂t

(x⋆)⟩ ≤ 1
2

(
2ξ0η

2ℓ2((dM(x̂t, xt))
2 + (dN (ŷt, yt))

2) + (dM(x̂t, x
⋆))2 − (dM(xt+1, x

⋆))2
)
,

⟨Exp−1
ŷt

(yt+1),Exp−1
ŷt

(y⋆)⟩ ≤ 1
2

(
2ξ0η

2ℓ2((dM(x̂t, xt))
2 + (dN (ŷt, yt))

2) + (dN (ŷt, y
⋆))2 − (dN (yt+1, y

⋆))2
)
.

Plugging the above inequalities and Eq. (11) into Eq. (10) yields the desired inequality. □

The second lemma gives another key inequality that is satisfied by the iterates generated by Algo-
rithm 2.

Lemma E.2 Under Assumption 3.1 (or Assumption 3.2) and the noisy model (cf. Eq. (3) and (4))
and let {(xt, yt), (x̂t, ŷt)}T−1

t=0 be generated by Algorithm 2 with the stepsize η > 0. Then, we have

E[f(x̂t, y
⋆)− f(x⋆, ŷt)] ≤ 1

2ηE
[
(dM(xt, x

⋆))2 − (dM(xt+1, x
⋆))2 + (dN (yt, y

⋆))2 − (dN (yt+1, y
⋆))2

]
+6ξ0ηℓ

2E
[
(dM(x̂t, xt))

2 + (dN (ŷt, yt))
2
]
− 1

2η ξ0E
[
(dM(x̂t, xt))

2 + (dN (ŷt, yt))
2
]

−µ
2E
[
(dM(x̂t, x

⋆))2 + (dN (ŷt, y
⋆))2

]
+ 3ξ0ησ

2,

where (x⋆, y⋆) ∈M×N is a global saddle point of f .

Proof. Using the same argument, we have (µ = 0 refers to geodesically convex-concave case)

f(x̂t, y
⋆)− f(x⋆, ŷt) = f(x̂t, ŷt)− f(x⋆, ŷt)− (f(x̂t, ŷt)− f(x̂t, y

⋆))

≤ −⟨gradxf(x̂t, ŷt),Exp−1
x̂t

(x⋆)⟩+ ⟨gradyf(x̂t, ŷt),Exp−1
ŷt

(y⋆)⟩ − µ
2 (dM(x̂t, x

⋆))2 − µ
2 (dN (ŷt, y

⋆))2.

Combining the arguments used in Lemma E.1 and the scheme of Algorithm 2, we have

−⟨ĝtx,Exp−1
x̂t

(x⋆)⟩ = 1
η (⟨Exp−1

x̂t
(xt+1),Exp−1

x̂t
(x⋆)⟩ − ⟨Exp−1

x̂t
(xt),Exp−1

x̂t
(x⋆)⟩),

⟨ĝty,Exp−1
ŷt

(y⋆)⟩ = 1
η (⟨Exp−1

ŷt
(yt+1),Exp−1

ŷt
(y⋆)⟩ − ⟨Exp−1

ŷt
(yt),Exp−1

ŷt
(y⋆)⟩).

Putting these pieces together with Eq. (3) yields that

f(x̂t, y
⋆)− f(x⋆, ŷt) ≤ 1

η (⟨Exp−1
x̂t

(xt+1),Exp−1
x̂t

(x⋆)⟩ − ⟨Exp−1
x̂t

(xt),Exp−1
x̂t

(x⋆)⟩) (13)

+ 1
η (⟨Exp−1

ŷt
(yt+1),Exp−1

ŷt
(y⋆)⟩ − ⟨Exp−1

ŷt
(yt),Exp−1

ŷt
(y⋆)⟩)− µ

2 (dM(x̂t, x
⋆))2 − µ

2 (dN (ŷt, y
⋆))2

+⟨ξ̂tx,Exp−1
x̂t

(x⋆)⟩ − ⟨ξ̂ty,Exp−1
ŷt

(y⋆)⟩.
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By the same argument as used in Lemma E.1, we have

−⟨Exp−1
x̂t

(xt),Exp−1
x̂t

(x⋆)⟩ ≤ − 1
2

(
ξ
0
(dM(x̂t, xt))

2 + (dM(x̂t, x
⋆))2 − (dM(xt, x

⋆))2
)
,

−⟨Exp−1
ŷt

(yt),Exp−1
ŷt

(y⋆)⟩ ≤ −1
2

(
ξ
0
(dN (ŷt, yt))

2 + (dN (ŷt, y
⋆))2 − (dN (yt, y

⋆))2
)
,

(14)
and

⟨Exp−1
x̂t

(xt+1),Exp−1
x̂t

(x⋆)⟩ ≤ 1
2

(
ξ0η

2∥ĝtx − Γx̂t
xt
gtx∥2 + (dM(x̂t, x

⋆))2 − (dM(xt+1, x
⋆))2

)
,

⟨Exp−1
ŷt

(yt+1),Exp−1
ŷt

(y⋆)⟩ ≤ 1
2

(
ξ0η

2∥ĝty − Γŷt
yt
gty∥2 + (dN (ŷt, y

⋆))2 − (dN (yt+1, y
⋆))2

)
.

Since f is geodesically ℓ-smooth and Eq. (3) holds, we have

∥ĝtx − Γx̂t
xt
gtx∥2 ≤ 3∥ξ̂tx∥2 + 3∥ξtx∥2 + 6ℓ2(dM(x̂t, xt))

2 + 6ℓ2(dN (ŷt, yt))
2,

∥ĝty − Γŷt
yt
gty∥2 ≤ 3∥ξ̂ty∥2 + 3∥ξty∥2 + 6ℓ2(dM(x̂t, xt))

2 + 6ℓ2(dN (ŷt, yt))
2.

Therefore, we have

⟨Exp−1
x̂t

(xt+1),Exp−1
x̂t

(x⋆)⟩+ ⟨Exp−1
ŷt

(yt+1),Exp−1
ŷt

(y⋆)⟩

≤ 6ξ0η
2ℓ2((dM(x̂t, xt))

2 + (dN (ŷt, yt))
2) + 3

2ξ0η
2(∥ξ̂tx∥2 + ∥ξtx∥2 + ∥ξ̂ty∥2 + ∥ξty∥2)

+ 1
2

(
(dM(x̂t, x

⋆))2 − (dM(xt+1, x
⋆))2 + (dN (ŷt, y

⋆))2 − (dN (yt+1, y
⋆))2

)
.

Plugging the above inequalities and Eq. (14) into Eq. (13) yields that

f(x̂t, y
⋆)− f(x⋆, ŷt) ≤ 1

2η

(
(dM(xt, x

⋆))2 − (dM(xt+1, x
⋆))2 + (dN (yt, y

⋆))2 − (dN (yt+1, y
⋆))2

)
+6ξ0ηℓ

2((dM(x̂t, xt))
2 + (dN (ŷt, yt))

2) + 3
2ξ0η(∥ξ̂

t
x∥2 + ∥ξtx∥2 + ∥ξ̂ty∥2 + ∥ξty∥2)

− 1
2η ξ0

(
(dM(x̂t, xt))

2 + (dN (ŷt, yt))
2
)
− µ

2 (dM(x̂t, x
⋆))2 − µ

2 (dN (ŷt, y
⋆))2

+⟨ξ̂tx,Exp−1
x̂t

(x⋆)⟩ − ⟨ξ̂ty,Exp−1
ŷt

(y⋆)⟩.

Taking the expectation of both sides and using Eq. (4) yields the desired inequality. □

E.2 Proof of Theorem 3.1

Since Riemannian metrics satisfy the triangle inequality, we have

(dM(x̂t, x
⋆))2+(dN (ŷt, y

⋆))2 ≥ 1
2 ((dM(xt, x

⋆))2+(dN (yt, y
⋆))2)−(dM(x̂t, xt))

2+(dN (ŷt, yt))
2.

Plugging the above inequality into the inequality from Lemma E.1 yields that

(dM(xt+1, x
⋆))2 + (dN (yt+1, y

⋆))2

≤
(
1− µη

2

) (
(dM(xt, x

⋆))2 + (dN (yt, y
⋆))2

)
+ (4ξ0η

2ℓ2 + µη − ξ
0
)((dM(x̂t, xt))

2 + (dN (ŷt, yt))
2.

Since η = min{ 1
4ℓ

√
τ0
,
ξ
0

2µ}, we have 4ξ0η
2ℓ2 + µη − ξ

0
≤ 0. By the definition, we have τ0 ≥ 1,

κ ≥ 1 and ξ
0
≤ 1. This implies that

1− µη
2 = 1−min

{
1

8κ
√
τ0
,
ξ
0

4

}
> 0.

Putting these pieces together yields that

(dM(xT , x
⋆))2 + (dN (yT , y

⋆))2 ≤
(
1−min

{
1

8κ
√
τ0
,
ξ
0

4

})T
(dM(x0, x

⋆))2 + (dN (y0, y
⋆))2

≤
(
1−min

{
1

8κ
√
τ0
,
ξ
0

4

})T
D0.

This completes the proof.
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E.3 Proof of Theorem 3.2

Since Riemannian metrics satisfy the triangle inequality, we have

(dM(x̂t, x
⋆))2+(dN (ŷt, y

⋆))2 ≥ 1
2 ((dM(xt, x

⋆))2+(dN (yt, y
⋆))2)−(dM(x̂t, xt))

2+(dN (ŷt, yt))
2.

Plugging the above inequality into the inequality from Lemma E.2 yields that

E[f(x̂t, y
⋆)− f(x⋆, ŷt)] ≤ 1

2ηE
[
(dM(xt, x

⋆))2 − (dM(xt+1, x
⋆))2 + (dN (yt, y

⋆))2 − (dN (yt+1, y
⋆))2

]
+(6ξ0ηℓ

2 + µ
2 −

1
2η ξ0)E

[
(dM(x̂t, xt))

2 + (dN (ŷt, yt))
2
]
− µ

4E
[
(dM(x̂t, x

⋆))2 + (dN (ŷt, y
⋆))2

]
+ 3ξ0ησ

2.

Since (x⋆, y⋆) ∈M×N is a global saddle point of f , we have E[f(x̂t, y
⋆)− f(x⋆, ŷt)] ≥ 0. Then,

we have

E
[
(dM(xt+1, x

⋆))2 + (dN (yt+1, y
⋆))2

]
≤

(
1− µη

2

)
E
[
(dM(xt, x

⋆))2 + (dN (yt, y
⋆))2

]
+ (12ξ0η

2ℓ2 + µη − ξ
0
)E
[
(dM(x̂t, xt))

2 + (dN (ŷt, yt))
2
]

+6ξ0η
2σ2.

Since η ≤ min{ 1
24ℓ

√
τ0
,
ξ
0

2µ}, we have 12ξ0η
2ℓ2 + µη − ξ

0
≤ 0. This implies that

E
[
(dM(xt+1, x

⋆))2 + (dN (yt+1, y
⋆))2

]
≤
(
1− µη

2

)
E
[
(dM(xt, x

⋆))2 + (dN (yt, y
⋆))2

]
+6ξ0η

2σ2.

By the definition, we have τ0 ≥ 1, κ ≥ 1 and ξ
0
≤ 1. This implies that

1− µη
2 ≥ 1−min

{
1

48κ
√
τ0
,
ξ
0

4

}
> 0.

By the inductive arguments, we have

E
[
(dM(xT , x

⋆))2 + (dN (yT , y
⋆))2

]
≤

(
1− µη

2

)T (
(dM(x0, x

⋆))2 + (dN (y0, y
⋆))2

)
+ 6ξ0η

2σ2

(
T−1∑
t=0

(
1− µη

2

)t)
≤

(
1− µη

2

)T
D0 +

12ξ0ησ
2

µ .

Since η = min{ 1
24ℓ

√
τ0
,
ξ
0

2µ ,
2(log(T )+log(µ2D0σ

−2))
µT }, we have(

1− µη
2

)T
D0 ≤

(
1−min

{
1

48κ
√
τ0
,
ξ
0

4

})T
D0 +

(
1− log(µ2D0σ

−2T )
T

)T
D0

1+x≤ex

≤
(
1−min

{
1

48κ
√
τ0
,
ξ
0

4

})T
D0 +

σ2

µ2T ,

and
12ξ0ησ

2

µ ≤ 24ξ0σ
2

µ2T log
(

µ2D0T
σ2

)
.

Putting these pieces together yields that

E
[
(dM(xT , x

⋆))2 + (dN (yT , y
⋆))2

]
≤
(
1−min

{
1

48κ
√
τ0
,
ξ
0

4

})T
D0+

σ2

µ2T +
24ξ0σ

2

µ2T log
(

µ2D0T
σ2

)
.

This completes the proof.

E.4 Proof of Theorem 3.3

By the inductive formulas of x̄t+1 = Expx̄t
( 1
t+1 · Exp−1

x̄t
(x̂t)) and ȳt+1 = Expȳt

( 1
t+1 · Exp−1

ȳt
(ŷt))

and using Zhang et al. [1, Lemma C.2], we have

f(x̄T , y
⋆)− f(x⋆, ȳT ) ≤ 1

T

(
T−1∑
t=0

f(x̂t, y
⋆)− f(x⋆, ŷt)

)
.

Plugging the above inequality into the inequality from Lemma E.2 yields that (recall that µ = 0 in
geodesically convex-concave setting here)

E[f(x̄T , y
⋆)− f(x⋆, ȳT )] ≤ 1

2ηT

(
(dM(x0, x

⋆))2 + (dN (y0, y
⋆))2

)
+ 1

T

(
6ξ0ηℓ

2 − 1
2η ξ0

)(T−1∑
t=0

E
[
(dM(x̂t, xt))

2 + (dN (ŷt, yt))
2
])

+ 3ξ0ησ
2.
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Since η ≤ 1
4ℓ

√
τ0

, we have 6ξ0ηℓ
2 − 1

2η ξ0 ≤ 0. Then, this together with (dM(x0, x
⋆))2 +

(dN (y0, y
⋆))2 ≤ D0 implies that

E[f(x̄T , y
⋆)− f(x⋆, ȳT )] ≤ D0

2ηT + 3ξ0ησ
2.

Since η = min{ 1
4ℓ

√
τ0
, 1
σ

√
D0

ξ0T
}, we have

D0

2ηT ≤
2ℓD0

√
τ0

T + σ
2

√
ξ0D0

T ,

and

3ξ0ησ
2 ≤ 3σ

√
ξ0D0

T .

Putting these pieces together yields that

E[f(x̄T , y
⋆)− f(x⋆, ȳT )] ≤ 2ℓD0

√
τ0

T + 7σ
2

√
ξ0D0

T .

This completes the proof.

F Missing Proofs for Riemannian Gradient Descent Ascent

In this section, we present some technical lemmas for analyzing the convergence property of Algo-
rithm 3 and 4. We also give the proofs of Theorem D.1, D.2, D.3 and D.4.

F.1 Technical lemmas

We provide two technical lemmas for analyzing Algorithm 3 and 4 respectively. The first lemma
gives a key inequality that is satisfied by the iterates generated by Algorithm 3.

Lemma F.1 Under Assumption D.1 (or Assumption D.2) and let {(xt, yt)}T−1
t=0 be generated by

Algorithm 3 with the stepsize ηt > 0. Then, we have

f(xt, y
⋆)− f(x⋆, yt) ≤ 1

2ηt

(
(dM(xt, x

⋆))2 − (dM(xt+1, x
⋆))2

)
+ 1

2ηt

(
(dN (yt, y

⋆))2 − (dN (yt+1, y
⋆))2

)
− µ

2 (dM(xt, x
⋆))2 − µ

2 (dN (yt, y
⋆))2 + ξ0ηtL

2,

where (x⋆, y⋆) ∈M×N is a global saddle point of f .

Proof. Since f is geodesically strongly-concave-strongly-concave with the modulus µ ≥ 0 (here
µ = 0 means that f is geodesically concave-concave), we have

f(xt, y
⋆)− f(x⋆, yt) = f(xt, yt)− f(x⋆, yt)− (f(xt, yt)− f(xt, y

⋆))

≤ −⟨subgradxf(xt, yt),Exp−1
xt

(x⋆)⟩+ ⟨subgradyf(xt, yt),Exp−1
yt

(y⋆)⟩ − µ
2 (dM(xt, x

⋆))2 − µ
2 (dN (yt, y

⋆))2.

Recalling also from the scheme of Algorithm 3 that we have

xt+1 ← Expxt
(−ηt · subgradxf(xt, yt)),

yt+1 ← Expyt
(ηt · subgradyf(xt, yt)).

By the definition of an exponential map, we have

Exp−1
xt

(xt+1) = −ηt · subgradxf(xt, yt),
Exp−1

yt
(yt+1) = ηt · subgradyf(xt, yt).

(15)

This implies that

−⟨subgradxf(xt, yt),Exp−1
xt

(x⋆)⟩ = 1
ηt
⟨Exp−1

xt
(xt+1),Exp−1

xt
(x⋆)⟩,

⟨subgradyf(xt, yt),Exp−1
yt

(y⋆)⟩ = 1
ηt
⟨Exp−1

yt
(yt+1),Exp−1

yt
(y⋆)⟩.

Putting these pieces together yields that

f(xt, y
⋆)− f(x⋆, yt) ≤ 1

ηt
⟨Exp−1

xt
(xt+1),Exp−1

xt
(x⋆)⟩ (16)

+ 1
ηt
⟨Exp−1

yt
(yt+1),Exp−1

yt
(y⋆)⟩ − µ

2 (dM(xt, x
⋆))2 − µ

2 (dN (yt, y
⋆))2.
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It suffices to bound the terms in the right-hand side of Eq. (16) by leveraging the celebrated comparison
inequalities on Riemannian manifold with lower bounded sectional curvature (see Proposition C.2).
More specifically, we define the constants using ξ(·, ·) and ξ(·, ·) from Proposition C.2 as follows,

ξ0 = ξ(κmin, D).

By Proposition C.2 and using that max{dM(xt, x
⋆), dN (yt, y

⋆)} ≤ D, we have

⟨Exp−1
xt

(xt+1),Exp−1
xt

(x⋆)⟩ ≤ 1
2

(
ξ0(dM(xt, xt+1))

2 + (dM(xt, x
⋆))2 − (dM(xt+1, x

⋆))2
)
,

⟨Exp−1
yt

(yt+1),Exp−1
yt

(y⋆)⟩ ≤ 1
2

(
ξ0(dN (yt, yt+1))

2 + (dN (yt, y
⋆))2 − (dN (yt+1, y

⋆))2
)
.

Since f is geodesically L-Lipschitz, we have

∥subgradxf(xt, yt)∥ ≤ L, ∥subgradyf(xt, yt)∥ ≤ L.

By the definition of an exponential map and Riemannian metric, we have

dM(xt, xt+1) = ∥Exp−1
xt

(xt+1)∥
Eq. (15)
= ∥ηt · subgradxf(xt, yt)∥ ≤ ηtL,

dN (yt, yt+1) = ∥Exp−1
yt

(yt+1)∥
Eq. (15)
= ∥ηt · subgradyf(xt, yt)∥ ≤ ηtL.

Putting these pieces together yields that

⟨Exp−1
xt

(xt+1),Exp−1
xt

(x⋆)⟩ ≤ 1
2

(
ξ0η

2
tL

2 + (dM(xt, x
⋆))2 − (dM(xt+1, x

⋆))2
)
,

⟨Exp−1
yt

(yt+1),Exp−1
yt

(y⋆)⟩ ≤ 1
2

(
ξ0η

2
tL

2 + (dN (yt, y
⋆))2 − (dN (yt+1, y

⋆))2
)
.

Plugging the above inequalities into Eq. (16) yields the desired inequality. □

The second lemma gives another key inequality that is satisfied by the iterates generated by Algo-
rithm 4.

Lemma F.2 Under Assumption D.1 (or Assumption D.2) and the noisy model (cf. Eq. (7) and (8))
and let {(xt, yt)}T−1

t=0 be generated by Algorithm 4 with the stepsize ηt > 0. Then, we have

E[f(xt, y
⋆)− f(x⋆, yt)] ≤ 1

2ηt
E
[
(dM(xt, x

⋆))2 − (dM(xt+1, x
⋆))2

]
+ 1

2ηt
E
[
(dN (yt, y

⋆))2 − (dN (yt+1, y
⋆))2

]
− µ

2E
[
(dM(xt, x

⋆))2 + (dN (yt, y
⋆))2

]
+ 2ξ0ηt(L

2 + σ2),

where (x⋆, y⋆) ∈M×N is a global saddle point of f .

Proof. Using the same argument, we have (µ = 0 refers to geodesically convex-concave case)

f(xt, y
⋆)− f(x⋆, yt) = f(xt, yt)− f(x⋆, yt)− (f(xt, yt)− f(xt, y

⋆))

≤ −⟨subgradxf(xt, yt),Exp−1
xt

(x⋆)⟩+ ⟨subgradyf(xt, yt),Exp−1
yt

(y⋆)⟩ − µ
2 (dM(xt, x

⋆))2 − µ
2 (dN (yt, y

⋆))2.

Combining the arguments used in Lemma F.1 and the scheme of Algorithm 2, we have

−⟨gtx,Exp−1
xt

(x⋆)⟩ = 1
ηt
⟨Exp−1

xt
(xt+1),Exp−1

xt
(x⋆)⟩,

⟨gty,Exp−1
yt

(y⋆)⟩ = 1
ηt
⟨Exp−1

yt
(yt+1),Exp−1

yt
(y⋆)⟩.

Putting these pieces together with Eq. (7) yields that

f(xt, y
⋆)− f(x⋆, yt) ≤ 1

ηt
⟨Exp−1

xt
(xt+1),Exp−1

xt
(x⋆) (17)

+ 1
ηt
⟨Exp−1

yt
(yt+1),Exp−1

yt
(y⋆)⟩ − µ

2 (dM(xt, x
⋆))2 − µ

2 (dN (yt, y
⋆))2 + ⟨ξtx,Exp−1

xt
(x⋆)⟩ − ⟨ξty,Exp−1

yt
(y⋆)⟩.

By the same argument as used in Lemma F.1 and Eq. (7), we have

⟨Exp−1
xt

(xt+1),Exp−1
xt

(x⋆)⟩ ≤ 1
2

(
ξ0(dM(xt, xt+1))

2 + (dM(xt, x
⋆))2 − (dM(xt+1, x

⋆))2
)
,

⟨Exp−1
yt

(yt+1),Exp−1
yt

(y⋆)⟩ ≤ 1
2

(
ξ0(dN (yt, yt+1))

2 + (dN (yt, y
⋆))2 − (dN (yt+1, y

⋆))2
)
,

and
dM(xt, xt+1) = ∥Exp−1

xt
(xt+1)∥ = ∥ηt · gtx∥ ≤ ηt(L+ ∥ξtx∥),

dN (yt, yt+1) = ∥Exp−1
yt

(yt+1)∥ = ∥ηt · gty∥ ≤ ηt(L+ ∥ξty∥).
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Therefore, we have
⟨Exp−1

xt
(xt+1),Exp−1

xt
(x⋆)⟩+ ⟨Exp−1

yt
(yt+1),Exp−1

yt
(y⋆)⟩

≤ 1
2ξ0η

2
t (4L

2 + 2∥ξtx∥2 + 2∥ξty∥2) + 1
2

(
(dM(xt, x

⋆))2 − (dM(xt+1, x
⋆))2 + (dN (yt, y

⋆))2 − (dN (yt+1, y
⋆))2

)
.

Plugging the above inequalities into Eq. (17) yields that
f(xt, y

⋆)− f(x⋆, yt) ≤ 1
2ηt

(
(dM(xt, x

⋆))2 − (dM(xt+1, x
⋆))2 + (dN (yt, y

⋆))2 − (dN (yt+1, y
⋆))2

)
+ξ0ηt(2L

2 + ∥ξtx∥2 + ∥ξty∥2)−
µ
2 (dM(xt, x

⋆))2 − µ
2 (dN (yt, y

⋆))2 + ⟨ξtx,Exp−1
xt

(x⋆)⟩ − ⟨ξty,Exp−1
yt

(y⋆)⟩.
Taking the expectation of both sides and using Eq. (8) yields the desired inequality. □

F.2 Proof of Theorem D.1

Since (x⋆, y⋆) ∈M×N is a global saddle point of f , we have f(xt, y
⋆)− f(x⋆, yt) ≥ 0. Plugging

this inequality into the inequality from Lemma F.1 yields that
(dM(xt+1, x

⋆))2 + (dN (yt+1, y
⋆))2 ≤ (1− µηt)

(
(dM(xt, x

⋆))2 + (dN (yt, y
⋆))2

)
+ 2ξ0η

2
tL

2.

Since ηt =
1
µ min{1, 2

t }, we have

(dM(xt+1, x
⋆))2+(dN (yt+1, y

⋆))2 ≤ (1− 2
t )
(
(dM(xt, x

⋆))2 + (dN (yt, y
⋆))2

)
+ 8ξ0L

2

µ2t2 , for all t ≥ 2.

Letting {bt}t≥1 be a nonnegative sequence such that at+1 ≤ (1 − P
t )at +

Q
t2 where P > 1 and

Q > 0. Then, Chung [137] proved that at ≤ Q
P−1

1
t . Therefore, we have

(dM(xt, x
⋆))2 + (dN (yt, y

⋆))2 ≤ 8ξ0L
2

µ2t , for all t ≥ 2.

This completes the proof.

F.3 Proof of Theorem D.2

By the inductive formulas of x̄t+1 = Expx̄t
( 1
t+1 · Exp−1

x̄t
(xt)) and ȳt+1 = Expȳt

( 1
t+1 · Exp−1

ȳt
(yt))

and using Zhang et al. [1, Lemma C.2], we have

f(x̄T , y
⋆)− f(x⋆, ȳT ) ≤ 1

T

(
T−1∑
t=0

f(xt, y
⋆)− f(x⋆, yt)

)
.

Plugging the above inequality into the inequality from Lemma F.1 yields that (recall that µ = 0 in
geodesically convex-concave setting and ηt = η = 1

L

√
D0

2ξ0T
)

f(x̄T , y
⋆)− f(x⋆, ȳT ) ≤ 1

2ηT

(
(dM(x0, x

⋆))2 + (dN (y0, y
⋆))2

)
+ ξ0ηL

2.

This together with (dM(x0, x
⋆))2 + (dN (y0, y

⋆))2 ≤ D0 implies that
f(x̄T , y

⋆)− f(x⋆, ȳT ) ≤ D0

2ηT + ξ0ηL
2.

Since η = 1
L

√
D0

2ξ0T
, we have

f(x̄T , y
⋆)− f(x⋆, ȳT ) ≤ L

√
2ξ0D0

T .

This completes the proof.

F.4 Proof of Theorem D.3

Since (x⋆, y⋆) ∈ M × N is a global saddle point of f , we have E[f(xt, y
⋆) − f(x⋆, yt)] ≥ 0.

Plugging this inequality into the inequality from Lemma F.2 yields that
E
[
(dM(xt+1, x

⋆))2 + (dN (yt+1, y
⋆))2

]
≤ (1−µηt)E

[
(dM(xt, x

⋆))2 + (dN (yt, y
⋆))2

]
+4ξ0η

2
t (L

2+σ2).

Since ηt =
1
µ min{1, 2

t }, we have

E
[
(dM(xt+1, x

⋆))2 + (dN (yt+1, y
⋆))2

]
≤ (1− 2

t )E
[
(dM(xt, x

⋆))2 + (dN (yt, y
⋆))2

]
+ 16ξ0(L

2+σ2)
µ2t2 , for all t ≥ 2.

Applying the same argument as used in Theorem D.1, we have

(dM(xt, x
⋆))2 + (dN (yt, y

⋆))2 ≤ 16ξ0(L
2+σ2)

µ2t , for all t ≥ 2.

This completes the proof.
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Figure 3: Comparison of last iterate (RCEG-last) and time-average iterate (RCEG-avg) for solving the RPCA
problem when α = 2.0. The horizontal axis represents the number of data passes and the vertical axis represents
gradient norm.
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Figure 4: Comparison of different step sizes (η ∈ {0.1, 0.05, 0.02}) for solving the RPCA problem with
different dimensions when α = 2.0. The horizontal axis represents the number of data passes and the vertical
axis represents gradient norm.

F.5 Proof of Theorem D.4

Using the same argument, we have

f(x̄T , y
⋆)− f(x⋆, ȳT ) ≤ 1

T

(
T−1∑
t=0

f(xt, y
⋆)− f(x⋆, yt)

)
.

Plugging the above inequality into the inequality from Lemma F.2 yields that (recall that µ = 0 in
geodesically convex-concave setting and ηt = η = 1

2

√
D0

ξ0(L
2+σ2)T

)

E[f(x̄T , y
⋆)− f(x⋆, ȳT )] ≤ 1

2ηT

(
(dM(x0, x

⋆))2 + (dN (y0, y
⋆))2

)
+ 2ξ0η(L

2 + σ2).

This together with (dM(x0, x
⋆))2 + (dN (y0, y

⋆))2 ≤ D0 implies that

E[f(x̄T , y
⋆)− f(x⋆, ȳT )] ≤ D0

2ηT + 2ξ0η(L
2 + σ2).

Since η = 1
2

√
D0

ξ0(L
2+σ2)T

, we have

f(x̄T , y
⋆)− f(x⋆, ȳT ) ≤ 2

√
ξ0(L

2+σ2)D0

T .

This completes the proof.

G Additional Experimental Results

We present some additional experimental results for the effect of different choices of α as well the
effect of different choices of η for for RCEG. In our experiment here, we set n = 40 consistently.
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Figure 3 presents the performance of RCEG when α = 2.0. We observe that the results are similar
to that summarized in Figure 1. In particular, the last iterate of RCEG consistently achieves the
linearly convergence to an optimal solution in all the settings. In contrast, the average iterate of
RCEG converges much slower than the last iterate of RCEG. Figure 4 summarizes the effect of
different choices of η in RCEG. We observe that setting η as a relatively larger value will speed up
the convergence to an optimal solution while all of the choices here lead to the linear convergence.
This suggests that the choice of stepsize η in RCEG can be aggressive in practice.
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