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Abstract

Contrastive learning (CL) pretrains feature embeddings to scatter instances in the
feature space so that the training data can be well discriminated. Most existing
CL techniques usually encourage learning such feature embeddings in the high-
dimensional space to maximize the instance discrimination. However, this practice
may lead to undesired results where the scattering instances are sparsely distributed
in the high-dimensional feature space, making it difficult to capture the underlying
similarity between pairwise instances. To this end, we propose a novel framework
called contrastive learning with low-dimensional reconstruction (CLLR), which
adopts a regularized projection layer to reduce the dimensionality of the feature
embedding. In CLLR, we build the sparse / low-rank regularizer to adaptively
reconstruct a low-dimensional projection space while preserving the basic objective
for instance discrimination, and thus successfully learning contrastive embeddings
that alleviate the above issue. Theoretically, we prove a tighter error bound for
CLLR; empirically, the superiority of CLLR is demonstrated across multiple
domains. Both theoretical and experimental results emphasize the significance of
learning low-dimensional contrastive embeddings.

1 Introduction

Recently, unsupervised learning approaches have been greatly promoted by the contrastive learning
(CL), which shows encouraging performance compared to fully supervised approaches [8, 21]. CL
pretrains deep neural networks with unlabeled instances, and the learned feature embeddings can be
directly used to extract features from the raw data [35]. Thereby, CL has been successfully applied in
many downstream recognition tasks such as classification [42], retrieval [41], and clustering [3].

As an unsupervised learning problem setting where the human annotation is not available, CL
approaches usually consider building the pseudo supervision in their learning objectives [36, 19], and
thus CL is also regarded as a self-supervised learning approach. Originally, the pseudo supervision
of CL is to push away each pair of instances to scatter data points in the feature space, by which all
instances in the training data can be well discriminated (i.e., the instance discrimination) [14, 40].
This original design has been empirically validated to be particularly effective in the representation
learning [28, 6], and has also been theoretically proved to approximate an unbiased supervised
learning objective [32, 11]. Many recent efforts have increasingly focused on two different directions
to further improve the performance of CL. The first one is to introduce plentiful data-augmentation
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to generate the positive pair which consists of each instance and its perturbation [35, 28]. Then,
any two instances in the training data are regarded as the negative pair, and the objective of metric
learning [33, 43] can be used to learn feature embeddings that distinguish positive pairs and negative
pairs. Nevertheless, the negative pairs built in CL are inherently noisy because they contain false
negatives consisted of semantically similar instances [30]. Therefore, the second way to improve the
performance of CL is to reduce the impact of false negative pairs. To this end, some recent works
convert it to positive-unlabeled learning [11, 27] and clustering problems [3, 46] to reweight the
importance of negative pairs, and thus constraining the undesired repelling of negative pairs [3, 46].

Although the existing methods have achieved promising results to some extent, their reliabilities
highly depend on the effectiveness of instance discrimination [20, 32]. However, recent works
usually encourage learning contrastive embedding in high-dimensional space to maximally dis-
criminate instances, so that the dimensionality of self-supervised contrastive embedding [7, 9] is
set to be much larger than the dimensionality of traditional fully supervised embedding [10, 44].
This practice makes data points sparsely distribute in the feature space (which is similar to the
curse of dimensionality [18]), and thereby the corresponding CL methods may fail to capture the
intrinsic similarity between pairwise instances. Such a problem can hardly be solved by simply
setting a low dimensionality for the output layer, as it will cause the dimensional collapse with
insufficient instance discrimination [20]. Some popular compression approaches such as distillation
techniques [5, 47] enable us to train small networks under the supervision of original contrastive
embeddings, yet the improper similarity predictions can still be inherited from the original networks.
Therefore, a new CL method is desired to effectively learn the low-dimensional feature embedding.
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Figure 1: Conceptual illustration of our proposed
CLLR. In our method, we discriminate all instances in
high-dimensional space and introduce a sparse projec-
tion layer (the red part) to reconstruct the features of
instances in the low-dimensional latent space.

In this paper, we propose a novel frame-
work dubbed contrastive learning with low-
dimensional reconstruction (CLLR) to explicitly
address the above issue caused by the high di-
mensionality in CL. Specifically, we introduce
a new sparse projection layer to reconstruct the
features of instances in low-dimensional space
and meanwhile scatter all instances in the orig-
inal high-dimensional space (see Fig. 1). Then,
we obtain the low-dimensional contrastive em-
bedding which can also effectively distinguish
instances in the training data. Theoretically, we
prove a lower bound for the min-max distance ra-
tio of the learned contrastive embedding, which
ensures that CLLR can better capture the in-
stance similarity than the existing CL models.
Experimentally, our approach consistently improves the state-of-the-art methods on vision, language,
and reinforcement learning benchmarks. To the best of our knowledge, we are the first to propose
learning the original contrastive embedding in low-dimensional space. The proposed method is very
generic, so it can be applied in many existing CL models. Our main contributions are summarized
as: I). we propose a novel framework to enhance the generalization ability of contrastive learning
via introducing a sparse / low-rank regularized projection layer to adaptively reduce the high dimen-
sionality of contrastive embedding; II). we establish complete theoretical guarantees for our method
by analyzing the error bound of distance predictions and the convergence of the learning algorithm,
respectively; III). we conduct extensive experiments on real-world datasets to validate the superiority
of our method over the state-of-the-art CL approaches, and the results consistently emphasize the
necessity / significance of learning low-dimensional contrastive embeddings.

Notations. We write matrices and vectors as bold uppercase characters and bold lowercase characters,
respectively. We denote the training dataset X = {xi ∈Rm|i= 1, 2, . . . , N} where m is the data
dimensionality and N is the sample size. Operators ∥·∥2, ∥·∥2,1, and ∥·∥* denote the vector/matrix
ℓ2-norm, ℓ2,1-norm (i.e., the sum of ℓ2-norm for columns), and nuclear-norm, respectively.

1.1 Background & Related Work

In this subsection, we briefly review the background of contrastive learning and the related work.
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Instance Discrimination & Contrastive Learning. As a popular unsupervised / self-supervised
learning approach, the basic goal of contrastive learning (CL) algorithm is to learn a generic feature
embedding Φ : Rm 7→ RH , which transforms the data point from m-dimensional sample space to
H-dimensional embedding space. The primitive CL method called instance discrimination learns
such an embedding by directly enlarging the following distance between each pair of two instances
xi and xj in the training data [14, 40]

DΦ(xi,xj) = ∥Φ(xi)−Φ(xj)∥2/H, (1)

where H is the dimensionality of the learned feature embedding. The design philosophy for instance
discrimination is that when we scatter all instances in the feature space, the characteristic of each
instance are captured and thus the training data can be well memorized by the neural network [20].
When we further generate the positive pairs (x, x+) by combining each single instance x and its
perturbation x+, we are able to use the noise contrastive estimation (NCE) loss [16] to learn a feature
embedding Φ from positive and negative pairs. In this paper, we focus on such a NCE loss which
has the form of LNCE(Φ)=Ex,x−

j ∈X [−log(eΦ(x)⊤Φ(x+)/(eΦ(x)⊤Φ(x+)+
∑n

j=1eΦ(x)⊤Φ(x−
j )))]. Here

instances x and {x−
j }nj=1 are uniformly sampled from the training data X , and n is the batch size.

Admittedly, as the original prototype of CL, instance discrimination is very critical to ensuring the
effectiveness of most CL methods. However, the feature dimensionality settings in existing CL
methods are usually very high (e.g., 2048-dimension and 4096-dimension in [7, 9] ), which are much
larger than the feature dimensionality in most fully supervised learning methods (e.g., 512-dimension
and 1024-dimension in [10, 15]). We demonstrate that learning contrastive embeddings in such
high-dimensional space can be weak in capturing the similarity between pairwise instances. To
address this issue, in this paper, we propose a novel framework to learn contrastive embedding in
low-dimensional space, which uses a sparse / low-rank regularized projection layer for reconstruction.

PCA & Autoencoder. As a classical unsupervised / self-supervised learning method, principal
component analysis (PCA) has shown promising results in many machine learning tasks [39, 45, 4].
Actually, PCA shares very similar motivation with the instance discrimination of CL. It is well-known
that PCA seeks for a vector p∈Rm to scatter instances in the projection space by maximizing the
variance Ex∈X [(x−x)⊤pp⊤(x−x)], where x∈Rm is the mean of all instances in the training dataX .
Enlarging such a variance is quite similar to the instance discrimination of CL which also pushes away
data pairs to scatter instances. PCA has another reconstruction based form Ex∈X [∥PP⊤x−x∥22]
which is equivalent to the variance maximization (P ∈Rm×l is the projection matrix and l∈Z+ is
the dimensionality of orthogonal space). To further improve the fitting ability of PCA for complex
data, the non-linear extension Autoencoder introduces the non-linear activation function σ and two
different projection matrices P and P ′ to reconstruct the training data in the by minimizing the
objective Ex∈X [∥σ(P ′⊤σ(P⊤x)) − x∥22]. Some further extensions such as masked autoencoder
(MAE) [17] achieved very promising results in several downstream tasks.

In this paper, we are inspired by PCA / Autoencoder to reduce the dimensionality of contrastive
embedding based on a sparse / low-rank regularized reconstruction loss. Interestingly, from this
perspective, our method can also be regarded as a natural combination of two main existing self-
supervised learning approaches.

2 Methodology

In this section, we first investigate the distribution of instances scattered by CL in the high-dimensional
feature space. After that, we propose a novel framework dubbed contrastive learning with low-
dimensional reconstruction by introducing a new sparse projection layer. The learning objective and
the corresponding optimization algorithm are finally designed with convergence guarantee.

2.1 Motivation

As we mentioned before, the contrastive embedding Φ maps an m-dimensional instance into the
H-dimensional feature space. Now we want to investigate the distribution of data points in such an
H-dimensional space. We consider the H-dimensional hypercube and its inscribed-suprasphere. We
suppose that the edge length of the H-dimensional hypercube is 2r, and the radius of its inscribed-
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suprasphere will be r. Then their corresponding volumes in the high-dimensional space are

Vcube(H) = (2r)H and Vsphere(H) = (2rHπH/2)/(H · Γ(H/2)), (2)

respectively, where Γ(·) is the gamma function [37] having a form of Γ(z) =
∫∞
0

tz−1e−tdt. We
further study the ratio of the suprasphere volume to the hypercube volume. We let H →∞ and the
formulation limH→∞ Vsphere(H)/Vcube(H) equals to

lim
H→∞

(πH/2/(H · Γ(H/2)))/2H−1 ≤ lim
H→∞

π(H−1)/2/2H−1 = lim
H→∞

(π/4)(H−1)/2 = 0, (3)

and thus we have limH→∞ Vsphere(H)/Vcube(H) = 0 by using the fact that Vsphere(H)/Vcube(H) ≥ 0.
This result of volume ratio clearly reveals that the proportion of the inscribed-suprasphere in the
hypercube will gradually converge to 0 with the increase of the dimensionality H . It means that,
in the high-dimensional hypercube, a random given data point is less likely to appear inside of the
inscribed-suprasphere (i.e., in the central area of the hypercube) but it will usually exist outside of
the inscribed-suprasphere (i.e., in the corner area of the hypercube).

However, the learning objective of CL expects to scatter all instances in the H-dimensional hypercube,
and thus making the N instances sparsely distribute in the N̂ = 2H corners. Specifically, for the
common dimensionality setting H = 2048 in popular CL methods, we have that

N̂ = 2H = 22048 = 16512 ≫ 10512 ≫ 106 = N, (4)

which implies that the corner number N̂ is significantly larger than the sample number N . In
this case, the distribution of instances in the feature space will be very sparse, and all instances
are far away from each other. Thereby the learning algorithm can hardly capture the intrinsic
similarity between intra-class instances, and the downstream recognition tasks will be affected.
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Figure 2: Distance distributions of contrastive embed-
dings learned on STL-10 with different feature dimen-
sionalities 256, 512, and 2048.

To be more religious, we consider the min-max
distance ratio to investigate the distance contrast
in the high-dimensional space. For the indepen-
dent and identically distributed (i.i.d.) instances
x, xi ∈ Rm (i=1, 2, . . . , n), their embeddings
Φ(x) and Φ(xi) are also i.i.d. no matter how
the embedding is learned [13]. The following
Theorem 1 reveals that the minimal distance
Dmin

Φ (H) and the maximal distance Dmax
Φ (H)

tend to be equivalent in the high-dimensional
space [1] (provided that Φ(x) and Φ(xi) are
i.i.d. to each other), so the similarity between pairwise instances can hardly provide contrast to
discriminate the intra-class and inter-class (as shown by the distance distributions in Fig. 2).
Theorem 1. For any given i.i.d. random data points x, x1, x2, . . . , xn ∈ Rm, we denote
Dmax

Φ (H)=max{DΦ(x,xi)|i=1, . . . , n} and Dmin
Φ (H)=min{DΦ(x,xi)|i=1, . . . , n}. Then we

have that limH→∞{var[DΦ(x,xi)/E(DΦ(x,xi))]} = 0 and

P
{

lim
H→∞

(Dmax
Φ (H)−Dmin

Φ (H))/Dmin
Φ (H) =0

}
=1, (5)

where the distance function DΦ(·, ·) is defined in Eq. (1) and the feature embedding Φ is learned
from the training data and independent to the data points x, x1, x2, . . . , xn.

In summary, from the above analytical results, we can clearly find that it is very necessary to constrain
the dimensionality of existing CL approaches in a reasonable range. Motivated by this, in the
next subsection, we provide the formulation of our proposed framework CLLR which reduces the
dimensionality of contrastive embedding by a sparse projection layer.

2.2 Formulation

As we discussed in the previous subsection, the feature embedding Φ transforms the raw data from
m-dimensional space into H-dimensional space, where Φ is learned by the NCE loss. To avoid
high-dimensional features, we may directly reduce the dimensionlaity of the output layer, but this
will cause the dimensional collapse with insufficient instance discrimination (as we discussed in
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Section 1). Thereby, we consider to use an additional matrix L ∈ RH×H to transform the feature
embedding result Φ(x) into the latent vector L·Φ(x), and then we minimize ∥L⊤L·Φ(x)−Φ(x)∥22,
encouraging the latent vector to preserve the useful information in Φ(x). When we further introduce
the low-rank constraint for L, we can obtain a low-dimensional latent space for contrastive learning.

ℓ2,1-Norm based Regularization. The row (column) sparsity is a long-standing concept which aims
to maintain very few non-zero columns for a matrix. When we employ the well-known ℓ2,1-norm to
restrict the projection matrix L, we can certainly have a column-sparse L which selects the important
features in Φ(x) ∈ RH corresponding to the non-zero columns. Then we use the selected features to
reconstruct the original feature embedding, i.e.,

R2,1(Φ,L) = Ex∈X [ ∥L⊤L ·Φ(x)−Φ(x)∥22 ] + α∥L∥2,1, (6)

where L∈RH×H and α>0 is tuned by users. Note that the column sparsity is just a special case of
the low-rank, but considering its good usability, here we can easily obtain a low-dimensional feature
embedding L·Φ(x) if the above L is column sparse. We also provide the following nuclear-norm
based formulation to consider the more general case of low-dimensional space.

Nuclear-Norm based Regularization. To ensure the projection result L ·Φ(x) in a low-dimensional
space, a more general way is directly restricting the projection matrix L to be low-rank. Then, the
column vectors of L will be linearly dependent so that we can remove the redundant column to
achieve a low-dimensional projection space. The realized formulation can be written as

Rnuclear(Φ,L) = Ex∈X [ ∥L⊤L ·Φ(x)−Φ(x)∥22 ] + α∥L∥∗, (7)

where L∈RH×H and α> 0 is tuned by users. When we obtain the learned projection matrix L∗,
we need to further compute its maximal linearly independent set A, and then we calculate the final
projection matrix L̂∈RH×H by setting 1 the redundant columns of L∗ to 0.

For the above two different formulations in Eq. (6) and Eq. (7), it is hard to say which one is
theoretically better. Actually, their final performance may also be influenced by the non-convexity of
the learning objectives. Therefore, in our experiments, we evaluate both the two regularizations on
multiple domains. Now we want to summarize our final learning objective as follows.

Learning Objective of CLLR. Based on the realized formulation in Eq. (6) and Eq. (7), we can
easily deploy the proposed two regularizers in the learning objective of conventional CL methods.
Without loss of generality, for most existing CL methods equipped with NCE loss, we build the
following framework of contrastive learning with low-dimensional reconstruction (CLLR)

min
Φ∈H,L∈RH×H

{F(Φ,L) = LNCE(Φ) + λR(Φ,L)}, (8)

where the regularization parameter λ > 0 is tuned by users and the regularizer R(Φ,L) can be
realized by R2,1(Φ,L) and Rnuclear(Φ,L) in Eq. (6) and Eq. (7), respectively. As a regularized
learning objective, CLLR is very generic because here the loss term LNCE(Φ) can be implemented by
many existing CL methods. In the next subsection, we provide iteration algorithm to solve Eq. (8).

2.3 Optimization

Minimizing the objective function in Eq. (8) is a typical batch optimization problem [48], where both
the loss function LNCE(Φ) and the regularizerR(Φ,L) involve all training data. Therefore, we adopt
the stochastic gradient descent (SGD) method [22] to solve it, and here we demonstrate the stochastic
gradient for the objective function F(Φ,L). Specifically, for n+ 1 (i.e., the batch size) randomly
selected data points {xbj |xbj ∈X , bj ∈B}n+1

j=1 , the NCE loss already has a stochastic form 2, so here
we need to demonstrate the stochastic loss for the regularizer in the mini-batch, i.e.,

RB(Φ,L) = [1/(n+ 1)]
∑n+1

i=1
∥L⊤L ·Φ(xbi)−Φ(xbi)∥22 + αR̂(L), (10)

1Here the i-column of L̂ is L̂i = L∗
i if L∗

i ∈ A and L̂i = 0 if L∗
i /∈ A, in which i = 1, 2, . . . , H .

2Here we denote NCE loss LNCE(φ) = E[ℓ(φ; {xbj}
n+1
j=1 )], where the function ℓ(φ; {xbj}

n+1
j=1 ) =

−log(exp(φ(xbn+1)
⊤φ(x+

bn+1
))/(exp(φ(xbn+1))

⊤φ(x+
bn+1

)) +
∑n

j=1exp(φ(xbj ))
⊤φ(x−

bj
)))). The in-

dex vector set B={b=(b1, . . . , bn+1)
⊤|bi, bj =1, . . . , N, bi ̸=bj , i, j=1, . . . , n+ 1}.
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Algorithm 1 Solving Eq. (8) via SGD.
Input: Training Data X ={xi}Ni=1; Step Size η > 0; Regularization Parameter λ, α > 0; Batch Size
n ∈ N+.
Initialize: Iteration Number t = 0.
For t from 1 to T :

1). Uniformly pick (n+ 1) data points {xbj}n+1
j=1 from X ;

2). Compute the gradient of f(Φ; {xbj}n+1
j=1 )= ℓ(Φ; {xbj}n+1

j=1 )+λRB(Φ,L; {xbj}n+1
j=1 ) via

Eq. (10):
3). Update the learning parameters:

Φ(t+1)←Φ(t)−η∇Φf(Φ,L; {xbj}n+1
j=1 ) and L(t+1)←L(t)−η∇Lf(Φ,L; {xbj}n+1

j=1 ), (9)

End.
Output: The converged Φ̃ and L̃.

where R̂(L) indicates the penalty ∥L∥2,1 or ∥L∥∗ for different regularizations. Here we use the
subgradients [2] of ℓ2,1-norm and nuclear-norm for optimziation. Then the learning objective
F(Φ,L) in Eq. (8) has the stochastic form ℓ(Φ; {xbj}n+1

j=1 )+λRB(Φ,L; {xbj}n+1
j=1 ). Based on such

a stochastic loss, we further provide the SGD iteration steps in Algorithm 1 to solve Eq. (8).

In summary, introducing the projection layer (i.e., the projection matrix L) merely incurs an additional
stochastic gradient in Eq. (10). It means that our method can be easily implemented in most existing
CL methods and only introduces very little computational overheads. In the next section, we prove
that the iteration sequence Φ(1), . . . ,Φ(T ) in Algorithm 1 converges to a stationary point of the
learning objective F with a convergence rate O(1/

√
T ), where T is the number of iterations.

3 Theoretical Analyses

In this section, we further provide in-depth theoretical analyses for our proposed method. We
investigate the convergence of learning algorithm and the lower bound of min-max distance ratio to
demonstrate the effectiveness of our method. All proofs are given in supplementary materials.

3.1 Convergence Analysis

As we described before, the learning objective of CLLR is a regularized empirical loss which is
different from the traditional empirical loss solved by SGD, so here we provide careful convergence
analysis for the SGD based iterations, i.e., the Algorithm 1. Specifically, we suppose the learning
objective has δ-bounded gradient, and then we have the following Theorem 2.
Theorem 2. If the function F(Φ,L) has δ-bounded gradient (i.e., ∥∇F(Φ,L)∥2 < δ), then we let

η =
√
2(F(Φ(0),L(0))−F(Φ∗,L∗))/(Sδ2T ), and for the iterations in Algorithm 1 we have that

min
0≤t≤T−1

E[ ∥∇F(Φ(t),L(t))∥2] ≤
√

2S(F(Φ(0),L(0))−F(Φ∗,L∗))/T )δ, (11)

where S>0 is a lipschitz constant such that ∥∇F(Φ,L)−∇F(Φ′,L′)∥2≤S∥[Φ,L]−[Φ′,L′]∥2.

The above Eq. (11) clearly reveals that the iteration results in Algorithm 1 can gradually converge
to a stationary point with a convergence rate O(1/

√
T ) when setting the proper learning rate η and

increasing the iteration number T . Therefore, the convergence of our learning algorithm is guaranteed
though the additional projection layer and regularization term are introduced.

3.2 Lower Bound of Min-Max Distance Ratio

Now, we further analyze the distance between pairwise instances in the low-dimensional space. As
we mentioned before, in the high-dimensional space, the min-max distance ratio trends to be 0 and
thus the distance function will lose its discriminatory. Therefore, we want to investigate the value of
min-max distance ratio in low-dimensional feature space learned by our method.
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Our method explicitly constrain the dimensionality of the feature space, so it is intuitive that the min-
max distance ratio (Dmax

Φ (H)−Dmin
Φ (H))/Dmin

Φ (H) in Eq. (5) should certainly be lower-bounded.
To be religious, we have the following Theorem 3 to reveal the lower bound of distance ratio.
Theorem 3. For any given n + 1 i.i.d. random data points x, x1, x2, . . . , xn ∈ Rm, we denote
that Dmax

Φ̂,L̂
= max{DΦ̂,L̂(x, xi)|i = 1, 2, . . . , n} and Dmin

Φ̂,L̂
= min{DΦ̂,L̂(x, xi)|i = 1, 2, . . . , n},

and then we have that

P
{
(Dmax

Φ̂,L̂
−Dmin

Φ̂,L̂
)/Dmin

Φ̂,L̂
≥ αλC(X )

}
= 1, (12)

where DΦ̂,L̂(x, xi) = ∥L̂Φ̂(x)− L̂Φ̂(xi)∥2/rank(L̂), and Φ̂ and L̂ are learned from Eq. (8).

From the above Eq. (12), we can easily observe that the min-max distance ratio has an explicit lower
bound which is mainly determined by the two regularization parameters α and λ (given the training
data X ). It means that the low-rank reconstruction terms (i.e., Eq. (6) and Eq. (7)) make the min-max
distance ratio be controllable, and the larger regularization parameters can produce the better lower
bound. When the min-max distance ratio is lower-bounded, our CLLR predicts low similarities for
inter-cluster and high similarities for intra-cluster, so that the learned embedding effectively captures
the intrinsic similarities / features and thus improving the performance of downstream tasks.

4 Experimental Results

In this section, we show experimental results on real-world datasets to validate the effectiveness
of our proposed method. In detail, we first conduct ablation study to reveal the usefulness of our
introduced new block and new regularizers. Then, we compare our proposed learning algorithm
with existing state-of-the-art models on vision and language tasks. Finally, we test our method on
the CL based reinforcement learning task. Further experiments such as parametric sensitivity and
running time comparison are given in supplementary materials. The training process is implemented
on Pytorch [29] with NVIDIA TeslaV100 GPUs. We adopt the projection result LΦ(x) for feature
extraction, where regularization parameters λ and α are fixed to 0.1 and 10, resepectively. The hyper-
parameters of compared methods are set to the recommended values according to their original papers.

Table 1: Classification accuracy rates (mean ± std) of high-
dimensional embedding and low-dimensional embedding on STL-
10 and CIFAR-10 datasets (negative sample size = 256).

METHOD STL-10 CIFAR-10

epochs=100 epochs=400 epochs=100 epochs=400

4096-dim. (w/o R(Φ,L)) 55.1 ± 1.1 75.2 ± 3.1 65.1 ± 1.9 85.4 ± 4.2
3072-dim. (w/o R(Φ,L)) 54.4 ± 3.1 75.2 ± 2.1 67.2 ± 3.5 86.9 ± 6.1
2048-dim. (w/o R(Φ,L)) 56.3 ± 2.1 76.2 ± 1.1 66.3 ± 3.1 89.3 ± 2.1
512-dim. (w/o R(Φ,L)) 56.4 ± 2.5 75.2 ± 0.1 66.4 ± 5.1 90.3 ± 0.6
256-dim. (w/o R(Φ,L)) 55.3 ± 4.1 74.2 ± 2.1 64.3 ± 5.1 88.3 ± 3.1
512-dim. (w/o sparity, α=0) 56.5 ± 2.5 75.5 ± 0.5 66.2 ± 4.9 90.1 ± 1.2
256-dim. (w/o sparity, α=0) 55.9 ± 2.1 74.1 ± 2.3 64.7 ± 2.1 88.4 ± 2.6
512-dim. (w / ℓ2,1-norm) 56.3 ± 8.2− 78.3 ± 0.5✓ 67.5 ± 0.2− 92.5 ± 0.2✓
512-dim. (w / nuclear-norm) 56.2 ± 3.2− 79.2 ± 0.2✓ 67.5 ± 2.5− 92.5 ± 2.3✓
256-dim. (w / ℓ2,1-norm) 56.2 ± 1.2− 79.3 ± 0.5✓ 65.5 ± 0.5− 92.3 ± 0.3✓
256-dim. (w / nuclear-norm) 56.3 ± 3.2− 79.2 ± 0.2✓ 65.2 ± 5.5− 93.1 ± 1.3✓

4.1 Ablation Study

In this subsection, we conduct abla-
tion study on the superiority of the
low-dimensional contrastive embed-
ding (i.e., our method) over the tradi-
tional contrastive embedding (i.e., the
baseline method). We use the STL-10
and CIFAR-10 datasets to train the base-
line SimCLR [7] and two implemen-
tations of CLLR, i.e., the ℓ2,1-norm
based regularization and nuclear-norm
based regularization. We train all mod-
els with 100 and 400 epochs with the
same batch size and learning rate, respectively, and we record the test accuracy of all methods by fine-
tuning a linear softmax. The baseline method learns contrastive embeddings in the high-dimensional
space (dimension = 2048, 3072, and 4096) and the simply fixed low-dimensional space (dimension =
256 and 512). We also include the baseline results that do not use the ℓ2,1-norm and nuclear norm
constraints (i.e., α = 0). Our method learns embeddings in low-dimensional space, where we use the
regularizer to maintain the corresponding non-zero columns in the projection matrix L.

We record the test accuracy (mean ± std, 5 random trials) of compared methods at the 100-th epoch
and 400-th epoch in Tab. 1. We can observe that the baseline method is better than our method in the
first 100 epochs, but the two implementations of our method can outperform the baseline method with
the increase of iterations. This is because that the baseline method only emphasizes on the instance
discrimination, so it can quickly discriminate the training data in the early epochs. However, in the
latter epochs, the low-rank reconstruction in our method becomes useful in capturing the similarity
between pairwise instances. Meanwhile, we can find that the average accuracy of nuclear-norm based
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(a). Classification accuracy of all compared methods on STL-10 dataset.
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(b). Classification accuracy of all compared methods on CIFAR-10 dataset.
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Figure 4: Classification accuracy of all methods on STL-10 and CIFAR-10 datasets. The negative
sample size is from 32 to 512.

regularization is slightly higher than the ℓ2,1-norm based one on both two datasets. Furthermore,
we also perform the t-test at significance level 0.05 in the last column, and “✓” indicates that our
method is significantly better than the best baseline result. In our following experiments, we employ
the 256-dimensional latent features for multiple domain tasks.

4.2 Experiments on Sentence Representation

In this subsection, we employ the BookCorpus dataset [23] to evaluate the performance of all
compared methods on six text classification tasks, including movie review sentiment (MR), product
reviews (CR), subjectivity classification (SUBJ), opinion polarity (MPQA), question type classification
(TREC), and paraphrase identification (MSRP). We follow the experimental settings in the baseline
method quick-thought (QT) [26], which chooses the neighboring sentences as positive pairs. Here
the 10-fold cross validation is adopted, and the average classification accuracy is listed in Tab. 2.

Table 2: Classification accuracy (%) of all methods on Book-
Corpus dataset including six text classification tasks.

METHOD MR CR SUBJ MPQA TREC MSRP

QT[26] 76.8 81.3 86.6 93.4 89.8 73.6
DCL[11] 76.2 82.9 86.9 93.7 89.1 74.7
HCL[30] 77.4 83.6 86.8 93.4 88.7 73.5
CLLR(DCL+ℓ2,1-norm) 77.9 83.3 87.9 93.7 91.3 75.2
CLLR(DCL+nuclear-norm) 78.2 83.7 87.2 95.8 91.2 75.7

For the six classification tasks, our
method improves the classification accu-
racy of baseline method QT for at least
one percentage on most classification
benchmarks. The distance histograms of
QT, debiased contrastive learning (DCL)
[11], hard negative based contrastive
learning (HCL) [30], and our CLRR are
shown in Fig. 3. We clearly observe that our method obtains the more accurate distance determination
than baseline methods, and this reveals that our method is effective for the text classification task.

4.3 Experiments on Image Classification
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Figure 3: Distance histograms obtained by different
methods (QT, DCL, and our proposed CLRR) on Book-
Corpus dataset. The proportion of incorrect prediction
of CLLR is clearly lower than the compared methods.

In this subsection, we validate the effective-
ness of our method on the image classification
task. Here we select contrastive multiview cod-
ing (CMC) [35] as baseline methods, and imple-
ment our method CLLR under such a classical
framework. We also compare our method with
three additional state-of-the-art methods includ-
ing DCL, HCL, SwAV [3], and CO2 [38] on STL-
10 [12], CIFAR-10 [24], and ImageNet-100 [31]
datasets. All methods are fairly implemented by
the ResNet50 with the same training epoch 100.

For STL-10 and CIFAR-10 datasets, we record
the classification accuracy of all compared meth-
ods with varying numbers of negative sample. From Fig. 4, we can clearly observe that
our method CLLR successfully improves the baseline for at least 1% and 2% on CIFAR-10
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dataset and STL-10 dataset, respectively. Similar experiments are conducted on ImageNet-100
dataset, and Tab. 3 shows that our method consistently improves all baseline methods, where
our method improves the baseline CMC from 73.58% to 76.91%. For different negative sam-
ple sizes, the accuracy rates of our method are also higher than all compared methods, and it
clearly demonstrates the effectiveness of our method. Since CLLR is implemented on different
baselines, our method has good compatibility with existing CL algorithms on the image clas-
sification task. In supplementary materials, we further compare our method with the distilla-
tion based CL models [5, 47] (i.e., the low-dimensional small networks supervised by the orig-
inal contrastive embeddings), and the results clearly demonstrate the superiority of our method.

4.4 Experiments on Reinforcement Learning

Table 3: Classification accuracy (%) of all meth-
ods on ImageNet-100 dataset with negative sam-
ple size 1024 and 4096.

METHOD 1024 4096

Top1 Top5 Top1 Top5

CMC[35] 60.23 79.23 73.58 92.06
SwAV[3] 60.93 79.43 75.78 92.86
DCL[11] 61.01 78.99 74.60 92.08
HCL[30] 60.89 79.33 74.66 92.32
CO2[38] 61.21 79.32 73.96 93.02
CLLR(CMC+ℓ2,1-norm) 62.03 80.64 75.97 94.22
CLLR(CMC+nuclear-norm) 61.23 80.50 76.91 94.03
CLLR(HCL+ℓ2,1-norm) 61.29 81.10 76.88 94.19
CLLR(HCL+nuclear-norm) 62.43 80.98 76.89 94.25

This subsection further extends our experiments
on reinforcement learning task, which is another
application scenario of contrastive learning. Here
the contrastive unsupervised representations for
reinforcement learning (CURL) [25] method is
employed to perform image-based policy control
on representation learned by the CL algorithm.
All methods are tested on the DeepMind control
suite [34], which consists of six control tasks
listed in Tab. 4. By following the experimen-
tal settings in CURL, the positive pair is built
by simply cropping a single image, and the neg-
ative pair is composed of each two images in
the control sequence. All methods are retrained
for 3 times, and the corresponding means and standards of 100K scores are shown in Tab. 4.

Table 4: 100K Scores (mean ± std, 3 random trials) achieved
by all methods on the six control tasks.

METHOD Spin Swingup Easy Run Walk Catch

CURL[25] 413±53 680±32 908±86 298±38 621±121 826±42
DCL[11] 422±23 672±52 878±96 248±98 626±98 836±12
HCL[30] 420±61 678±82 869±116 268±42 623±26 819±62
CLLR(CURL+) 424±53 683±23 925±33 296±32 625±23 843±17
CLLR(DCL+) 423±13 684±83 919±57 287±67 625±33 844±27
CLLR(HCL+) 422±41 681±13 911±85 292±78 626±59 839±33

For the six control tasks, our method
consistently outperforms the baseline
method CURL with higher means. When
compared to DCL and HCL methods,
our method almost achieves the best re-
sults in all six scenarios. Although our
method CLRR (CURL+nuclear-norm)
has slightly lower scores than CURL or
DCL on the Run / Walk tasks, our method
shows smaller variance. Moreover, when
we incorporate our method to DCL and HCL, our method could further improve the overall scores of
compared methods on the six tasks. This also reveals that our method is compatible with existing CL
algorithms on the reinforcement learning task.

5 Conclusion and Future Work

In this paper, we considered the issue of high-dimensional features existing in the current contrastive
learning method. To overcome such an issue, we proposed a novel framework called contrastive
learning with low-dimensional reconstruction (CLLR), which uses a sparse projection layer to
reduce the dimensionality of the feature embedding. We reconstructed the original high-dimensional
features in the low-dimensional projection space while preserving the basic objective for instance
discrimination, and thus successfully learning low-dimensional contrastive embeddings. To the best
of our knowledge, this is the first work in CL that considers reducing the feature dimensionality. We
conducted intensive theoretical analyses to guarantee the effectiveness of our method. Comparison
experiments on real-world datasets across multiple domains indicated that our learning algorithm
acquires more reliable feature embedding than state-of-the-art methods. Both the theoretical and
experimental results clearly demonstrated the necessity / significance of learning low-dimensional
contrastive embeddings. Our approach mainly focuses on the mainstream CL models which use
both positive and negative pairs. The effectiveness of negative-free CL has also been shown by
recent works such as BYOL and SimSiam. When the negative pairs are unavailable, exploring the
corresponding optimal (low-dimensional) projection space would be interesting future work.
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