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Abstract

Centralized training with decentralized execution (CTDE) has achieved great
success in cooperative multi-agent reinforcement learning (MARL) in practical
applications. However, CTDE-based methods typically suffer from poor zero-shot
generalization ability with dynamic team composition and varying partial observ-
ability. To tackle these issues, we propose a spontaneously grouping mechanism,
termed Self-Organized Group (SOG), which is featured with a conductor election
(CE) and a message summary (MS) mechanism. In CE, a certain number of con-
ductors are elected every T time-steps to temporally construct groups, each with
conductor-follower consensus where the followers are constrained to only commu-
nicate with their conductor. In MS, each conductor summarize and distribute the
received messages to all affiliate group members to hold a unified scheduling. SOG
provides zero-shot generalization ability to the dynamic number of agents and the
varying partial observability. Sufficient experiments on mainstream multi-agent
benchmarks exhibit superiority of SOG.

1 Introduction

Cooperative multi-agent deep reinforcement learning algorithms (MARL) have been ubiquitously
applied to real-world scenarios, such as autonomous vehicle teams [45], sensor networks [48], and
social science [13]. Recently MARL has gained extraordinary performance in various multiplayer
games like Dota [3], StartCraft [30] and soccer [16]. The framework of centralized training with
decentralized execution (CTDE) [8, 28] is one of the popular frameworks for solving cooperative
multi-agent tasks. Centralized training renders the CTDE paradigm better agent cooperation while
independent execution endows the multi-agent system with more efficiency and scalability.

Classical CTDE algorithms like QMIX [28] and MADDPG [21] are confined to the fixed size of
agents. However, the number of involved agents tends to vary in real-world multi-agent scenarios.
Recently, some methods introduce the attention mechanism [40] to train on the varying number of
agents simultaneously [12, 11]. They only seek for a solution covering a range of varying team size,
unable to provide the generalization ability to the cases not in the range. Agarwal et al. [1] and Liu
et al. [18] further introduce the communication mechanism to provide the adaptability on the dynamic
team composition (i.e., the team size varies).

In the paper, we propose a method called “Self-Organized Group (SOG)”to possess zero-shot
generalization for multi-agent reinforcement learning, which provides strong adaptability to the
scenarios with varying number of agents and even varying sight of agents. In spirit of the individuals’
cooperation in social science [10] and the leader-following formation in multi-agent system [9], part
of the agents are elected as conductors at intervals, and for each conductor a temporary group is
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formed with conductor-follower consensus. In each group, the followers can only communicate with
the conductor, while the conductor summarizes all the received messages and distributes the refined
message to all group members aiming for a unified target. Our insight is that, an organized group
under the unified command of a conductor can better adapt to an unseen scenario than individuals. To
be specific, each agent’s behavior is prone to diverging from the training pattern when presented with
an unseen scenario. They may behave in contradictory ways and pose a threat to the system’s stability.
On the contrary, a conductor could send unified commands, making each agent behave in order, thus
avoiding the overall collapse of the training pattern. In the meantime, our method largely reduces the
bandwidth and the cost required for communication. For efficient and economical message passing,
we also design a variational message summarizer (MS), which compresses the local observation
information and helps predict the future trajectories.

Since the conductor navigates the information propagation in the whole group, Conductor Elec-
tion (CE) plays a critical role in SOG. Except for the simple random CE which satisfies the fully
decentralized execution paradigm, we further propose a heuristic variant: determinantal point pro-
cess (DPP) [22]-based CE, and a learning-based variant: policy gradient (PG) based CE. DPP-based
CE chooses conductors in the principle of maximum entropy and avoids the occurrence of homoge-
neous conductors. PG-based CE formulates the CE as a learning process and takes the long-term
benefits of the selection into consideration.

We conduct experiments on three commonly used multi-agent benchmarks, including a resource
collection task, a predator-prey task, and a set of customized StarCraft micromanagement tasks.
To validate the zero-shot generalization ability of our method, we evaluate trained models in more
complicated scenarios than training. We not only increase the number of agents for evaluation, but
also adjust the agents’ utility, e.g., reducing the sight range of each agent. The results show that SOG
has better zero-shot generalization ability, not only for the dynamic team composition, but also for
the unseen environment condition, than current state-of-the-art methods on all three benchmarks.

The contribution of our paper is summarized as follows: (1) We propose Self-Organized Group, a
mechanism for enhancing agents’ zero-shot generalization ability. (2) We design two conductor
election ways for reasonable group forming and a variational message summarizer for efficient and
economical message passing. (3) We achieve better generalization ability on three commonly used
multi-agent benchmarks than current state-of-the-art methods.

2 Related Work

Centralized Training with Decentralized Execution. We mainly focus on the typical paradigm of
centralized training with decentralized execution (CTDE) for cooperative multi-agent tasks in this part.
It combines the advantages of independent Q-learning [38] and joint action learning [4]. A series of
work concentrate on factorizing Q functions [35, 28] and deriving theoretical guarantee for the policy
optimality [33, 41, 29]. Some other works use actor-critic methods with a centralized critic [21, 7, 50].
Although the CTDE paradigm shows great empirical performance in many multi-agent tasks, it may
fail on some simple situations without communication on execution due to the partial observability
of the local agent [18]. In addition, traditional CTDE methods usually concentrate on invariable
environment conditions and fixed team size.

Communication for MARL. Many efforts have been made for communicating agents in multi-agent
systems [32]. Recently some works assume the information can propagate among homogeneous
agents during decentralized execution [6, 36, 49, 34, 19], some of which use the graph neural network
to handle the message passing [23, 24, 26, 24]. Some works focus on communication between
heterogenous agents [25, 31], but the role of each agent is usually fixed, therefore limiting the model’s
generalization ability. These works usually pre-define the number of agents, and can hardly handle
the dynamic team composition. Liu et al. [18] uses a predefined coach with global information to
instruct dynamic number of agents. However, a global coach that can communicate with all agents
is not often available in real-world domains. In contrast to these methods, our method enables all
agents to become a conductor, while reserves the efficiency and scalability of CTDE.

Transfer Learning and Curriculum Learning. An important topic for multi-agent systems is the
adaptation to the mutable environment. A bunch of works attempt to deal with the increasingly
challenging environment by designing a set of curricula [2, 20, 44]. Another line of works utilize the
attention mechanism or graph neural networks to handle the diversity of the local observation [14,
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1, 11, 12]. Wang et al. [43] allocates roles with limited action space to agents, and the study shows
the model’s ability of task transfer by increasing the action space for role clusters. Iqbal et al. [12]
trains simultaneously on multiple tasks by randomly masking out some entities the agent observes.
Unlike these methods, our method bypasses the overlarge training burden of curriculum learning, and
is more robust in the dynamic team composition and varying environment conditions.

3 Background

In our work, we consider a fully collaborative multi-agent task with n agents, which can be
modeled as a decentralised partially observable Markov decision process (Dec-POMDP) [27]
G = ⟨S,A, I, P, r, Z,O, n, γ⟩, where s ∈ S is the true state of the environment. At each time step
t, each agent i ∈ I ≡ {1, ..., n} chooses an action ai ∈ A, which is an element of a joint action
a ∈ A ≡ An. P (st+1|st,at) : S×A×S → [0, 1] is the state transition function of the environment.
All agents share the same reward function r(s,a) : S×A→ R. γ ∈ [0, 1) is the discount factor. Due
to the partial observability, each agent i has its local observations oi ∈ O drawn from the observation
function Z(s, i) : S × I → O. In our setting, we assume agents can communicate within its sight
range. Each agent i may receive a message µi ∈ U from its neighbors. Each agent chooses an action
by its stochastic policy πi(ai|ρi, µi) : Γ × U → ∆([0, 1]|A|), where ρi ∈ Γ ≡ (O × A)∗ denotes
the action-observation history of agent i, and ρ is the action-observation histories of all agents. The
agents’ joint policy π induces a joint action-value function: Qπ(st,at) = Est+1:∞,at+1:∞ [Rt|st,at],
where Rt =

∑∞
k=0 γ

krt+k is the discounted accumulated reward. The goal of our method is to find
the optimal joint policy π∗ such that Qπ

∗
(s,a) ≥ Qπ(s,a), for all π and (s,a) ∈ S×A. In practice,

to handle the input with dynamic team size, we use the entity-wise input rather than the vector input,
detailed in Appendix A.

We use the popular centralized training with decentralized execution (CTDE) paradigm [8, 28] as the
baseline, also allowing the communication between adjacent agents. During training, the method has
the access to the full state and each agent’s action-observation history. During testing (execution),
each agent only has the access to its own action-observation history and communication messages
from neighbors.

4 Method

In this section, we first highlight the importance of the communication during decentralized execution,
and propose self-organized group for decentralized communication. Next we introduce the learning
objective of the communication message. Finally we present the whole training procedure together
with the model architecture.

4.1 Downsides of CTDE

Figure 1: The illustration of a simple multi-agent
scenario.

Consider a simple scenario in Fig. 1(a). The
task is fulfilled only when the three buttons
are pressed synchronously. Therefore, agents
A, B, and C need to press the three nonrecur-
ring buttons respectively. The button 1 and 2
are ten meters apart, while button 3 is at the
midpoint of them. The sight range of each
agent is a circle with radius six meters. As a
result, the agent who is in charge of the button
2 can’t perceive if some agent is pressing the
button 1, due to sight range limitation. If we
use the common centralized training with de-
centralized execution (CTDE) method, like QMIX [28], to deal with this task, these agents can not
efficiently coordinate beyond the individual sight range, since each agent’s execution is conditioned
on its own action-observation history. The communication between agents is one of the easy and
flexible solutions to handle the partial observability.
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To extend the CTDE paradigm based on the communication mechanism, we now present the Self-
Organized Group (SOG), a mechanism to group all agents and select a conductor for each group.

4.2 Self-Organized Group

Aiming for a cooperative multi-agent task with dynamic team composition, every T time-steps, we
elect a certain number of conductors and the groups are constructed accordingly. In this section
we first show the formulation of SOG. Then we present the message summarizer in Sec. 4.2.1, and
we discuss in Sec. 4.2.2 the strategies for conductor election. An example group is illustrated as in
Fig. 1(b), where agent C is appointed as the conductor, with the collected information from A and
B to broaden the sight range. Since our main task lies in MARL, we simplify the communication
procedure, assuming that all the messages can be delivered accurately without delay and each agent
can handle all the received messages at the same time. Our goal is to build a communication
mechanism that satisfies the following properties:

• Lightweight. The communication message should be brief and informative, e.g., a three-
dimensional summary vector of the agent’s current state.

• Robust. The group should be able to handle the varying number of group members and the
unfamiliar environmental conditions (e.g. the varying sight range).

Figure 2: The process of group organization.
(a) Conductors are elected, and send group
invitations to the neighbors. (b) Followers
choose the conductor and send the summa-
rized messages. (c) Groups are formed and
conductors send unified targets to the group
members.

The process of group organization is as fol-
lows (Fig. 2): every T time-steps, some agents are
elected to be conductors. We allow multiple conduc-
tors in the same time. Then conductors send group
invitations to all agents within their sight ranges. The
non-conductor agents who receive one invitation then
send their personal messages ζ back to the conductor.
Here the personal message ζ is delicately designed by
a message summarizer, described in Sec. 4.2.1. For
non-conductor agents who receive multiple group in-
vitations, they randomly choose one as the conductor
and reply. The conductor and its interactive agents
temporarily form a group. For those who receive no
group invitation or leave the sight of the constructor
during in-group communication, they form a 1-agent
group of themselves.

After the group is formed, the conductor processes the messages from all the followers (including
itself). Then it sends the processed message ξj back to each member that belongs to group j.
Each agent only needs to communicate with its group’s conductor, therefore it greatly reduces the
bandwidth required for communication. We use a non-parametric message mixer for each conductor:

ξj =
1

M j

Mj∑
i=1

ζi, i ∈ Group(j), (1)

where M j is the size of group j. In this way, the conductor takes no extra computational cost for
message mixing and distributing procedure, and each agent can play the role of the conductor without
changing its network structure.

The communication takes place every T time-steps. Each agent i uses its local observation oi and the
message µi to predict its action. µi is defined as:

µit = I(t, T ) · ξjt + (1− I(t, T )) · ζit , i ∈ Group(j), (2)
where I(t, T ) is the indicator whether t is divisible by T .

Through such mechanism, agents can share the information of the whole group with the minimal
communication cost and coordinate more efficiently. We present the quantitative analysis on the
communication cost in Appendix H, which is 1/M of the cost of the fully-connected communication
like Agarwal et al. [1], where M is the average number of neighbors for each agent.

In unfamiliar scenarios, the conductor integrates the followers’ information and all group members
execute a unified command, driven by a delicate message summarizer. Such a in-group communication
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mechanism empowers the system better stability compared to the non-conductor-following formation.
With time-varying conductor election, SOG shows strong zero-shot generalization ability to the
dynamic team composition and unseen environmental conditions.

4.2.1 Message Summary (MS)

After the communication protocol is built, we now present the content of the communication message.
Inspired by recent works on role learning and state summary by variational inference [42, 18, 17],
we propose a message summarizer for agents to summarize their local observations as brief latent
variables. A summarizer can extract valuable information from the whole trajectory, and reduce the
computational complexity.

We first aim to distill the information about the agent i’ s transition of future T -steps. Let
τ it = (oit+1, a

i
t+1, ..., o

i
t+T−1, a

i
t+T−1). The personal message is a random Gaussian variable of

C dimensions sampled from an encoder, i.e., ζit ∼ fψ(o
i
t). We maximize the mutual information

between ζit and τ it conditioned on oit. I(ζ
i
t ; τ

i
t |oit) has the following lower bound:

I(ζit ; τ
i
t |oit) ≥ Eoit,ζit ,τ i

t

[
log qϕ(ζ

i
t |oit, τ it )

]
+H(ζit |oit), (3)

where qϕ(·) is the variational estimator, which is only used for centralized training. We define the
opposite of the lower bound as future predictor loss LFP . The derivation is defered to Appendix D.

In addition, we expect the personal message to help discard the irrelevant information while retain
the future trajectory’s information, which can endow the agent with a small state representation and
accelerate training. We take advantage of the conditional entropy bottleneck (CEB) objective [5]. We
maximize the mutual information between the personal message ζit and the future trajectory τ it , and
minimize the mutual information between the current observation oit and the personal message ζit
conditioned on the future trajectory τ it simultaneously. The objective has the following lower bound:

I(τ it ; ζ
i
t)− I(oit; ζit |τ it ) ≥ Eoit,ζit ,τ i

t

[
log

qϕ(ζ
i
t |oit, τ it )

1
K

∑K
j=1 qϕ(ζ

j
t |o

j
t , τ

j
t )
− log

fψ(ζ
i
t |oit)

qϕ(ζit |oit, τ it )

]
, (4)

where fψ(·) is the encoder for personal message, and K is the size of the mini-batch sampled for
training. We define the opposite of the lower bound as LCEB . See Appendix D for detailed derivation.

4.2.2 Conductor Election (CE)

Figure 3: A diagram of the model structure.
“MHA” means multi-head attention. We use
this module to deal with the entity-wise input
for dynamic team composition, detailed in Ap-
pendix A. hit is the hidden state for GRU cell.

In this section, we introduce three conductor elec-
tion mechanisms: Random CE, Determinantal Point
Process (DPP) [22] based CE, and Policy Gradi-
ent [37] based CE. Note that CE differs from the
concept of leader election (LE) [39] in distributed
system. We elect conductors to obtain better agent
cooperation for maximizing the team reward, and we
assume a perfect communication channel. LE is usu-
ally deployed in real multi-agent systems with the
probability of agent disconnection, with the target
to maintain the cognitive consistency among agents.

Random CE. Each agent is elected as a conduc-
tor with an independent and identical probability pl,
which is fully decentralized. The expectation of the
number of groups can be controlled by pl. Since
all group members need to communicate with their
neighbors only for message passing, SOG with ran-
dom CE doesn’t need centralized commander during
execution. Therefore, it can be parallelized easily
during execution.

DPP-based CE. In this part we expect to increase the generalization ability of SOG by maximizing
the intra-group diversity. We achieve this by maximizing the diversity between conductors considering
the conductor is the structural center of a group. Specifically, we formalize the conductor election as
a determinantal point process P.
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Definition 1. A determinantal point process (DPP) P is a probability distribution defined on the
power set 2Y of a discrete finite basic point set Y = {1, 2, ..., n}. L ∈ Rn×n measures the similarity
between any point pairs in Y . Let B be a random subset drawn by P, then ∀C ⊆ Y , we have

P(B = C) =
det (LC)

det (L+ I)
, (5)

where LC := [Li,j ]i,j∈C is the submatrix of L, whose entries are indexed by the elements in C, and
I is an n× n identity matrix. det(·) means the determinant of a matrix.

In practice, we use all agents to construct the point set Y . Correlations are always non-positive in
DPP [15]. The more similar two points are, the less possible they will appear in a subset sampled
by DPP. Therefore, once we need to elect conductors, we just sample a subset B by DPP and use
all elements in B as the conductors, which greatly reduces the probability to elect conductors with
similar observations (e.g., two agents close to each other). For the similarity matrix L, we use the
cosine similarity of agents’ personal feature V i:

L = [V 1T , V 2T , ..., V nT ]T [V 1, V 2, ..., V n] = [V iTV j ]i,j∈n (6)

Another concern for DPP is the high computational cost for calculating the determinant of all
submatrices. Instead of the traditional sampler by Schmidt orthogonalization [47], we find a method
to calculate all determinants in parallel with a GPU, which greatly accelerates the computation.
Details can be found in Appendix B.

PG-based CE. The conductor election might affect the group’s accumulative rewards in the following
time-steps. Therefore, we regard the conductor election task as a reinforcement learning problem. We
use a policy π(a|s) =

∏n
i=1 π

i(a|s) with the input of global state to decide the probability of each
agent to become a conductor, and do policy gradient on it. The gradient∇LCERL can be written as:

Es1,a1,...,s∞,a∞

[(∑
t

r(st, at)
)∑

t̂

∇ logπ(at̂|st̂)
]
, (7)

where t̂ is the time that CE happens, i.e., every T time-steps. We omit the π’s dependence on the
parameter ω of the neural network for brevity. Electing conductors by PG takes the long-term benefits
of the selection into consideration, and in experiments it shows great generalization ability.

4.3 Algorithm Outline

As shown in Fig. 3, our model is constructed using centralized training with decentralized execution
paradigm. We utilize the entity-based input like in Iqbal et al. [12], so that the model can deal with
the dynamic number of agents. The partial observability of local agents is assured by masking out the
unseen entities. All agents share the same parameters. It’s worth noting that the variational estimator
qϕ is designed to include information of future T -steps. Since at time-step t it takes the output of
GRU cell hit as input, qϕ should be used to calculate the loss with message ζ before T steps, i.e. ζit−T .
The local Q function uses the message ξj sent by the conductor as part of input if it is in group j
when communication takes place, and uses personal message ζi in place at other time. Let µt denote
the set of the messages used for local Q prediction at time-step t. The mean square Bellman error
objective for Q-learning is as follows:

LRL(θ) = E(µt,µt+1,at,rt,st,st+1)∼D

[(
rt+γmax

a′
Qtot
θ̂

(τt+1,a
′|µt+1)−Qtotθ (τt,at|µt)

)2]
, (8)

where θ̂ is the parameters of the target network, and D is the replay buffer. The overall loss can be
written as:

Lall = LRL + λ1LFP + λ2LCEB , (9)
where λ1 and λ2 are hyper-parameters. We summarize the training procedure in Algorithm 1.

5 Experiments

In this section we design experiments to answer the following questions: (1) Whether the Self-
Organized Group helps the agents coordinate better than fully-connected communication methods?
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Algorithm 1 Self-Organized Group
Initialize θ, ϕ, ψ. Set learning rate← η, communication interval← T , D ← {}, λ1, λ2, tmax
for each episode iteration do

for t = 1, 2, . . . , tmax do
if t mod T ̸= 0 then

For each agent i, µit ← Sample(fψ(o
i
t))

else
Elect conductors and form groups {Gj}Kj=1

For each agent i, ζit ← Sample(fψ(o
i
t))

For each conductor j, ξjt ←Mix(ζit), i ∈ G(j)
For each agent i, µit ← ξjt , i ∈ G(j)

end if
Generate tuple{st,at, rt, st+1, ζt, ζt+1} by executing fθ(τt,µt)

end for
D ← D ∪ {st,at, rt, st+1, ζt, ζt+1}tmax

t=1 , θ ← θ + η∇̂θLRL(D)
ψ ← ψ + η(∇̂ψLFP (D) + ∇̂ψLCEB(D)) , ϕ← ϕ+ η(∇̂ϕLFP (D) + ∇̂ϕLCEB(D))

end for

(2) Can Self-Organized Group promote zero-shot generalization to the dynamic team composition and
the varying partial observability, even on complicated tasks? (3) What’s the effect of the conductor
election way? (4) What factor contributes to Self-Organized Group most? We test our idea on
three commonly used multi-agent benchmarks: Resource Collection, Predator-Prey, and StarCraft II
micromanagement tasks. The previous two are built on the multi-agent particle environment [21],
and the last is modified from Iqbal et al. [12]. The number of the agents is not fixed, sampling from a
pre-defined set at the beginning of each episode in all scenarios. For all the three tasks the testing
environments are more complicated than the training ones. Agents need to handle the situations that
is not encountered during training. Each experiment is repeated 3 or 5 times with different seeds.

In experiments, the name “SOG” means our method with random CE, whose execution is decentral-
ized. “SOG_dpp” and “SOG_rl” means the SOG with DPP-based CE and PG-based CE, respectively.
Except for our method, we evaluate four state-of-the-art CTDE methods that are suitable for dynamic
team composition: A-QMIX [46], REFIL [12], EMP [1] and COPA [18]. For a fair comparison,
we extend the original EMP’s decentralized-training structure to CTDE. For A-QMIX and REFIL,
agents have no communication during execution, while for EMP and COPA, agents communicate
with their neighbors or a global coach. Since many MARL methods with communication are not
suitable for dynamic team composition (e.g., CommsNet [34] and G2ANet [19]), we extract one
scenario of Resource Collection and show results in Appendix G.1. We also compare SOG with
graph-based methods including NCC [23], MAGIC [26] and Gated-ACML [24] in Appendix I.

5.1 Resource Collection

This scenario is modified from the environment described in Liu et al. [18]. Agents need to collect
resources from 6 resource points and transport the goods home. The number of the agents for training
is uniformly sampled from {2,3,4,5}, while for testing it is sampled from {6,7,8}. Each agent has
a sight range SR. Entities including other agents and resource points that exceed agent i’s SR are
invisible to agent i. For more details of the environment, please refer to Appendix F.1.

We train on two kinds of SR: 0.5 and 1.0. We show in Fig. 4(a-b) the results of all methods. SOG
significantly outperforms the other methods when SR = 0.5 and SR = 1.0. Given that the testing
scenario includes 6/7/8 agents while the training scenario only has 2/3/4/5, the communication
mechanism of SOG greatly strengthens SOG’s zero-shot generalization ability for dynamic team
composition. The CE methods have no obvious difference when the team size varies.

Then we test the zero-shot generalization ability in different environmental conditions. We save the
previously trained models with a fixed sight range 0.5 or 1.0 and evaluate them on different agent
sight range settings. Each setting is repeated for 160 testing episodes and the results are averaged over
3 models with different seeds. We show the performance of each method in Fig. 4(c-d). Except for
the difficult setting SR = 0.2 that all methods have poor performance, SOG and SOG_rl can achieve
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Figure 4: (a-b) The average episode returns in the scenario Resource Collection with 2 kinds of sight
ranges (SR). (c-d) Their performance on different test sight ranges from SR = 0.2 to SR = 1.0.

similar or even better performance in different scenarios ranging from SR = 0.5 to SR = 1.0 than
in training scenarios. SOG_rl even performs better transferring from SR = 1.0 to SR = 0.8. In the
meantime, other methods show notable performance drop when transferred from training settings to
others. The results show SOG’s strong adaptation to unseen scenarios.

5.2 StarCraft Micromanagement Tasks

(a)

(b)

(c)

Enemy Type1

Enemy Type2

Agent Type1

Agent Type2

Attack from agent

SOG                     SOG-rl SOG w/o MS                EMP 

Figure 5: (a) Results of the test winning rates on StarCraft2. (b) Models’ performance when
transferred to unseen scenarios. (c) Visualization of agents’ behaviour at time step 20.

We apply our method to the StarCraft multi-agent challenge (SMAC) [30]. We use the map designed
by Iqbal et al. [12] and Liu et al. [18]. The maps randomly initialize 3-8 agents with enemies of the
same number at the start of each episode. Agents are initialized together with the sight range 9 [12]
or divided into 2-4 groups with the sight range 3 [18]. We call the previous one “G(ather)” and the
latter “D(isperse)”. In the scenario “Disperse”, the enemies are divided into 1-2 groups, which means
each group of enemies is stronger than that of the agents. We limit the number of agents to 3-5 in
training procedure and test the model with agent number 6-8. Similar to Iqbal et al. [12], Liu et al.
[18], we also incorporate the imaginary objective.

We first explore the adaptation to the dynamic team composition. We show in Fig. 5(a) the results
on 4 maps. Our method has the highest test winning rate against the preset AI when testing the
model with a larger size of agents and enemies than training. And the PG-based CE improves the
performance on 3-8sz. Combining the results in Resource Collection, we conclude that PG-based CE
can improve agents’ zero-shot generalization ability on dynamic team composition in many cases,
due to the more reasonable conductor election mechanism than random CE.

Then, we study the adaptation to the varying environment conditions of our method. We save the
models trained on map 3-8sz_D with the sight range 3, which is a hard case that agents are split and
have restricted horizons. Then we evaluate the models on other initial conditions and sight ranges.
The results are shown on Fig. 5(b). The initial conditions (Gather or Disperse) have no obvious effect
on the performance for all four methods. However, when agents can see more entities than training,
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other three methods all show large performance drop while our method has comparable performance
to that in training. This is probably due to the unified messaging passing mechanism within the
group. An interesting phenomenon is that the random CE has comparable or better performance to
rl-based CE on 2 scenarios. We speculate this is due to the similar pattern of random CE in different
environment settings, and analyse this result in detail in Appendix G.2. The results show that our
method can better adapt to the varying partial observability.

To further validate the effect of our method, we visualize the situation for four methods (SOG, SOG-rl,
SOG without MS, and EMP3) on the same SMAC map in Fig. 5(c). We can see that agents trained by
SOG learn to gather and concentrate fire on certain enemies surrounded by agents. SOG-rl sacrifices
a group of 2 agents to exchange the the elimination of 3 enemies. SOG without message summary
learns to gather, but the target of each agent’s attack is not focused. EMP3 does not even learn to
attack simultaneously. The results show that CE and MS both promote better agent cooperation.

5.3 Predator Prey

In this scenario, agents play the role of predators, aiming to catch some preys with random walk.
The training number of predators is sampled from {3,4}, along with only 1 prey. During execution
we initialize 5 or 6 predators, as well as 1 or 2 preys. For environment details, please refer to
Appendix F.2. It is a relatively easy-to-learn scenario, and we make ablations on it.

Method LFP LCEB Reg SR CR

EMP 9±0.62 9.37±2.32
A-QMIX 8.03±1.4 7.57±2.44

SOG

✓ 7.95±0.61 7.2±1.15
✓ 8.21±0.7 7.53±1.72

✓ ✓ 9.10±0.56 9.98±1.15
✓ ✓ ✓ 7.79±0.09 7.31±0.08

Table 1: The results of different losses on
Predator-Prey. "Reg" means the entropy
regularizer. "SR" is the average return of
160 testing episodes on simple training sce-
narios, while "CR" is the counterpart on
complicated evaluation scenarios.

First, we explore the effect of the message summarizer.
Except for the LFP and LCEB , we also try an entropy
regularizer similar to the implementation of Wang et al.
[42]. It aims to maximize the entropy of the message
to encourage exploration. As shown in Table 1, the
combination of LFP and LCEB obtains the best aver-
age testing return, exceeding the performance of CTDE
method A-QMIX, and communication method EMP.
Although the entropy regularizer helps stabilize the
training (the variance is reduced when combined with
the regularizer), it makes no contribution to the aver-
age performance. Therefore we use the LFP + LCEB
as our default loss for message summarizer. Notice
that EMP has similar performance to SOG on training
scenarios. Nevertheless, SOG performs better when transferred to complicated evaluation scenarios.

Group Num 1 2(D) 4
Test Return 7.43±1.88 9.90±3.20 7.37±3.79

Msg dim 1 3(D) 10
Test Return 6.30±2.0 9.90±3.20 10.77±0.91

T 2 4(D) 10
Test Return 10±0.79 9.90±3.20 7.5±1.05

Table 2: Ablation studies. “(D)” means
the default setting.

Then we analyze the choice related to communication in
Table 2, including the number of groups in expectation, the
message dimension, and the communication interval. The
number of group 2 has better performance than number
1 or 4. Since the rule that a prey needs to be caught by
3 predators simultaneously, it is suitable to divide 5 or
6 agents into 2 groups. When the message dimension is
reduced from 10 to 3, the results have no obvious drop.
However, it decrease greatly when the message dimension
is set to 1. The results show that a 3-dimensional message
is sufficient for communication for Predator-Prey task. As for communication interval, T = 2 is a
little better than T = 4, and T = 10 is not enough for sufficient communication.

6 Discussion on Limitations

As stated in the section 4.2.2, we only test SOG on the perfect communication channel. Its perfor-
mance may fall down when faced with broken communication channel. Another limitation for random
CE is that the expectation of the size of each group is decided by a pre-defined hyperparameter, i.e.,
the probability of agent elected as a conductor. When transferred to unseen scenarios, if the size of
each group differs a lot from the training condition, it may cause the performance drop. We try to git
rid of the hyperparameter by introducing DPP-based CE and RL-based CE, but they both require a
centralized conductor elector, which is not full CTDE.
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7 Negative Societal Impact

There is a possibility that our method could be employed in real-world multi-agent systems such
as UAV formation or intelligent warehouse management. Utilizing the policy our method derives
directly is risky, since there is a domain gap between the training virtual environment and real-world
scenarios. The practitioners are supposed to restrict their policy under human supervision to avoid
harmful options.

8 Conclusion

In this paper we propose Self-Organized Group (SOG) for cooperative multi-agent reinforcement
learning. In SOG, a certain number of agents are randomly elected to be conductors and the
corresponding groups are constructed with conductor-follower consensus, allowing the groups to
be re-organized every T time-steps. We find the organized group under the unified command of a
conductor embeds the multi-agent system with stronger zero-shot generalization ability compared
to the traditional CTDE methods with fully-connected communication mechanism. Furthermore,
we derive a variational message summarizer for efficient and economical message passing, and we
propose DPP-based and PG-based conductor election strategies for better group organization. We
take experiments on three commonly used multi-agent benchmarks. SOG shows better zero-shot
generalization ability not only for the dynamic team composition, but also for the varying partial
observability on all three benchmarks.
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