
Geodesic Self-Attention for 3D Point Clouds

Zhengyu Li1 Xuan Tang1 Zihao Xu1 Xihao Wang2 Hui Yu3

Mingsong Chen1 Xian Wei1⇤

1East China Normal University
2Technical University of Munich

3FJIRSM, Chinese Academy of Sciences
xwei@sei.ecnu.edu.cn

Abstract

Due to the outstanding competence in capturing long-range relationships, self-
attention mechanism has achieved remarkable progress in point cloud tasks. Never-
theless, point cloud object often has complex non-Euclidean spatial structures, with
the behavior changing dynamically and unpredictably. Most current self-attention
modules highly rely on the dot product multiplication in Euclidean space, which
cannot capture internal non-Euclidean structures of point cloud objects, especially
the long-range relationships along the curve of the implicit manifold surface repre-
sented by point cloud objects. To address this problem, in this paper, we introduce
a novel metric on the Riemannian manifold to capture the long-range geometrical
dependencies of point cloud objects to replace traditional self-attention modules,
namely, the Geodesic Self-Attention (GSA) module. Our approach achieves state-
of-the-art performance compared to point cloud Transformers [13, 10, 44, 26] on
object classification, few-shot classification and part segmentation benchmarks.

1 Introduction

Sampled Center PointsRaw Point Cloud

FPS

Euclidean Distance
Geodesic Distance

Sampled Points

Figure 1: A typical geometric semantics confu-
sion scenario, where two pairs of points (upper-
middle and lower-middle pairs) on raw point
cloud have similar Euclidean distances but get
different geodesic distances and semantics.

Motivated by the rapid development of applications
in robotics, autonomous vehicles, and so on, re-
search in 3D information processing with Deep
Neural Networks (DNNs) is likewise undergoing
a revolution. Point cloud has garnered consider-
able research attention as one of the most readily
available and vital data in the 3D vision field. The
essence of a point cloud is discrete 3D coordinates
sampled from a continuous 3D shape, presenting a
non-Euclidean property. Therefore, it is typically
considered to represent a geometric surface or a 2D
manifold embedded in Euclidean space. In addition,
3D point cloud data mainly consists of geometric
coordinate information and is generally processed
only with it, whereas word vectors and image pixel
matrices contain rich semantic features. The ge-
ometric features should be the first concern when
analyzing point clouds. Although there have been

⇤Corresponding author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



a lot of impressive works on point cloud geometric analysis methods in the past [28, 38, 15, 13],
most of them are based on the Euclidean or local geometry, which is not sufficient to represent the
non-Euclidean geometric semantics of point clouds accurately. One of the most typical geometric
semantics confusion scenarios is illustrated in Fig. 1 to further elaborate on this assumption. To
address this problem, we hope to introduce an accurate non-Euclidean metric that can capture both
the local and global features of the point cloud. Associating the powerful capability of capturing
the long-range dependencies of Transformer [36], it could be the critical bridge to introduce such a
metric.

Nowadays, Transformer is another popular research topic. Relying on the powerful ability to
capture global information and long-range dependencies aggregation of self-attention mechanism,
various types of networks with Transformer as the backbone have dominated in areas such as Natural
Language Processing (NLP)[7, 30, 3] and Computer Vision (CV) [9, 2, 24, 14, 11]. Although existing
dot-product self-attention [9] is effective enough in computer vision, or to be specific, in image
processing, in 3D tasks, especially in point cloud tasks, we infer that the dot product multiplication in
Euclidean space may not be the optimal attention solution, due to its limitation in capturing internal
non-Euclidean structures of point cloud objects. Since existing works [13, 10, 44, 26] have achieved
impressive results with dot product self-attention, we do not want to challenge their contributions.
Exploring whether there are any better and geometrically relevant metrics for the self-attention
mechanism on point cloud tasks is the goal of the work.

Inspired by Riemannian geometry [17], we introduce a metric on the Riemannian manifold into
point cloud analysis. For a Riemannian manifold, the geodesic generally represents the shortest
path between two points along a manifold surface and dictates the geometric relationship. From a
mathematical perspective, the geodesic describes the locally distance-minimizing curve, which can
obtain a more accurate relationship measurement than the metric in Euclidean space (commonly
considered as a straight line) for the implicit surface features represented by point cloud feature
vectors. In other words, the closer the geodesic distance between two data points, the more related
they are. Therefore, we compute the attention map by point-wise geodesic distance rather than the
dot product multiplication in Euclidean space, to capture the accurate global dependencies between
point cloud data points.

In summary, in this paper, we propose a novel Geodesic Self-Attention (GSA) module in Transformers
for point cloud tasks and introduce it into a standard Transformer structure, namely, Point Geodesic
Transformer (Point-GT). Our main contributions are as follows:

• To the best of our knowledge, we are the first to throw out the assumption that the metric on
the Riemannian manifold should be more appropriate for computing an attention map for
the point cloud Transformers than the metric on Euclidean space. From this assumption,
we propose geodesic self-attention, which first utilizes geodesic to measure the topological
attention relationships of the underlying geometric structure represented by the point cloud.

• To verify the feasibility of the assumption, we propose two geodesic distance computation
methods for the point cloud features. We apply the geodesic self-attention to the standard
Transformer structure, achieving better convergence and state-of-the-art performance with
fewer parameters and faster computation.

2 Related Work

Geometry Analysis of Point Cloud The point cloud is one of the most readily available 3D
data in our daily lives, which can be discretely sampled from various 3D models or captured by
3D scanners (Lidar, RGB-D, etc.). Due to its irregular, non-grid characteristics, it was common
to project the original point cloud onto a multi-view map [43, 20] or voxel [6, 31, 32] to utilize
well-explored 2D convolution for processing in the early days. PointNet [27] pioneered a method
of embedding point cloud coordinates directly using MultiLayer Perceptron (MLP), which inspired
many subsequent point cloud analysis efforts. Based on PointNet, PointNet++ [28] introduced a
hierarchical aggregation paradigm for point cloud local geometric information and has become a
common point cloud embedding method in many exciting point cloud works nowadays. DGCNN
[38] proposed a graph-based point cloud processing method which constructs local dynamic graphs
to characterize edge relationships between base points and neighboring nodes and utilizes EdgeConv
to learn implicit point cloud topological geometric features. Inspired by Transformers, PCT [13]

2



first combined the self-attention mechanism with edge features and proposed the Offset-Attention.
Although the above works have all made significant contributions to the geometric analysis of point
cloud data, most of the past geometric explorations of point clouds have only considered learning
from the Euclidean metric or the local geometry of point clouds. Inspired by the global information
capturing ability of the self-attention mechanism and the geometric representation ability of geodesic,
we combine both to explore the global geometry of point clouds.

Geodesic Distance Computation In previous work, the geodesic distance between 3D data is
often computed by path wandering on the mesh surface [4, 5, 33] or vertex shortest path estimation
[8, 12, 16]. On the one hand, these works have an unbearable time complexity (generally above
O(n2) for one graph). On the other hand, most of the point cloud data in real-world scenarios do not
contain meshes, making it even more challenging to obtain geodesic distances. In order to reduce the
computational cost of geodesic distance during network training, GeoNet [15] approaches a Geodesic
Matching (GM) layer to learn potential geodesic features. Before training the GM layer, the geodesic
distance of sampled points on the mesh surface has been manually computed as ground truth. After
training the GM layer, GeoNet utilizes the trained model to learn the potential geodesic features
of the extracted point cloud features. Although the GM layer alleviates the difficulty of acquiring
geodesic features during network training, we believe that acquiring explicit geodesic features tends
to increase the inductive bias and reduce the learnability and robustness of the network. Besides,
this matching method is more suitable for feature embedding and cannot be utilized to calculate the
relative geodesic attention. Whiteley et al. [39] explore a graph-based method for recovering the
geodesic distance of data features from a high-dimensional Hilbert space and theoretically prove
the feasibility. Qi et al. [29] study few-shot learning with the Riemannian metric by projecting
the features extracted from Euclidean space to Oblique Manifold (OM). Since the OM(n,m)
is considered as a Riemannian submanifold of the embedding Euclidean space Rn⇥m with unit
Euclidean norm, which is an intrinsic property similar to the l2-norm in Euclidean space. We
consider that such mapping methods can preserve the geometric features of the data and can be
utilized for independent geometric analysis. Inspired by these works, we propose two methods from
the graph and data manifold theory, respectively, to capture dynamic topological features of point
cloud data and obtain geodesic attention maps.

Point Cloud Transformers Recently, relying on the powerful sequential data processing and
global features aggregation capability, Transformers have achieved great success in NLP and CV.
3D point clouds, a prevalent topic in computer vision, can also be considered special sequence data,
which makes it naturally suitable to be processed by Transformers. In addition, to the potential
future applications of multimodal work, it is vital to explore how to strengthen the performance of
Transformers, a typical bridge of the multimodal data, in point cloud tasks. PCT [13] is one of the
earliest works to introduce the Transformer structure to point cloud tasks. It designs a modified self-
attention mechanism with the core idea of Edgeconv [38]. PoinTr [44] utilizes a modified DGCNN
[38] as a feature embedding layer to capture local point cloud geometric information. Receiving
inspiration from PoinTr, Point-BERT [45] designs a discrete Variational AutoEncoder (dVAE) for
generating point tokens, successfully introducing BERT-style [7] pre-training to point cloud tasks.
Point-MAE [26] further explores pre-training methods for point cloud Transformers. Inspired by
Masked AutoEncoders (MAE) [14] self-supervised learning method, it implements a point cloud
task pre-training pipeline with an entirely standard Transformer structure. These works build a solid
foundation for future work on point cloud tasks with Transformers.

Since most of the previous work process the point cloud data, representing the underlying geometric
surface structure of 3D objects, with only the geometry information (3-dimensional Cartesian
coordinates), the geometric properties are critical to point cloud analysis. However, the above
works are mostly based on Euclidean dot-product self-attention, which cannot accurately capture
the geometric structure of the point cloud. We propose geodesic self-attention based on Riemannian
geometry to overcome this dilemma.

3 Point Geodesic Transformer

This section will detail our approach of introducing geodesic self-attention into the point cloud
Transformers structure. First, we will describe how the Transformers structure can be applied to the

3



F
P
S

· · ·

Patches

Positional Embedding

Embedding Layer

Transformer Block

Transformer Block

Transformer Block

Transformer Block

· · ·

CLS

CLS

Classification

W

GDS

SoftMax

MatMul

X

Geodesic
Self-Attention

Figure 2: The Point Geodesic Transformer (left) and the pipeline of the geodesic self-attention
(right). Taking the classification task as an example, we present the overall structure of Point-GT.

point cloud task. Then, we will describe how geodesic self-attention works in our network structure.
The overall structure of the Point Geodesic Transformer is illustrated in Fig. 2.

3.1 Transformer Backbone

In order to compare with dot-product self-attention directly, inspired by Point-BERT [45], our main
experiments are performed on the standard Transformer [36] structure, except for the modification of
the self-attention function.

Patches Generation Unlike the classical visual tasks with regular grids, point clouds consist of
unordered points describing 3D coordinates. It is challenging to find a suitable method to embed
the point cloud feature. Following the previous point cloud Transformers [13, 10, 44, 26], we adopt
an embedding strategy that encodes point clouds as irregular local point patches. To be specific,
given an input point cloud P 2 RN⇥3 (P = {p1, p2, p3, · · · , pN}), we first perform Farthest
Point Sampling (FPS) to sample g center points from the raw point cloud data. Then, the k-Nearest
Neighbor (k-NN) algorithm captures the g centers’ k nearest neighbor points, and a normalization
operation is performed to make the local neighbors unbiased.

Points Embedding In order to maintain the permutation invariance of the point cloud [27], we do
not choose the patches embedding method like ViT [9], which simply flattens the input patches and
embeds them with a trainable linear projection. For each input point patch, several MLP layers and
aggregation operations which can be considered as a lightweight PointNet[27] are utilized to project
the point patch to point embedded feature. Given the center point x and its normalized neighbors
X = {x1, x2, x3, · · · , xk}, the embedding operations can be described as:

X
0 = � f⇥ (X) , (1)

where � denotes an aggregation function, f⇥(·) can be considered as an embedding layer and X
0 is

the embedded point cloud feature. In this step, there are many alternative aggregation functions [38],
such as max-pooling and mean-pooling, and the aggregation function captures the local geometric
information of the input point patch X. To be consistent with the previous work [13, 10, 44, 26], we
choose max-pooling as the aggregation function here.

As for the positional embedding, a previous work[25] claims it is unnecessary to encode the position
of the 3D point cloud feature for its raw data contains the xyz coordinates. However, in our
implementation, the normalization operation mentioned in the patches generation stage decouples the

4



relative positional relationships, so we need to map the positional information of the corresponding
patch center points through a simple MLP to the patch features. Since the embedded feature can be
processed directly by the standard Transformer, the structure of Transformer blocks is almost the
same as the standard Transformer[36].

3.2 Geodesic Self-Attention

The original definition of attention function can be described as mapping a query and a set of key-
value pairs to an output. For the self-attention function, the query and the key are the input vector
itself [36]. Following the exact definition, the geodesic self-attention score map can be described
as the point-wise geodesic distance scores of the input vectors. Although the 3D point cloud data
represents the underlying shape of 3D objects, it does not contain an explicit manifold surface.
Therefore, how to define the geodesic of the points and how to obtain the geodesic distance score
are crucial. Inspired by previous work [39, 29], we propose two methods to compute the geodesic
distance score based on graph and data manifold, respectively.

3.2.1 Geodesic Distance Score

Graph-based Geodesic Whiteley et al. [39] recover the distances and coordinates between features
through matrix decomposition and dimension reduction. Isomap [34] constructs the graph structure
between feature points and computes the geodesic distances between nodes through k-NN and shortest
path algorithms. Since the previous studies [38, 19] have supported the analysis of point clouds as a
graph structure, we combine the thoughts from the above works, proposing a graph-based geodesic
computation method. First, we construct the dynamic weighted adjacency graph for the input features
of each Transformer block through k-NN. We believe that dynamically updating the adjacency graph
can not only learn explicit geodesic features but also recover the latent topological features of point
clouds, which enrich the representation power of point clouds [38]. During constructing the dynamic
adjacency graph, we set the weights of the adjacency graph to Euclidean distance for adjacent points
and infinity for non-adjacent points. Following the assumption that a manifold locally resembles
Euclidean space, we apply Floyd’s shortest path algorithm [12] to estimate the geodesic distance of
all pairs of the points. Finally, the output is the Geodesic Distance Score (GDS) matrix.

Algorithm 1 Graph-based Geodesic Distance Score
Input: X = {x1, x2, x3, · · · , xg}

Output: GDS

1: K = b
p
gc . Set the threshold of neighbors.

2: Construct neighborhood graph G by connecting points i and j:
3: if i is one of the K nearest neighbors of j then
4: Set edge length equal to dX(i, j)
5: else
6: Set edge length equal to 1

7: end if
8: Compute GDS through Floyd’s shortest paths algorithm.
9: return GDS

Since Floyd’s algorithm is nonlinear and cannot be computed in parallel, we use Numba [18] to
implement a Compute Unified Device Architecture (CUDA) operator for computational acceleration.
Each computation of the adjacency graph is implemented by a single CUDA kernel and achieves
more than a hundred times faster computation.

Data Manifold-based Geodesic Riemannian geometry is the study of smooth manifolds by in-
troducing Riemannian metrics based on differential geometry, defining geometric concepts such as
angles, length of curves, etc. The Oblique Manifold (OM) is a submanifold of the embedding
Euclidean space with unit Euclidean norm columns and is always utilized for independent component
analysis [1]. Formally, OM(n, g) is defined as:

OM(n, g) =
n
P 2 Rn⇥g : diag

⇣
P TP

⌘
= Ig

o
, (2)

where diag(·) denotes the diagonal matrix.

5



Previous work [29] models few-shot learning on OM. The authors project the data features extracted
in the Euclidean space onto OM and then design an oblique distance-based classifier to achieve
the classification task for the projected features. Since the OM offers a unit l2-norm intrinsic
property, we consider the above projection preserves the relative geometric structure of the features,
which satisfies the need for the attention mechanism to capture relative dependencies. Following this
notion, we constrain the point cloud features from Euclidean space to oblique manifold to extract
the underlying geometric structure. Since the positional embedding recovers the relative geometric
distance of the point cloud patches, we directly project the input patches embedded in Euclidean
space onto OM to compute the implicit geodesic relations between patches. Considering the patch
matrix P = {p1, p2, · · · , pg} does not naturally satisfy the Eq. 2, in other words, P is not a member
of OM. We apply a projection Proj(·) to get the manifold-valued point cloud feature matrix:

P := Proj (P ) = Cat

✓⇢
pi

kpik

�g

i=1

◆
, (3)

where Cat(·) denotes concatenate function and k ·k denotes the square Frobenius norm in the ambient
space.

After the projection, the geodesic distance of an input pair of points {Q, K} on OM can be
calculated as:

dist(Q,K) =

vuut
nX

i=1

arccos2
⇣
diag

⇣
QTK

⌘⌘

i
. (4)

After solving the dilemma of obtaining the geodesic, we need to consider how the geodesic distance
score guides our attention mechanism. Based on the principle that the more distant the geometric
relationship is, the fewer the dependencies between the points, we simply make the geodesic distance
score negative and apply a softmax function to obtain the attention map weights. In addition, we
have also tried to take the inverse of the geodesic distance score or normalize it before softmax.
However, through the experiments, we found that the most naive process achieved the best result. We
inferred that the redundant operation might impair the representation ability of GSA, for the distance
between points is relatively small after the scaling of data augmentation. Overall, given the input
X , the computation pipeline of GSA is illustrated in Fig. 2. Note that we do not implement linear
transformations to project the input tensor X like the standard dot product multiplication attention
[36] in our geodesic distance score computation stage, because we find it might do harm to geometric
structure feature extraction. Without linear transformations, our manifold-based GSA achieves faster
implementation with fewer parameters. More details are illustrated in Section 4.4.

4 Experiments

In this section, we comprehensively evaluate the performance of Point-GT on several benchmarks,
including the classification task, part segmentation and few-shot classification. In the ablation studies,
we qualitatively and quantitatively assess the effectiveness of GSA. Some additional experiments are
illustrated in supplementary materials.

4.1 Object Classification Tasks

Object Classification on ModelNet40 ModelNet40 [40], one of the most popular 3D object
classification datasets, contains 12,311 synthesized CAD models from 40 categories. We split the
dataset into 9,843 training and 2,468 validation instances following the previous standard practice.
Standard random scaling and random translation are applied for data augmentation during the training.
More experiment details are provided in supplementary materials.

The experiment results are presented in Table 1, and we denote our methods as Point-GT and
Point-GT-MAE. The former is trained from scratch, and the latter is pre-trained with MAE [26]
strategy2. Furthermore, we denote data manifold-based and graph-based methods with the suffixes

2We have tried to use BERT [45] strategy for pre-training, but the pre-trained network did not converge to a
reasonable loss value during pre-training. We also applied the BERT pre-training strategy on other point cloud
Transformers and found a similar phenomenon, so we ruled out that the GSA should be responsible for this error
and only evaluated the performance of the pre-trained Point-GT with MAE [26] strategy.

6



"-DM" and "-G", respectively. For a fair comparison, our methods utilize the standard voting
method[23] during testing, and the different number of input points is also presented. Yu et al.

[45] observe that increasing the number of input points cannot improve the performance of a
model without pre-training. Therefore, we test Point-GT with 1,024 input points. Since the graph-
based GSA still requires unaffordable computational overhead even after being accelerated with
the CUDA operator, all the results of our Point-GT-MAE represented below are implemented
with the data manifold-based GSA. When training from scratch, graph-based Point-GT achieves
92.6% accuracy without voting, which is enough to demonstrate its feasibility and superiority.

Table 1: Classification results on ModelNet40.
We report the accuracy (%) and the number of
sampled points in the input.

Methods #Point Acc.

PointNet [27] 1k 89.2
PointNet++ [28] 1k 90.5
PointCNN [21] 1k 92.2
DGCNN [38] 1k 92.9
RS-CNN [23] 1k 92.9

[T] PCT [13] 1k 93.2
[T] NPCT [13] 1k 91.0
[T] PCT-GSA-DM (Ours) 1k 93.3

[ST] Transformer [45] 1k 91.4
[ST] Point Transformer [10] 1k 92.8
[ST] Point-GT-DM (Ours) 1k 93.3

[STP] Point-BERT [45] 1k 93.2
[STP] Point-MAE [26] 1k 93.8
[STP] Point-GT-MAE (Ours) 1k 93.6

[STP] Point-BERT [45] 8k 93.8
[STP] Point-MAE [26] 8k 94.0
[STP] Point-GT-MAE (Ours) 8k 94.1

We compare our approach with several
Transformer-based models. Among them, [T]
denotes the Transformer model with some spe-
cial designs of Transformer blocks or FeedFor-
ward Network [36], [ST] denotes a standard
Transformer architecture, and [STP] represents
a [ST] model with pre-training. Compared with
the point cloud Transformers with dot-product
self-attention, our Point-GT achieves an excel-
lent result (93.3%) which is even better than a
model, Point-BERT (93.2%), with pre-training
when the input points are 1,024. Increasing the
number of input points to 8,192, we can also find
that Point-GT with MAE pre-training achieves
state-of-the-art performance (94.1%) and is bet-
ter than Point-MAE (94.0%), which is the best
Transformer-based point cloud work up to date.
Compared with the point cloud Transformers
with special self-attention, we test the GSA on
PCT [13] by modifying its self-attention func-
tion. Considering dot-product score plays a rela-
tively less important role in PCT, our GSA does
not bring as much of a boost as it does in vanilla
Transformer. However, a minor improvement is
also valuable. We also designed an experiment
on the rotation robustness, and the results are presented in supplementary materials.

Object Classification on ScanObjectNN Since ModelNet40 is a noise-free artificial dataset and
has been extensively studied, it has gradually failed to meet current research needs, so we also
evaluate our approach on the ScanObjectNN [35] benchmark. ScanObjectNN contains about 15, 000
objects sampled from 2, 902 real-world instances with 15 categories. Since the real-world dataset
will inevitably be affected by noise or occlusions, it is a much more challenging dataset for point
cloud analysis methods. We follow previous works [45, 26] to evaluate our approach on three
variants: OBJ-BG, OBJ-ONLY, and PB-T50-RS. In the comparison, our Point-GT highly improves
the baseline Transformers on three variants without voting, and our Point-GT-MAE also outperforms
the pre-trained point cloud Transformers.

4.2 Few-Shot Learning

Following previous works [45, 26], we conduct few-shot learning experiments on ModelNet40.
Adopting a “K-way N -shot” setting, where K classes are randomly selected from the dataset and N
denotes the number of instances randomly sampled for each class, we train the model on K ⇥N

samples (support set) and another 20⇥K instances (query set) are randomly sampled from K classes
for evaluation. The results with the setting of K 2 {5, 10} and N 2 {10, 20} are presented in
Table 3. We conduct ten independent experiments for each setting and report the mean accuracy
as well as the standard deviation over ten runs. According to the results, our approach achieves
state-of-the-art performance.

7



Table 2: Classification results on ScanObjectNN. We report the accuracy (%) of three different
settings.

Methods OBJ-BG OBJ-ONLY PB-T50-RS

PointNet [27] 73.3 79.2 68.0
SpiderCNN [41] 77.1 79.5 73.7
PointNet++ [28] 82.3 84.3 77.9
DGCNN [38] 82.8 86.2 78.1
PointCNN [21] 86.1 85.5 78.5
BGA-DGCNN [35] - - 79.7
BGA-PN++ [35] - - 80.2

Transformer [45] 79.9 80.6 77.2
Point-GT-G (Ours) 86.6 88.3 80.2
Point-GT-DM (Ours) 87.6 88.6 81.7

Point-BERT [45] 87.4 88.1 83.1
Point-MAE [26] 90.0 88.3 85.2
Point-GT-MAE (Ours) 90.7 89.5 85.7

Table 3: Few-shot classification results on ModelNet40. We report the mean accuracy (%) with the
standard deviation over 10 independent experiments.

Methods 5-way 10-way
10-shot 20-shot 10-shot 20-shot

DGCNN-rand [37] 31.6±2.8 40.8±4.6 19.9±2.1 16.9±1.5
Transformer-rand [45] 87.8±5.2 93.3±4.3 84.6±5.5 89.4±6.3
Point-GT-G-rand (Ours) 95.4±2.5 96.7±2.4 90.2±5.4 93.0±4.4
Point-GT-DM-rand (Ours) 93.1±3.9 96.1±3.4 90.1±5.6 92.5±4.9

Point-BERT [45] 94.6±3.1 96.3±2.7 91.0±5.4 92.7±5.1
Point-MAE [26] 96.3±2.5 97.8±1.8 92.6±4.1 95.0±3.0
Point-GT-MAE (Ours) 96.3±2.3 98.2±1.5 92.8±4.6 95.1±3.6

4.3 Part Segmentation

Object part segmentation is a challenging task with a high requirement of model representation
capability. It aims to predict a more fine-grained class label for each point. We evaluate our Point-GT
on ShapeNetPart [42] dataset, containing 16, 881 instances of 16 categories. Following previous
works [45, 26], we sample 2, 048 points as input for each instance and utilize a simple segmentation
head without any propagating operation or DGCNN [38]. Specifically, we concatenate the learned
features from the 4th, 8th and 12th layer of Transformer blocks and then apply mean-pooling and
max-pooling separately to obtain two global features. Then, we up-sample the concatenated features
to 2, 048, which is the size of input points to obtain the predicting features.

The mean IoU across all categories and the mean IoU across all instances are illustrated in Table 4.
Our training from scratch model, Point-GT, outperforms the pre-training model Point-BERT, which
demonstrates the superior fine-grained representation capability of the GSA.

Table 4: Part segmentation results on the ShapeNetPart dataset. We report the mIoUC (%), the
mIoUI (%), as well as the IoU (%) for each categories.

Methods mIoUC mIoUI aero bag cap car chair earphone guitar knife lamp laptop motor mug pistol rocket skateboard table

PointNet [27] 80.39 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ [28] 81.85 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
DGCNN [38] 82.33 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6

Transformer [45] 83.42 85.1 82.9 85.4 87.7 78.8 90.5 80.8 91.1 87.7 85.3 95.6 73.9 94.9 83.5 61.2 74.9 80.6
Point-BERT [45] 84.11 85.6 84.3 84.8 88.0 79.8 91.0 81.7 91.6 87.9 85.2 95.6 75.6 94.7 84.3 63.4 76.3 81.5
Point-GT-G (Ours) 83.94 85.9 84.7 83.7 89.4 80.4 91.2 77.0 91.7 87.6 85.6 96.0 74.0 95.3 84.6 62.7 77.5 81.7
Point-GT-DM (Ours) 84.15 85.8 84.3 84.5 88.3 80.9 91.4 78.1 92.1 88.5 85.3 95.9 77.1 95.1 84.7 63.3 75.6 81.4

8



4.4 Ablation Study

In this subsection, we conduct several controlled experiments to explore how to design our geodesic
self-attention and compare the performance of different attention types. The experiments are based
on the classification task on ModelNet40 and the number of input points is 1,024. All the results
presented are evaluated without voting.

Attention Score Regularization In section 3.2, we design two methods to compute the GDS.
Before using softmax function to obtain the attention map, we need to convert the GDS into
attention score. Following the dot-product self-attention [36], we try to scale the attention score.
We attempt to utilize three scaling settings on data manifold-based GSA, including "Norm.", "Inv."
and "Neg." denote making the attention score normalization, inverse and negative, respectively. The
results are illustrated in Fig. 3 (a). The accuracy results of the three settings are 92.5%, 92.3%, and
92.8%, which show that the redundant operation might impair the representation ability of GSA.

0

0.5

1

1.5

2

2.5

3

3.5

4

0

10

20

30

40

50

60

70

80

90

0 25 50 75 100 125 150 175 200 225 250 275 300

Tr
ai

ni
ng

 L
os

s

A
cc

ur
ac

y 
(%

)

Epoch

Norm Inv. Neg. Norm. Loss Inv. Loss Neg. Loss

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

0

10

20

30

40

50

60

70

80

90

0 25 50 75 100 125 150 175 200 225 250 275 300

Tr
ai

ni
ng

 L
os

s

A
cc

ur
ac

y 
(%

)

Epoch

Dot. GSA Dot. Loss GSA Loss

(b)

Figure 3: (a) Ablation Study: Attention Score Regularization. The validation accuracy curves and
loss curves of three settings are presented. (b) Ablation Study: Attention Types. The validation
accuracy curves and loss curves of dot-production self-attention and GSA are presented.

Attention Types We compare several types of self-attention mechanisms in the Transformer block.
The results are illustrated in Table 5 and some visual interpretations are provided in supplementary
materials. Four conditions are evaluated as follows.

"Dot." denotes the standard dot product multiplication attention used in previous works. Given the
input X , the operation can be described as:

Output = Attention(X) = softmax

✓
WQ(X)WT

K(X)
p
dk

◆
WV (X). (5)

"Dot.-less" denotes a dot product multiplication attention without linear transformations which can
be described as:

Output = Attention(X) = softmax

✓
XX

T

p
dk

◆
WV (X). (6)

"Non." is a condition that we only apply a simple point-wise MLP to map the input X without
attention mechanism and the operation can be described as:

Output = WV (X). (7)

"GSA" denotes our geodesic self-attention and can be described as:

Output = Attention(X) = softmax (�GDS(X))WV (X). (8)

The results fully demonstrate the superiority of our approach and the assumption that dot product
multiplication in Euclidean space cannot accurately capture the internal non-Euclidean structure of
point cloud objects. Further analyzing the results, we argue that the general linear transformation
leads to reducing the ability of underlying geometric structure feature extraction of the point cloud,

9



which is fatal for point cloud analysis. Meanwhile, the redundant linear transformations map the
input features to different high-dimensional spaces, aggravating such a phenomenon. To keep the
geometric structure of the input features in the original space, Fei et al. [11] replace the conventional
linear transformation with an orthogonal transformation and get a better result in 2D vision tasks,
which helps interpret this phenomenon.

Table 5: Ablation Study: attention types. We report the accuracy (%) of classification on Model-
Net40, the number of parameters and FLOPs of different types of self-attention.

Methods Dot. Dot.-less Non. GSA-DM

Acc. 91.7 92.1 92.3 92.8

#Param. 22.1M 18.5M 18.5M 18.5M

FLOPs 4.8G 4.1G 3.9G 4.3G

5 Conclusion

In the work, we assume that dot production multiplication in Euclidean space is not the optimal
self-attention mechanism on capturing the complex non-Euclidean spatial structures of point clouds,
and then propose a novel geodesic self-attention mechanism to solve this problem. The key insight
behind the GSA is that the geodesic can obtain more accurate measurement of non-Euclidean structure
of point clouds. Since the geodesic of point cloud is difficult to define and obtain, we propose two
feasible methods to compute it. To verify our approach, we introduce the GSA into a standard
Transformer structure, Point-GT, and it outperforms SOTA on different benchmarks.

Acknowledgements

This work was supported by Natural Science Foundation of China (No. 61872147) and National Key
Research and Development Program of China (No. 2018YFB2101300).

References
[1] P-A Absil and Kyle A Gallivan. Joint diagonalization on the oblique manifold for independent

component analysis. In 2006 IEEE International Conference on Acoustics Speech and Signal
Processing Proceedings, volume 5, pages V–V. IEEE, 2006.

[2] Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training of image transformers. arXiv
preprint arXiv:2106.08254, 2021.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

[4] Jindong Chen and Yijie Han. Shortest paths on a polyhedron. In Proceedings of the Sixth
Annual Symposium on Computational Geometry, pages 360–369, 1990.

[5] Keenan Crane, Clarisse Weischedel, and Max Wardetzky. Geodesics in heat: A new approach
to computing distance based on heat flow. ACM Transactions on Graphics (TOG), 32(5):1–11,
2013.

[6] Jiajun Deng, Shaoshuai Shi, Peiwei Li, Wengang Zhou, Yanyong Zhang, and Houqiang Li.
Voxel r-cnn: Towards high performance voxel-based 3d object detection. arXiv preprint
arXiv:2012.15712, 1(2):4, 2020.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

10



[8] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik,
1(1):269–271, 1959.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[10] Nico Engel, Vasileios Belagiannis, and Klaus Dietmayer. Point transformer. IEEE Access,
9:134826–134840, 2021.

[11] Yanhong Fei, Yingjie Liu, Xian Wei, and Mingsong Chen. O-vit: Orthogonal vision transformer.
arXiv preprint arXiv:2201.12133, 2022.

[12] Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345, 1962.

[13] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin, and Shi-Min
Hu. Pct: Point cloud transformer. Computational Visual Media, 7(2):187–199, 2021.

[14] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377, 2021.

[15] Tong He, Haibin Huang, Li Yi, Yuqian Zhou, Chihao Wu, Jue Wang, and Stefano Soatto.
Geonet: Deep geodesic networks for point cloud analysis. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 6888–6897, 2019.

[16] Donald B Johnson. Efficient algorithms for shortest paths in sparse networks. Journal of the
ACM (JACM), 24(1):1–13, 1977.

[17] Jürgen Jost and Jèurgen Jost. Riemannian geometry and geometric analysis, volume 42005.
Springer, 2008.

[18] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based python jit compiler.
In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, pages
1–6, 2015.

[19] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep
as cnns? In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
9267–9276, 2019.

[20] Lei Li, Siyu Zhu, Hongbo Fu, Ping Tan, and Chiew-Lan Tai. End-to-end learning local multi-
view descriptors for 3d point clouds. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1919–1928, 2020.

[21] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn:
Convolution on x-transformed points. Advances in Neural Information Processing Systems, 31,
2018.

[22] Zhouhui Lian, Jun Zhang, S Choi, Hanan ElNaghy, Jihad El-Sana, Takahiko Furuya, Andrea
Giachetti, RA Guler, L Lai, C Li, et al. Shrec’15 track: Non-rigid 3d shape retrieval. In 8th
Eurographics Workshop on 3D Object Retrieval, 3DOR 2015, pages 107–120. Eurographics
Association, 2015.

[23] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan. Relation-shape convolutional
neural network for point cloud analysis. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8895–8904, 2019.

[24] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 10012–10022, 2021.

[25] Ishan Misra, Rohit Girdhar, and Armand Joulin. An end-to-end transformer model for 3d object
detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 2906–2917, 2021.

11



[26] Yatian Pang, Wenxiao Wang, Francis EH Tay, Wei Liu, Yonghong Tian, and Li Yuan. Masked
autoencoders for point cloud self-supervised learning. arXiv preprint arXiv:2203.06604, 2022.

[27] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 652–660, 2017.

[28] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. Advances in Neural Information Processing
Systems, 30, 2017.

[29] Guodong Qi, Huimin Yu, Zhaohui Lu, and Shuzhao Li. Transductive few-shot classification on
the oblique manifold. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 8412–8422, 2021.

[30] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[31] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng
Li. Pv-rcnn: Point-voxel feature set abstraction for 3d object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10529–10538,
2020.

[32] Shaoshuai Shi, Li Jiang, Jiajun Deng, Zhe Wang, Chaoxu Guo, Jianping Shi, Xiaogang Wang,
and Hongsheng Li. Pv-rcnn++: Point-voxel feature set abstraction with local vector representa-
tion for 3d object detection. arXiv preprint arXiv:2102.00463, 2021.

[33] Vitaly Surazhsky, Tatiana Surazhsky, Danil Kirsanov, Steven J Gortler, and Hugues Hoppe.
Fast exact and approximate geodesics on meshes. ACM Transactions on Graphics (TOG),
24(3):553–560, 2005.

[34] Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

[35] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Thanh Nguyen, and Sai-Kit Yeung.
Revisiting point cloud classification: A new benchmark dataset and classification model on
real-world data. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 1588–1597, 2019.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

[37] Hanchen Wang, Qi Liu, Xiangyu Yue, Joan Lasenby, and Matt J Kusner. Unsupervised point
cloud pre-training via occlusion completion. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9782–9792, 2021.

[38] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M
Solomon. Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics
(TOG), 38(5):1–12, 2019.

[39] Nick Whiteley, Annie Gray, and Patrick Rubin-Delanchy. Matrix factorisation and the in-
terpretation of geodesic distance. Advances in Neural Information Processing Systems, 34,
2021.

[40] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 1912–1920, 2015.

[41] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao. Spidercnn: Deep learning on point
sets with parameterized convolutional filters. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 87–102, 2018.

12



[42] Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing
Huang, Alla Sheffer, and Leonidas Guibas. A scalable active framework for region annotation
in 3d shape collections. ACM Transactions on Graphics (TOG), 35(6):1–12, 2016.

[43] Haoxuan You, Yifan Feng, Rongrong Ji, and Yue Gao. Pvnet: A joint convolutional network
of point cloud and multi-view for 3d shape recognition. In Proceedings of the 26th ACM
International Conference on Multimedia, pages 1310–1318, 2018.

[44] Xumin Yu, Yongming Rao, Ziyi Wang, Zuyan Liu, Jiwen Lu, and Jie Zhou. Pointr: Diverse
point cloud completion with geometry-aware transformers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 12498–12507, 2021.

[45] Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. Point-
bert: Pre-training 3d point cloud transformers with masked point modeling. arXiv preprint
arXiv:2111.14819, 2021.

13



Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [No]
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] We have
uploaded our core code in the supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14


	Introduction
	Related Work
	Point Geodesic Transformer
	Transformer Backbone
	Geodesic Self-Attention
	Geodesic Distance Score


	Experiments
	Object Classification Tasks
	Few-Shot Learning
	Part Segmentation
	Ablation Study

	Conclusion
	Appendix
	Experimental Settings
	Additional Experiments
	Comparison Between Graph-based GSA and Data Manifold-based GSA 

	Visual Interpretation


