
Appendix
A Experiment Setup

In this section, we present full experiment setups and results on the three real KGs in detail.

A.1 Data Splits

We use NELL, FB15K-237 and ConceptNet for both transductive and inductive setting. For the
transductive setting, we use the meta-eval and meta-test splits of NELL-One for the eval and test
few-shot tasks on NELL, and we do not use the meta-train split. For FB15K-237 and ConceptNet, we
select the fewest 7:30 and 1:2 appearing relations as eval:test few-shot tasks respectively, following
the previous papers [12, 23]. The background KGs are generated by removing all triplets involving
eval and test relations.

For the inductive setting, we mostly use the same set of eval and test relations, except for FB15K-237
where we randomly selected 10 relations out of the 30 transductive test relations as the inductive
test relations. For each test task, we also subsample the number of query triplets to 10%. Then we
consider all entities and their one hop neighbors appeared in test tasks the inductive entities unseen
during training time. So all inductive entities and all triplets involving them become the Ind-Test in
1 and are removed from the training time background KG – Ind-BG 1. During training time, only
the Ind-BG is available as the background KG; during the test time, the Ind-Test is combined with
the Ind-BG to form the test time background KG. Note that the subsamplings of query triplets and
tasks are intended to make sure that the remaining training time background KG does not become
too small and still contains all of the relations not in eval and test relations (which includes all the
relations in Ind-Test).

We will release our data processing scripts and preprocessed datasets publicly for reproducibility.

A.2 Model Architectures and Hyperparameters

A.2.1 Baselines

For MetaR and FSRL, we use their publicly available code directly and use the architectures and
hyperparameters on NELL for other datasets and settings.

A.2.2 CSR

We include our code for CSR in the supplementary material and will release them publicly for
reproducibility. The anonymous code and data can be found in the anonymous link https://drive.

google.com/file/d/18otchItFQurlHzQI2xQILudTzRCHlcDa/view?usp=sharing.

Triplet Contextualization For the triplet contextualization step of CSR-GNN and CSR-OPT,
we use k = 2 hops enclosing subgraph for NELL, k = 1 for FB15K-237 and ConceptNet. For
all datasets, we supplement maximum of 50 randomly selected one hop neighbors of head and tail
entities.

Architectures and Hyperparameters For CSR-GNN, both fENC(·) and fDEC(·) use 3 layers of
alternative message passing and hidden dimension of 128. For fDEC(·), instead of having a global
pooling at the end like in fENC(·), we apply a 2 layers MLP binary classifier (hidden dimension
64) to the edge representation produced by last layer message passing to generate the edge mask
value on each edge. We use AdamW optimizer, 1e-5 learning rate, 5000 epochs, and linear decay
learning rate schedule. The three loss terms are generally combined as �1 ⇤ Lossrecon + �2 ⇤
Losscontrast + Lossfinetune. On NELL, �1 = 0.7,�2 = 0.1; On FB15K-237,�1 = 0.1,�2 = 1;
On ConceptNet, �1 = 2,�2 = 0.5. We manually select these hyperparameters based on transductive
eval set performance.

For CSR-OPT, the architecture for Menc is the same as fENC(·). We use gradient descent with
AdamW for both optimizations. For the constraint optimization implementing Mp, we use the Basic
Differential Multiplier Method [14]. All the hyperparameter are automatically searched using Optuna

14

https://drive.google.com/file/d/18otchItFQurlHzQI2xQILudTzRCHlcDa/view?usp=sharing
https://drive.google.com/file/d/18otchItFQurlHzQI2xQILudTzRCHlcDa/view?usp=sharing


[1] against the eval set performance in terms of the overall AUC-ROC when each query triplet is
compared again only one negative candidate. Since Menc is not trained, CSR-OPT only uses relation
embedding and does not use entity embedding under any settings.

Entity and Relation Embedding All methods use 100 dimensional relation and entities embedding
when applicable. For transductive NELL dataset, we use the originally released embedding by [23].
For all other settings, we train 100 dim embedding over the appropriate (training) background KG and
use them for all methods. Based on eval set performance, we use TransE embedding for MetaR and
ComplEx embedding for FSRL, which makes sense since MetaR is designed with TransE distance
and FSRL also reports best performance with ComplEx in the original paper. For CSR, we use
TransE for NELL and FB15K-237 and ComplEx for ConceptNet.

A.3 Full Results

We report full results with standard deviations for Table 2, 5 and 6. Note that in the inductive setting,
the unseen entities are given a random embedding, following the embedding initialization distribution.

Figure 3: Full results with standard deviations for transductive (left) and inductive (right) settings,
corresponding to Table 2 and 5.

Figure 4: Full results with standard deviation of Table 6. Each category corresponds to one row in
table 6: ALL corresponds to the first row with all four components; None corresponds to the last row
without any of the four components. FT = Finetuning; HP= Hypothesis Proposal; EP = Evidence
Proposal.

15



B Transductive Setting with no Entity Embedding During Testing

In figure 5, we randomize entity embedding during testing with transductive dataset, which can be
seen as an extreme inductive setting where all entities are new during testing.

Figure 5: Performance comparison on transductive few-shot tasks without curated training tasks and
with randomized entity embedding during testing.

C Synthetic Dataset

C.1 Synthetic Dataset Construction

We construct synthetic datasets so that in each few-shot task the support graphs strictly contain a
shared connection subgraph, and the query triplet is only correct if the query graph also contains the
same connection subgraph. Specifically, we first sample a hypothesis in the form of a four clique
with the link between head and tail missing. Here each edge has a relation randomly selected from 50
relations. We then augment this hypothesis graph to 100 different support and query graphs by first
adding more nodes edges and randomly then pruning away the graph until each node is reachable to
both head and tail node in 2 hops. Each few-shot task is then sampled from these generated support
and query graphs and corresponds to a different hypothesis connection subgraph.

C.2 Connection Subgraph Detection

Since all support graphs and (positive) query graphs in each task in the synthetic dataset have a shared
connection graph, here we evaluate our method to see whether we are able to detect the common
connection graph for both the support and query graphs.

For evaluating the detection of common hypothesis connection subgraph among support graphs, we
use the training tasks and supervise our model with the ground truth common connection subgraph
of the given support graphs in the training task. Then we evaluate whether our model is able to
discover the common connection subgraph for the support graphs in the test tasks. In detail, given
several support graphs in a task and the ground truth binary edge mask (applying which returns the
connection subgraph), we calculate the intersection over union (IOU) of the ground truth edge mask
and the predicted edge mask produced by our model. For hypothesis proposal, we are able to achieve
an IOU of 0.843 and 0.809 for CSR-OPT and CSR-GNN respectively.

For evaluating the detection of evidence connection subgraph in query graphs, the setting is that the
model is given the query graph and the connection subgraph embedding (achieved from the support
graphs), we evaluate whether the model is able to predict the evidence connection subgraph in the
query graph. Similar to the hypothesis proposal, we also calculate the IOU as the metric. We are able
to achieve a 0.992 and 0.981 IOU for CSR-OPT and CSR-GNN respectively.

We demonstrate that on synthetic dataset, our method is able to automatically detect the common
connection graphs on new few-shot tasks. This shows that our method has significantly better inductive
bias and interpretability than prior methods as we are able to detect complex graph structured rule,
which further leads to improvement in the downstream few-shot link prediction performance.

16



D Interpretable edge-level masks

We further explore qualitative examples and attach some visualizations of the connection subgraph
discovered by our model in the NELL test set. Each figure visualizes the evidence connection
subgraph discovered for the novel relation in the title. We include only relation names but not entity
names to emphasize the topological similarity and reduce cluttering.

In these figures, we can see that the model discovered meaningful evidence connection subgraphs to
support its prediction, e.g.,

concept:agriculturalproductgrowninlandscapefeatures,

concept:geopoliticallocationcontainscountry =>

concept:agriculturalproductcamefromcountry.

The model also selects some one-hop neighbors of head/tail that are not reachable to the tail/head but
provide information about the type of the head/tail entity: e.g.concept:countrycities helps to
determine that the head entity is a country. Moreover, different subgraphs with similar semantics are
identified when the exact same subgraph is not available.

Proxy for
Flowers

Switzerland
grown in landscape Location contains countryFlowers Norwey

located atFootball

Israel

has sport team positionGolf England

Figure 6: Learned edge masks by CSR.Top two are concept:agriculturalproductcamefromcountry;
bottom two are concept:sportschoolincountry

E Computation

We use NVIDIA 2080 Ti RTX 11GB GPUs in our internal cluster for all of our model training and
testing. Training for both CSR-GNN and baseline methods take around 2 hours on a single GPU.

F Limitations

Here we discuss the limitation of our method. Our method is extremely flexible in both the transductive
and inductive few-shot link prediction on knowledge graphs. However, when the entity embedding

17



can already capture most of the relevant topological information, our method of explicitly modeling
and comparing connection subgraphs could bring less improvement. This happens most naturally in
transductive setting with a dense background KG, where each pair of query entities are both seen and
already relatively close. Our method also relies on the triplet contextualization step to first provide
a reasonable super set of possible hypothesis to consider. In the main paper, we uses enclosing
subgraph supplemented with randomly sampled one hop neighbors as one example of such methods.
However, such method may not be applicable to all KGs. We leave this for future works.

G Broader Impacts

In the real world, our culture, values and knowledge are always evolving. As one of the key basis for
many down stream applications, knowledge graph should evolve accordingly as the new concepts
emerge. However, such an update often incurs high costs from both manually adding in these new
concepts as new entities and relations, as well as retraining all the downstream models. Our work
provides a data efficient way to incorporate these new entities and relations to the existing knowledge
graph, as well as an example model that dynamically incorporate new triplets during test time.
Specifically across various scientific disciplines, our method can accelerate scientific discovery over
the graph with human knowledge on chemistry, physics and biology, and provide justification and
explanation why some facts about the new entities/relations are more promising than others. However,
the imputed knowledge about the new entities and relations could be overly relied on and become
misguidance. To mitigate this, the generated knowledge, especially ones based on only a few verified
examples but have high stakes, should be verified by humans through domain-specific experiments.

18


	Introduction
	Related Work
	Few-shot Relational Learning via Meta-Learning
	Few-shot Learning via Pretraining

	Few-shot KG Completion
	Connection Subgraph Reasoner
	Inductive Reasoning
	General Framework
	CSR-OPT: Learning-free Implementation
	CSR-GNN: Learning-based Implementation and Pretraining Scheme

	Experiments
	Few-shot Learning without Curated Training Tasks
	Transductive Setting
	Inductive Setting
	Inference Time

	Ablation Study
	Robustness to Distribution Shift
	Synthetic Dataset

	Conclusion
	Experiment Setup
	Data Splits
	Model Architectures and Hyperparameters
	Baselines
	CSR

	Full Results

	Transductive Setting with no Entity Embedding During Testing
	Synthetic Dataset
	Synthetic Dataset Construction
	Connection Subgraph Detection

	Interpretable edge-level masks
	Computation
	Limitations
	Broader Impacts

