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Organization of Appendix:

• Section A: Algorithms that are not listed in the main text because of page limits
• Section B: Complete experimental results
• Section C: Proofs
• Section D: Related work
• Section E: More explanations on identifiability conditions, algorithms, and theorems
• Section F: Illustrative examples of the entire algorithm

Pa: Parents Sib: Siblings VG: All variables in graph G
PCh: Pure children M: Measured pure descendants X: A set of measured variables
PDe: Pure descendants XG: All measured variables in graph G L: A set of latent variables
Gp: Grandparents LG: All latent variables in graph G V: A set of variables

Table 3: Complete graphical notations used in the paper.

A Algorithms on crossCoverTest and findColliders

Algorithm 4a: (CrossCoverTest) gives the procedure of refining the edges over a set of latent variables
S. It first fully connects the latent covers in S (line 2). Then for every pair of latent covers, it performs
the cross-cover test (lines 3-17). If rank deficiency is found, then remove the corresponding edges
(lines 10-12).

Algorithm 4b: (findColliders) gives the procedure of finding v structures. For every unshielded
triangle L1 �L3 �L2, it performs v structure tests and compares with the rank which does not involve
L3 (lines 22-23). If the rank that involves L3 is larger, then the unshielded triangle forms a v structure
(lines 24-25).

B Complete Experimental Results

We applied the proposed algorithm to synthetic data to learn the latent hierarchical causal graph.
Specifically, we considered di↵erent types of latent graphs and di↵erent sample sizes (with N =
2k, 5k, 10k). The causal strength was generated uniformly from [�5,�0.5] [ [0.5, 5], and the noise
term either follows a Gaussian distribution (with noise variance uniformly sampled from [1, 5]) or a
uniform distributionU(�2, 2).

⇤These authors contributed equally to this work.
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Algorithm 4a: crossCoverTest
Input :A set of latent variables S, currently learned graph G0
Output :An edgeset E among the variables
crossCoverTest (S, G0):

1 E ;;
2 add undirected edges between every pair of latent atomic covers in S to E;
3 foreach pair of latent atomic covers LA,LB 2 S do
4 k = 0
5 repeat
6 repeat
7 draw a potential separating set of k atomic covers C = {C1,C2, · · · ,Ck} ✓ S\{LA,LB};

foreach atomic cover Ci 2 C do
8 partition PChG0 (Ci) into CA

i ,CB
i ; // Remark on clever choice

9 A {LA,CA
1 ,C

A
2 , ...} and B {LB,CB

1 ,C
B
2 , ...};

10 if there exists suchA,B such that rankG0 (⌃A,B) is rank deficient then
11 remove all edges between LA,LB in E;
12 break;
13 until all sets C with k atomic covers tested;
14 if rank deficiency found then
15 break;
16 k += 1;
17 until k > number of variables in S\{LA,LB};
18 return Edgeset E

Algorithm 4b: findColliders
Input :A set of latent variables S, edgeset E, currently learned graph G0
Output :A set of colliders C
findColliders (S, E, G0):

19 Collider set C ;;
20 foreach unshielded triangle L1 � L3 � L2 in S based on E do
21 letA,B be the set of variables in Algorithm 4a: such that ⌃A,B was rank deficient with rank k;
22 k1  rankG0 (⌃A[L3,B);
23 k2  rankG0 (⌃A,B[L3 );
24 if k < min(k1, k2) then
25 add collider L1 ! L3  L2 to C;
26 return Collider set C

To the best of our knowledge, this is the first algorithm that can identify such general latent hierarchical
structures, so to fairly compare with other methods, besides general IL2H graphs (see Figure 7), we
also considered tree structures (see Figure 5) and measurement models (see Figure 6). We compared
the proposed method with the tree-based method–Chow-Liu Recursive Grouping (CLRG) [Choi et al.,
2011], as well as measurement-model-based methods, including FOFC [Kummerfeld and Ramsey,
2016] and GIN Xie et al. [2020].

We used the following metrics to evaluate the performance:

• Causal cluster recovery rate over measured variables (metric 1): measured by the percentage of
correctly identified causal clusters over measured variables, with

m1 =
correctly found # clusters over measured variables

total # clusters over measured variables
.

• Causal cluster recovery rate over all variables (metric 2), measured by the percentage of correctly
identified causal clusters over all variables, with

m2 =
correctly found # clusters over all variables

total # clusters over all variables
.
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• Percentage di↵erences between estimated and true adjacency matrices (metric 3), with

m3 =
X

i, j

�
AdjG(i, j) ⇠= AdjG0 (i, j)

�
/
�
(nX + nL)2

� n2
X
�
,

where Adj denotes the adjacency matrix, i and j denote the i-th and j-th entry, respectively, and
nX and nL are the number of measured variables and latent variables, respectively. Note that the
indices of the latent variables in the estimated graph may not be aligned to those in the true graph.
To remove this ambiguity, we tried all permutations of the latent indices in the estimated graph
and used the one which has the smallest di↵erence from the true graph. Moreover, if the estimated
number of latent variables is smaller than the true number of latent variables, add extra latent
variables to G0 that do not have edges with others. If the estimated number of latent variables is
larger than the true number of latent variables, then find a subset of the latent variables in G0 that
best aligns the true ones.

It is worth mentioning that how to measure the performance of the estimated latent hierarchical graph
is a nontrivial problem and will be further investigated.

The experimental results were reported in Tables 4 and 5, where the noise terms are Gaussian
distributed and uniformly distributed, respectively. Our method gives the best results on all types
of graphs, indicating that it can handle not only the tree-based and measurement-based structures,
but also the latent hierarchical structure. The CLRG algorithm does not perform well on tree-based
structure because the first two metrics are rather strict–even a single mis-clustered variable outputs an
error.

L1

L2 L3 L4 L5

L6 L7 L8

L9 L10 L11

X1,2,3 X4,5,6 X7,8,9

X10,11,12 X13,14,15

X16,17,18 X19,20,21 X22,23,24

Figure 5: Tree. Note that Xi, j,k means
Xi, Xj, Xk.
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Figure 6: Measurement model.

C Related Work

Identification of causal relationships from observational data, known as causal discovery, is attractive
for the reason that traditional randomized control trials may be hard or even impossible to do. Most
state-of-the-art approaches in causal discovery assume that the measured variables are the underlying
causal variables and that no latent confounders influence the measured variables [Spirtes et al., 2000,
Chickering, 2002, Shimizu et al., 2006, Hoyer et al., 2009, Zhang and Hyvärinen, 2009]. However, in
many real-world problems, this assumption may not hold.

For example, in complex systems, it is usually hard to enumerate and measure all task-related
variables, so there may exist latent variables that influence multiple observed variables, the ignorance
of which may introduce spurious correlations between measured variables. A more complex scenario
is that the variables form a hierarchical structure, where the latent variables may generate latent
variables in a hierarchical way, while only the leaf nodes are measured, which is common in real-world
scenarios. For instance, in fMRI data analysis, hundreds of thousands of voxels are recorded, where
these micro-variables may not be necessary to have clear semantic meaning. Therefore, from the
measured voxels, we aim to automatically identify conceptually meaningful functional brain regions
of di↵erent levels, where the lower level represents simpler functional regions and the higher level
represents more abstract and complex functional regions, which thus form a hierarchical structure.
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Table 4: Performance (mean (standard deviation)) on learning di↵erent types of latent graphs, where
noise terms were generated from Gaussian distributions.

metric 1 "
Algorithm Ours CLRG FOFC GIN

2k 0.70 (0.22) 0.00 (0.00) 0.12 (0.09) 0.35 (0.23)
IL2H 5k 0.83 (0.15) 0.00 (0.00) 0.17 (0.10) 0.40 (0.24)

10k 0.86 (0.13) 0.00 (0.00) 0.29 (0.10) 0.44 (0.21)
2k 0.89 (0.12) 0.00 (0.00) 0.38 (0.25) 0.13 (0.30)

Tree 5k 1.0 (0.00) 0.00 (0.00) 0.75 (0.23) 0.23 (0.30)
10k 1.0 (0.00) 0.13 (0.04) 0.87 (0.20) 0.50 (0.00)
2k 0.92 (0.08) 0.00 (0.00) 0.38 (0.22) 0.30 (0.16)

Measurement Model 5k 1.0 (0.00) 0.00 (0.00) 0.65 (0.32) 0.70 (0.43)
10k 1.0 (0.00) 0.00 (0.00) 1.0 (0.00) 0.70 (0.43)

metric 2 "
Algorithm Ours CLRG FOFC GIN

2k 0.60 (0.16) 0.00 (0.00) 0.09 (0.07) 0.26 (0.19)
IL2H 5k 0.69 (0.22) 0.00 (0.00) 0.09 (0.07) 0.28 (0.19)

10k 0.73 (0.17) 0.00 (0.00) 0.12 (0.07) 0.35 (0.17)
2k 0.79 (0.19) 0.00 (0.00) 0.28 (0.19) 0.09 (0.11)

Tree 5k 0.83 (0.16) 0.00 (0.00) 0.55 (0.17) 0.17 (0.22)
10k 0.89 (0.09) 0.09 (0.03) 0.63 (0.18) 0.36 (0.20)
2k 0.92 (0.08) 0.00 (0.00) 0.38 (0.22) 0.30 (0.16)

Measurement Model 5k 1.0 (0.00) 0.00 (0.00) 0.65 (0.32) 0.70 (0.43)
10k 1.0 (0.00) 0.00 (0.00) 1.0 (0.00) 0.70 (0.43)

metric 3 #
Algorithm Ours CLRG FOFC GIN

2k 0.11 (0.02) 0.18 (0.04) 0.26 (0.21) 0.16 (0.03)
IL2H 5k 0.10 (0.02) 0.18 (0.04) 0.26 (0.21) 0.15 (0.03)

10k 0.10 (0.02) 0.18 (0.04) 0.20 (0.27) 0.15 (0.03)
2k 0.02 (0.00) 0.10 (0.00) 0.09 (0.00) 0.15 (0.02)

Tree 5k 0.02 (0.00) 0.10 (0.00) 0.09 (0.00) 0.10 (0.02)
10k 0.01 (0.00) 0.09 (0.00) 0.08 (0.00) 0.09 (0.00)
2k 0.02 (0.00) 0.28 (0.00) 0.18 (0.04) 0.30 (0.08)

Measurement Model 5k 0.00 (0.00) 0.28 (0.00) 0.13 (0.05) 0.17 (0.15)
10k 0.00 (0.00) 0.28 (0.00) 0.00 (0.00) 0.17 (0.15)

Note: " means a higher value is better, and vice versa.

We may also see similar structures in image representation learning–image pixels are dependent, and
it seems sensible to consider them as observations generated by multiple-layer hidden concepts.

Previous causal discovery approaches that can handle latent confounders are mainly based on the
following criteria.
• Conditional independence constraints. The FCI algorithm [Spirtes et al., 2000], as well as its

variants [Colombo et al., 2012, Pearl, 2000, Akbari et al., 2021], makes use of conditional inde-
pendence tests over observed variables to identify the causal structure over observed variables up
to a maximal ancestral graph. This type of methods can handle both linear and nonlinear causal
relationships, but the limitation is that there are large indeterminacies in the resulting graph about
the existence of an edge, as well as the existence of confounders. In practice, it is often the case
that the resulting graph contains many undetermined edges, denoted by◆, where the circle can be
either tail or arrow. Moreover, they do not consider the causal relationships among latent variables.

• Tetrad condition. With the Tetrad condition, i.e., the rank constraints of every 2 ⇥ 2 o↵-diagonal
sub-covariance matrix, one is able to locate latent variables and identify the causal skeleton among
them in linear-Gaussian models [Silva et al., 2006, Kummerfeld and Ramsey, 2016, Wang, 2020].
These methods assume that each observed variable is influenced by only one latent parent, and
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Table 5: Performance (mean (standard deviation)) on learning di↵erent types of latent graphs, where
noise terms were generated from uniform distributions.

metric 1 "
Algorithm Ours CLRG FOFC GIN

2k 0.72 (0.19) 0.00 (0.00) 0.10 (0.10) 0.45 (0.18)
IL2H 5k 0.87 (0.13) 0.00 (0.00) 0.17 (0.10) 0.46 (0.18)

10k 0.88 (0.10) 0.00 (0.00) 0.29 (0.10) 0.52 (0.16)
2k 0.93 (0.07) 0.00 (0.00) 0.40 (0.27) 0.79 (0.22)

Tree 5k 1.0 (0.00) 0.00 (0.00) 0.75 (0.23) 0.99 (0.04)
10k 1.0 (0.00) 0.00 (0.00) 0.87 (0.20) 0.95 (0.08)
2k 0.95 (0.06) 0.00 (0.00) 0.25 (0.21) 0.87 (0.20)

Measurement Model 5k 1.0 (0.00) 0.00 (0.00) 0.70 (0.27) 1.00 (0.00)
10k 1.0 (0.00) 0.00 (0.00) 1.0 (0.00) 1.00 (0.00)

metric 2 "
Algorithm Ours CLRG FOFC GIN

2k 0.61 (0.20) 0.00 (0.00) 0.07 (0.07) 0.34 (0.15)
IL2H 5k 0.71 (0.19) 0.00 (0.00) 0.09 (0.07) 0.35 (0.15)

10k 0.76 (0.20) 0.00 (0.00) 0.12 (0.07) 0.39 (0.14)
2k 0.83 (0.12) 0.00 (0.00) 0.29 (0.20) 0.57 (0.16)

Tree 5k 0.85 (0.11) 0.00 (0.00) 0.55 (0.17) 0.72 (0.03)
10k 0.89 (0.15) 0.00 (0.00) 0.63 (0.18) 0.69 (0.06)
2k 0.95 (0.06) 0.00 (0.00) 0.25 (0.21) 0.87 (0.20)

Measurement Model 5k 1.0 (0.00) 0.00 (0.00) 0.70 (0.27) 1.00 (0.00)
10k 1.0 (0.00) 0.00 (0.00) 1.0 (0.00) 1.00 (0.00)

metric 3 #
Algorithm Ours CLRG FOFC GIN

2k 0.10 (0.02) 0.18 (0.04) 0.23 (0.21) 0.15 (0.03)
IL2H 5k 0.10 (0.02) 0.18 (0.04) 0.26 (0.21) 0.15 (0.03)

10k 0.10 (0.02) 0.18 (0.04) 0.20 (0.27) 0.14 (0.03)
2k 0.02 (0.00) 0.11 (0.00) 0.10 (0.00) 0.11 (0.00)

Tree 5k 0.01 (0.00) 0.10 (0.00) 0.09 (0.00) 0.11 (0.00)
10k 0.01 (0.00) 0.10 (0.00) 0.08 (0.00) 0.11 (0.00)
2k 0.01 (0.00) 0.28 (0.00) 0.25 (0.04) 0.07 (0.05)

Measurement Model 5k 0.00 (0.00) 0.28 (0.00) 0.25 (0.04) 0.07 (0.05)
10k 0.00 (0.00) 0.28 (0.00) 0.00 (0.00) 0.00 (0.00)

Note: " means a higher value is better, and vice versa.

each latent variable has at least three pure measured children. Moreover, the Tetrad condition can
also be used to identify a latent tree structure [Pearl, 1988].
• Matrix decomposition. It has been shown that, under certain conditions, the precision matrix can

be decomposed into a low-rank matrix and a sparse matrix, where the low-rank matrix represents
the causal structure from latent variables to observed variables and the sparse matrix gives the
structural relationships over observed variable. To achieve such decomposition, however, certain
assumptions are imposed on the structure [Chandrasekaran et al., 2011, 2012]. A related work
[Anandkumar et al., 2013] decomposed the covariance matrix into a low-rank matrix and a diagonal
matrix, which requires three times more measured variables than latent variables. [Anandkumar
et al., 2013] can also handle multi-level DAGs that some latent variables do not have measured
variables as children, but it requires that the underlying graph can be partitioned into multiple
levels such that all the edges are between nodes in adjacent layers; the graphs in Figure 1(b) in the
main text, and Figures 5-6 and Figures 7(a, b, d) in Appendix are not satisfied.
• Over-complete independent component analysis (ICA)-based methods. Several methods [Shimizu

et al., 2009] make use of over-complete ICA to learn the causal structure with latent variables, since
it allows more source signals than observed variables. These methods do not consider the causal
structure among latent variables and the size of the equivalence class of the identified structure
could be large. In addition, in practice, the estimation of over-complete ICA models is easy to
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Figure 7: Example IL2H graphs.

get stuck in local optima, unless the underlying sources are very sparse [Entner and Hoyer, 2010,
Tashiro et al., 2014].
• Generalized independent noise (GIN) condition. The GIN condition is an extension of the inde-

pendent noise condition in the existence of latent confounders. It assumes the noise terms are
non-Gaussian and leverages higher-order statistics to identify latent structures. In particular, Xie
et al. [2020] proposes a GIN-based approach that allows multiple latent parents behind every pair
of observed variables and can identify causal directions among latent variables, but it still requires
that each latent variable set should have at least twice more measured variables as children.
• Moreover, Huang* et al. [2020] considered a special type of confounders in heterogeneous data,

where the confounder can be represented as a function of domain index or a smooth function of
time, so one may use the known domain index or time index as a surrogate variable to remove the
influence from those confounders and thus identify causal structure over observed variables.
• Mixture oracles-based method. Recently, Kivva et al. [2021] proposed a mixture oracles-based

method to identify the latent variable graph that allows nonlinear causal relationships. It is based
on assumptions that the latent variables are discrete and each latent variable has measured variables
as children. Thanks to the discreteness assumption, it can handle more general DAGs over latent
variables.
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D Proofs

D.1 Proof of Theorem 1

Theorem 1 (Graphical Implication of Rank Constraints in IL2H Graphs). SupposeG satisfies an IL2H
graph. Under the rank faithfulness assumption, the cross-covariance matrix ⌃XA,XB over measured
variables XA and XB in G (with |XA|, |XB| > r) has rank r, if and only if there exists a subset of latent
variables L with |L| = r such that L d-separates XA from XB, and there is no L0 with |L0| < |L| that
d-separates XA from XB. That is,

rank(⌃XA,XB ) = min{|L| : L d-separates XA from XB}.

Proof. Theorem 1 is a special case of Theorem 2.8 in Sullivant et al. [2010] when applied to IL2H
graphs. Di↵erent from the setting in Sullivant et al. [2010] which access to the full covariance matrix
⌃VG,VG is assumed, we only have access to the covariance matrix ⌃XG,XG over the measured variables
XG.

It is enough to show that for IL2H graphs, (CA,CB) t-separating XA from XB is equivalent to L
d-separating XA from XB, where CA,CB ⇢ LG.

Since L d-separates XA from XB and since any X 2 XG cannot be the choke point, we can choose
CA = L and CB = ;, so that (CA,CB) t-separates XA from XB in IL2H graphs.

Therefore, combining Theorem 2.8 in Sullivant et al. [2010] and the above equivalence, the theorem
is proved. ⇤

D.2 Proof of Theorem 2

Theorem 2 (Measurement as a surrogate). Suppose G is an IL2H graph. Denote by A,B ✓ VG two
subsets of variables in G, with A \ B = ;. Furthermore, denote by XA the set of measured variables
that are d-separated by A from all other measures, and by XB the set of measured variables that are
d-separated by B from all other measures. Then rank(⌃A,B) = rank(⌃XA,XB ).

Proof. According to Theorem 1, the rank of ⌃XA,XB is the minimal number of latent variables L that
d-separate XA and XB; that is, L block all paths between XA and XB with the smallest cardinality.
Furthermore, since A d-separates XA from all other measures, XA are the measured pure descendants
of A. Similarly, XB are the measured pure descendants of B. Moreover, given the structure of IL2H
graphs, L also block all paths between A and B with the smallest cardinality. Therefore, the rank of
⌃A,B is also |L|, equivalent to that of ⌃XA,XB . ⇤

D.3 Proof of Theorem 3

Theorem 3 (Correct Cluster Condition). Suppose G is an IL2H graph with measured variables XG.
Consider the output G0 from applying findCausalClusters over XG. If none of the clusters in G0 is the
bond set in G, then all latent atomic covers have been correctly identified.

Before the proof of Theorem 3, we first give the following lemma which shows that if X ✓ XG is not
a correct cluster in the true graph G, then X forms a bond set. In other words, If a set of measured
variables does not form a bond set of G, then it must form a correct cluster.
Lemma 1 (Fake-Cluster) Bond Set). A set of measured variables X ✓ XG that is mistakely tested
as a rank-deficient set by findCausalClusters but does not form a cluster in the true graph G (that is,
a fake cluster), only if X forms a bond set of G.

Below, we first give the proof of Lemma 1.

Proof. Suppose we found a rank deficient set of variables X = {X1, X2, · · · } which is not a cluster in
G. This implies that (i) there exists at least two disjoint latent atomic covers, L1,L2, which d-separate
variables in X from all other measures, and (ii) X does not contain all the pure children of either
L1 nor L2, because otherwise, due to the IL2H requirement that each Li has > |Li| pure children,
we would have discovered that a subset of X was rank deficient and clustered together earlier by
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findCausalClusters. This implies that L1,L2 will d-separate the remaining pure child of L1 from that
of L2, implying that X is a bond set. ⇤

Now we are ready to prove Theorem 3.

Proof. We will prove that all latent atomic covers can be correctly identified from bottom to top, if
there is no bond set.

First, from Lemma 1 we know that if a set of measured variables is not a bond set, then they form a
correct causal cluster, and thus the corresponding identified latent cover is correct. Denote the latent
atomic covers identified at this step by L01, and denote by G01 the currently estimated graph.

After identifying the latent atomic covers at the downmost level, we next continue to form causal
clusters from root variables in G01, including L01 and the remaining measured variables that did not
form clusters in the previous step. If any of the latent covers in L01 have latent children Li in the
true graph G that have not been identified in the current step, then reverse these edges such that the
children become parents. Such an operation will not a↵ect the discovery of latent covers, and Li
will be found in later steps. So by further leveraging Lemma 1 and by treating L01 and the remaining
measured variables that did not form clusters in the previous step as “measured variables", this step
results in correctly identified latent covers L02 and estimated graph G02.

We can now iteratively repeat the previous step to discover new latent atomic covers from the
root variables in the estimated graph in the previous step, until no more rank deficient sets can be
found. ⇤

D.4 Proof of Theorem 4

Theorem 4 (Correcting Clusters). Denote by G0 the output from findCausalClusters and by G the
true graph. For a latent atomic cover L0 in G0, if the measured pure descendants of L0 is a bond set
in the true graph G, then there exist a set of siblings S of L0 in G0, a set of children C of L0, and a set
of grandparents P of L0, such thatMG0 (S [ C [ P) forms a cluster that is not a bond set in G.

Proof. Suppose the measured pure descendants of L0, X BMG0 (L0), is a bond set in the true graph
G. Denote by LS ✓ LG the minimal set of latent variables in G that d-separates X from all other
measures X0 B XG\X, and since X is a bond set, LS also d-separates some disjoint partition of
measures Xi ⇢ X0 from X j ⇢ X0, and accordingly, denote by Gi the subgraph that contains measures
Xi and by G j the subgraph that contains measures X j. Moreover, denote by Li ⇢ LS the set of latent
variables that d-separates Xi from other measures. The proof contains three steps.

In step 1, we show that for each L0’s sibling, its measured pure descendants are the same set of
measured variables as that in the subgraph Gi for some i. To this end, we first show that variables
in each subgraph Gi only formed clusters with variables in the same Gi. Without loss of generality,
suppose there are only two subgraphs. Suppose for contradiction that we discovered a cluster of
variables V such thatMG0 (V) comprises measures from G1,G2. Then V can be separated into variable
sets V1,V2 belonging to G1, G2 respectively. However, the minimal d-separating set for V1,V2 must
not overlap, since they are in di↵erent subgraphs. This implies that either V1,V2 forms a rank
deficient set by itself, which should have been discovered earlier. Hence, we reach a contradiction.

We next show that for each L0’s sibling, its measured pure descendants are not a proper subset of
the measured variables as that in Gi. If it was the case, the variables in Gi would continue to form
variables with one another until Li is in the minimal d-separating set, whereMG0(A0) = Xi, hence
showing the claim.

In step 2, we show that the cardinality of each sibling of L0 is equal to |Li| for some i. We first show
that for a variable set Vi such thatM(Vi) ✓M(Gi), it is not possible that |Vi| < |Li|. This is because
if this was the case, it implies that there exists a latent set of smaller cardinality that separates the
measured variables in Gi from the rest of the graph, which contradicts the fact that Li is minimal. So
it is always the case that |Vi| � |Li|.

Next, we show that as long as any such variable set |Vi| > |Li|, it will be able to form a cover
with cardinality < |Vi|. This is because if no rank deficient sets exist for cardinality k < |Li|,
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{Vi : the measured variables in Vi = the measured variables in Gi} will form a cluster of cardinality
|Li|, since |L| > |Li| < |Vi|.

Thus, by combining step 1 and step 2, we have shown that each sibling of L0 corresponding to Li for
some i.

Finally, in step 3, we show that, for L0, there exist a set of siblings S, a set of children C, and a set
of grandparent P, so that their union S [ C [ P will not form a bond cover. Note that the measured
pure descendants of siblings or grandparents are Xi, which is the reason why we need to consider the
siblings and grandparents. Moreover, note that the reason L0 is formed as bond cover is that when it
is formed, its slibings have not been found yet. Intuitively, now its siblings have been found, so we
can find the correct clusters.

Suppose for contradiction that refining clusters will discover a new bond cover Lbond, and without
loss of generality, suppose the minimal d-separating set involves some distinct covers LA,LB. Each of
LA,LB must respectively d-separate some partition of variables VA,VB ⇢ V from all other variables
remaining in V. We also know that in order to find rank deficiency, ||LA|| + ||LB|| < ||VA|| + ||VB||,
implying that ||LA|| < ||VA|| or ||LB|| < ||VB||. However, since LA,LB d-separates VA,VB from all
other variables respectively, testing either VA,VB must have been rank deficient. Since either of
them are over a smaller latent cardinality (||LA||, ||LB|| < ||LA|| + ||LB||), one of them must have been
discovered as a cluster earlier. Hence, we reach a contradiction. ⇤

D.5 Proof of Lemma 5

Lemma 5 (Rank Invariance). Denote by G0 the output from findCausalClusters and by L a latent
atomic cover in G0. Then the rank constraints over XG prescribed by G0 before and after the operation
makeRoot(L) are identical.

Proof. For an IL2H graph G0 and a latent atomic cover L in G0, after applying the makeRoot operator
to L, which results in G00, G0 and G00 are in the same Markov equivalence class. Therefore, G0 and
G
00 have the same rank constraints. ⇤

D.6 Proof of Lemma 6

Lemma 6 (Cross-Cover Test). Given a set of variables S, consider two latent atomic covers LA,LB 2
S, and a potential separating set C = {LCi } ✓ S\{LA,LB}. For each LCi , consider CA

i ,CB
i ✓

PCh(LCi ) with CA
i ,CB

i , ; and CA
i \ CB

i = ;, and denote the cardinality kA
i B min(|LCi |, |CA

i |),
kB

i B min(|LCi |, |CB
i |), respectively. Then there is no edge between LA and LB if and only if there exists

a separating set C such that rank(⌃A,B) < min(|LA|+
P

i kA
i , |LB|+

P
i kB

i ), whereA = {LA,CA
1 ,C

A
2 , ...}

and B = {LB,CB
1 ,C

B
2 , ...}. In this case, we say that C satisfies the cross-cover test of LA against LB.

Proof. We first show that if there is no edge between LA and LB, then rank(⌃A,B) < min(|LA| +P
i kA

i , |LB| +
P

i kB
i ).

Since there is no edge between LA and LB, there exists a set C = {LCi }, so that given C, LA and LB
are d-separated. Since CA

i and CB
i are the children of LCi , C d-separates A from B as well. Then

according to Theorem 7.1, rank(⌃A,B) = |C|. Moreover, since |C| < min(|LA| +
P

i kA
i , |LB| +

P
i kB

i ),
we have rank(⌃A,B) < min(|LA| +

P
i kA

i , |LB| +
P

i kB
i ).

Next we show that rank(⌃A,B) < min(|LA| +
P

i kA
i , |LB| +

P
i kB

i ), then there is no edge between LA
and LB.

Now suppose that there are edges between LA and LB. Then ⌃A,B is not rank deficient; that is
rank(⌃A,B) = min(|LA| +

P
i kA

i , |LB| +
P

i kB
i ). Therefore, if rank(⌃A,B) < min(|LA| +

P
i kA

i , |LB| +P
i kB

i ), then there is no edge between LA and LB. ⇤

D.7 Proof of Lemma 7

Lemma 7 (V-Structure Test). For any unshielded triangle LA � LC � LB, let A,B be the set of
variables in Lemma 6 such that ⌃A,B was rank deficient. Let k = rank(⌃A,B), k1 = rank(⌃A[LC ,B),
and k2 = rank(⌃A,B[LC ). Then, LA ! LB  LC if and only if k < min(k1, k2).
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Proof. We first show that if LA ! LC  LB, then k < min(k1, k2).

Since LA ! LC  LB, LC cannot be in the separation set of LA and LB; that is, given LC , LA and
LB are d-connected. Hence, k < k1 and k < k2, and thus k < min(k1, k2).

Next we show that if k < min(k1, k2), then LA ! LC  LB.

Suppose LA,LC ,LB do not form a v-structure; that is LA ! LC ! LB or LA  LC  LB. Then
k = min(k1, k2), since LC has been considered before in order to achieve rank deficiency of ⌃A,B.
Therefore, if k < min(k1, k2), then LA ! LC  LB. ⇤

D.8 Proof of Lemma 8

Lemma 8. Suppose G is an IL2H graph. The rank constraints are invariant with the minimal-graph
operator and the skeleton operator; that is, G and Oskeleton(Omin(G)) are rank equivalent.

Proof. We first show that the minimal-graph operator will not change rank deficiency constraints.
Denote by G1 and G2 the graph before and after applying the minimal-graph operator, respectively.
For every latent atomic cover L in G1, since those three conditions hold, for any C ✓ PChG0 (L0) and
for any S ✓ S ibG0(L0) with C,S , ;, rank(⌃A,B) = |P|, where A = C [ S and B = XG0\MG0(A).
So, after merging L to its parents P, the cardinality of the d-separation set between any two sets of
variables does not change. Thus, according to Theorem 1, the rank constraints will not change after
merging L to its parents P.

Moreover, it is trivial to show that the skeleton operator will not change rank deficiency constraints,
because the d-separation set between any two sets of variables will not change. ⇤

D.9 Proof of Theorem 9

Theorem 9. Suppose G is an IL2H graph with measured variables XG. Phases I-II in Algorithm 1
over XG can asymptotically identify the latent atomic covers of Omin(G), with the first two conditions
in Condition 1.

Proof. Theorem 3 has shown that findCausalClusters gives correct latent covers when there is no
bond set. Furthermore, Theorem 4 shows that even in the presence of bond sets, refining the set over
Ch(L0) [ S ib(L0) [Gp(L0), whereMG0 (L0) forms a bond set, can correct the clusters.

Phase II refineClusters refines clusters over Ch(L0) [ S ib(L0) [Gp(L0) in a breadth-first search from
the root variable, and it ends after refining every latent cover in G0. Therefore, with this refining
procedure, we will derive correct latent covers. ⇤

D.10 Proof of Theorem 10

Theorem 10. Suppose G is an IL2H graph with measured variables XG. Algorithm 1, including
Phases I-III, over XG can asymptotically identify the Markov equivalence class of Omin(Os(G)).

Proof. Theorem 5 has shown that Phases I-II can find the correct clusters and latent atomic covers of
Omin(G). Moreover, Lemma 2 and Lemma 3 have shown that by performing Cross-Cover Test and
V-Structure Test, the skeleton and v structure among every triple of latent variables can be correctly
identified.

Phase III refineEdges refines the edges over L0 [ PCh(L0) [ PCh
�
PCh(L0)

�
by performing Cross-

Cover Test and V-Structure Test in a depth-first search from the root variable, and it ends until L0
does not have latent children. Therefore, with this refining procedure, we will derive correct skeletons
and v structures. ⇤

10



E More Explanations on Identifiability Conditions, Algorithms, and
Theorems

E.1 More Explanations on Definition 3 (E↵ective Cardinality)

The e↵ective cardinality, defined in Definition 3, can be estimated with the following procedure.
j 1;
C PChG(L);
while j < |L| do

Find the largest subset of variables C0 ✓ C such that |C0| > |PaG(C0)| = j;
Introduce a set of latents L0 with |L0| = |PaG(C0)|;
add L0 as new children of PaG(C0);
C C\C0

S
L0;

j += 1;
end while
return |C|

For example, for Figure 1(a), the e↵ective cardinality of the pure children of {L7, L8} is 3, because
|{X4, X5}| > |{L7}| and we replace {X4, X5} with a single latent variable L0, so the cardinality of the
resulting children set is |{X6, X7, L0}| = 3.

E.2 More Explanations on Definition 4 (Latent Atomic Cover)

The first two conditions in Definition 4 ensure that there are enough variables in the current active
variable set to find the rank deficiency, so that we can determine the latent atomic cover with size k.
However, note that they may not be the necessary conditions. For example, for the graphs in Figure 8,
some of the latent atomic covers only have k neighbors (except for the k + 1 pure children), but they
are still identifiable.

The first half of the third condition, “there does not exist a partition of L = L1 [ L2, so that both
L1,L2 satisfy conditions 1 and 2", ensure that the latent atomic cover L is atomic.

The second half of the third condition, “there does not exist a partition of L = L1 [ L2, so that
{PChG(L1) [ PChG(L2)}\L = PChG(L)", is needed in the overlapping case. Consider the following
graph: L1 ! {X1, X2, X3}, L2 ! {X3, X4, X5}. Here, L1 = {L1}, L2 = {L2}, and L = {L1, L2} are
latent atomic covers; however, {PChG(L1) = {X1, X2}, {PChG(L2) = {X4, X5}, and {PChG(L) =
{X1, X2, X3, X4, X5}, so {PChG(L1) [ PChG(L2)}\L , PChG(L). Therefore, although both L1 and L2
satisfy the first two conditions, L satisfies Definition 4.

E.3 More Explanations on Condition 1 (IL
2
H graph)

The first two conditions in Condition 1 guarantee to identify the latent atomic covers, while the last
one is used to identify the edges among latent atomic covers when performing Cross-Cover Test and
V-Structure Test.

Specifically, the second condition says that two latent atomic covers that are partly overlapped is
not allowed, except for the case that one latent atomic cover is contained in another one; otherwise,
the cover creation rule can be non-trivial. For example, for the graph in Figure 9(a), although
PDeG({L3, L4})

T
PDeG({L4}) = {X3, X4}, it satisfies the second condition in Condition 1 because

{L3} ⇢ {L2, L3}. In contrast, for the graph in Figure 9(b), PDeG({L3, L4})
T

PDeG({L4, L5}) = {X3},
but {L3, L4}, {L4, L5} are not subsets or descendants of one another. Hence, it does not satisfy the
second condition of an IL2H graph.

E.4 More Explanations on Algorithm 2 (findCausalClusters)

The search procedure in Algorithm 2 (findCausalClusters) contains the following two key updates.
• Latent-atomic-cover size update. We start to identify latent atomic covers with size k = 1. If a

rank-deficiency set is not found, then increment k = k + 1; otherwise, reset k = 1.
• Active variable set update. The set of active variables S is set to XG initially. We consider any

subset of the latent atomic covers in S and replace them with their pure children, resulting in S̃. At

11



L1

L2 L3 L4 L5

L6 L7 L8 L9 L10 X9 X10 X11 X12

X1 X2 X3 X4 X5 X6 X7 X8

(a)

X6

X7

X8

L4

L5

L2

L1

L3

X4

X5

L6

X0
X1

L7

X9

X10

X11

X3

X2

(b)

L1 L2L3
L4

L5

L6

L7

X1

X2

X3

X4

X5

X6

X7

X8

X9X10X11

(c)

L1

L2 L3 L4 L5

L6 L7 L8 L9 L10 L11 L12 L13 L14 L15

X1 X2 X3 X4 X5 X6 X7 X8X9 X10 X11 X12 X13 X14 X15 X16 X17 X18

(d)

L1 L2

L3 L4 L5

L6 L7 L8

X1 X2 X3 X4 X5 X6

X7 X8

X9 X10 X11 X12 X13

(e)

Figure 8: Latent hierarchical graphs where some latent atomic covers only have k neighbors, except
for the k + 1 pure children, but the graph structure is still identifiable. Note that in many cases,
k-neighbor is enough; the condition “k + 1 neighbors" is su�cient, but not necessary.

L1 L2

L3 L4 L5 L6

X1 X2 X3 X4 X5 X6 X7 X8

(a) An IL2H graph.

L1 L2

L3 L4 L5 L6 L7

X1 X2 X3 X4 X5 X6 X7 X8 X9

(b) A latent hierarchical graph
that is not an IL2H graph.

Figure 9: Examples and counter-examples of IL2H graphs.
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the same time, we search for the rank-deficiency set A with rank k in S̃; if it is found, then assign a
latent atomic cover L of size k as the parent A, and accordingly, the active variable set is updated
as (S\A) [ L.

Note that in Algorithm 2 findCausalClusters, we search over S̃, instead of S, to avoid adding a
certain type of redundant latent variables when some latent atomic covers have overlapping variables,
including the v structure; see Figure 10 for an illustration.

X6 X7 X8 X9 X2 X3 X12 X10 X11

L04 L05 L07 L06

L03 L02
X5 X4

L01

X0 X1

(a)

X6 X7 X8 X9 X2 X3 X10 X11 X0 X1

L04 L05 L07 L06 L01X4 X5 X12

L08 L09

(b)

Figure 10: (a) Output from Phase I findCausalClusters with ground truth graph in Figure 7(b), where
we consider the children of the active variable set S (i.e., S̃) to search for the rank deficiency set.
(b) The output graph if directly searching over S in Phase I; that is, without considering line 4 in
Algorithm 2. The output graph without considering S̃ is not correct; for instance, X12 will not be
considered as the children of {L6, L7}.

Moreover, in Algorithm 2 findCausalClusters, if there are conflicts when the search goes on, then we
just ignore it, and such conflicts will be handled in Algorithm 3 refineClusters. Also, note that except
for the v structure where the measured variable is a collider, other “v structures" in the intermediate
output in Algorithms 2 and 3 are not true v structures.

For the illustration of Algorithm 2 given in Figure 2, here we give more detailed explanations.
Specifically, we first set k = 1 and the active set is S =

�
X1, · · · , X16

 
and S̃ = S, and we can

find the clusters in (a), and no further cluster can be found with k = 1. Then we increase k to 2
with the active set S = {

�
L6}, {L7}, X6, · · · , X16

 
and S̃ = S, and then we can find the clusters in

(b). Then, the active set is S =
�
{L4, L5}, {L6}, {L7, L8}, {L9, L10}

 
and we set back k = 1, and when

S̃ = {{L4, L5}, X1, · · · , X11} we find the cluster in (c). Note that when testing the rank over {L4, L5}
against other variables, we use their measured pure descendants in the currently estimated graph
instead. The above procedure is repeated to further find the cluster in (d). Finally, when there are no
enough variables for testing, we connect the elements in the active variable set: connecting {L2, L3}
to {L7, L8} in (e).

E.5 Explanation of Minimal-Graph Operator and Skeleton Operator

The minimal-graph operator and the skeleton operator will not change the rank constraints, or in other
words, graphs before and after applying the operators are indistinguishable with rank constraints.

Give an IL2H graph in Figure 11(a), after applying the minimal-graph operator, the latent atomic
cover L4 will be merged to its parent L5, resulting in the graph in Figure 11(b), while the rank
constraints will not change. Furthermore, after applying the skeleton operator to the graph in Figure
11(b), L1 has an edge to X7 and L3 has an edge to X1, resulting in the graph in Figure 11(c), which
also does not change the rank constaints.

E.6 Complexity of Algorithm 1

The time complexity of the algorithm is upper bounded by O(r
Pl+1

k=2

⇣
m
k

⌘
), and this bound is further

upper bounded by O(r(1 + m)l+1), where m is the number of measured variables, l is the cardinality
of the largest latent cover of the estimated graph, with l ⌧ m, and r is the number of levels of the
estimated hierarchical graph, with r ⌧ m.
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L5

L4 X8 X9 X10

L1 L2 L3

X1 X2 X3 X4 X5 X6 X7

(a) An IL2H graph.

L5

X8 X9 X10L1 L2 L3

X1 X2 X3 X4 X5 X6 X7

(b) After applying the minimal-
graph operator to the graph in
(a), L4 is merged to its parent L5,
and the rank constraints do not
change.

L5

X8 X9 X10L1 L2 L3

X1 X2 X3 X4 X5 X6 X7

(c) After applying the skeleton
operator to the graph in (b), L1
has an edge to X7 and L3 has
an edge to X1, and the rank con-
straints do not change.

Figure 11: Examples of applying the minimal-graph operator and the skeleton operator to an IL2H
graph.

E.7 Illustrative Examples of the Entire Algorithm

Figure 12 and Figure 13 give two illustrative examples of the entire algorithm, showing how each
step proceeds.

L06 L07

X12 X13 X14 X15 X16

X1X2X3 X4 X5 X6 X7 X8 X9 X10X11

(a) k = 1 and find latent atomic covers {L06} and
{L07}.

L04 L05

L06 L07 L08 L09 L010

X12 X13 X14 X15 X16

X1X2X3 X4 X5 X6 X7 X8 X9 X10X11

(b) k = 2 and find latent atomic covers
{L07, L

0

8}, {L
0

9, L
0

10}, {L
0

4, L
0

5}.

L01

L04 L05

L06 L07 L08 L09 L010

X12 X13 X14 X15 X16

X1X2X3 X4 X5 X6 X7 X8 X9 X10X11

(c) k = 1 and find latent atomic cover {L01}.

L01

L02 L03

L04 L05

L06 L07 L08 L09 L010

X12 X13 X14 X15 X16

X1X2X3 X4 X5 X6 X7 X8 X9 X10X11

(d) k = 2 and find latent atomic cover {L02, L
0

3}.

L01

L02 L03

L04 L05

L06 L07 L08 L09 L010

X12 X13 X14 X15 X16

X1X2X3 X4 X5 X6 X7 X8 X9 X10X11

(e) Connect {L02, L
0

3} to {L07, L
0

8} and findCausal-
Clusters ends.

L01

L02 L03

L04 L05

L06 L07 L08 L09 L010

X12 X13 X14 X15 X16

X1X2X3 X4 X5 X6 X7 X8 X9 X10X11

(f) There is no change after refineClusters, and
then refineEdges refines the edges and outputs the
Markov equivalence class.

Figure 12: An illustrative example by applying Algorithm 1 to the measured variables in Figure 7(a).
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L04

L05

L06

L07

X1

X2

X3

X4

X5

X6

X7

X8

X9X10X11

(a) k = 2 and find latent atomic covers {L06, L
0

7},
{L04, L

0

5}, and {L08, L
0

9}.

L08 L09

L02
L04

L05

L06

L07

X1

X2

X3

X4

X5

X6

X7

X8

X9X10X11

(b) k = 1 and find a latent atomic cover {L02}.

L08 L09

L02L03
L04

L05

L06

L07

X1

X2

X3

X4

X5

X6

X7

X8

X9X10X11

(c) k = 1 and find a latent atomic cover {L03}.
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L02L03
L04

L05
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L07

X1

X2

X3

X4

X5

X6

X7

X8

X9X10X11

(d) Connect {L08, L
0

9} to {L02} and to {L03}, and find-
CausalClusters ends.
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L03
L04

L05

L06

L07

X1

X2

X3

X4

X5

X6

X7

X8

X9X10X11

(e) Refine {L02} by first removing {L02} and its par-
ents {L08, L

0

9} and performing findCausalClusters
over {L03, L

0

4, L
0

5, X9, X10, X11}, and then we can
find a latent cover {L010}.

L011

L010L010
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L04

L05

L06
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X2

X3

X4

X5

X6

X7

X8

X9X10X11

(f) Next perform findCausalClusters over
{L010, L

0

4, L
0

5, X9, X10} we can find a latent cover
{L011}.

L012

L011

L010

L03
L04

L05

L06

L07

X1

X2

X3

X4

X5

X6

X7

X8

X9X10X11

(g) Next perform findCausalClusters over
{L011, L

0

4, L
0

5, X9} we can find a latent cover L012.

L012

L011

L010

L03
L04

L05

L06

L07

X1

X2

X3

X4

X5

X6

X7

X8

X9X10X11

(h) Connect {L012} to {L04, L
0

5}.

L013

L012

L011

L04

L05

L06

L07

X1

X2

X3

X4

X5

X6

X7

X8

X9X10X11

(i) Refine {L03} by first removing {L03} and its par-
ents {L010} and performing findCausalClusters
over {L06, L

0

7, L
0

11, X11}, and then we can find a
latent cover {L013}.

L013

L012

L011

L04

L05

L06

L07

X1

X2

X3

X4

X5

X6

X7

X8

X9X10X11

(j) Connect {L013} to {L06, L
0

7}.

L011 L012L013
L04

L05

L06

L07

X1

X2

X3

X4

X5

X6

X7

X8

X9X10X11

(k) Perform refineEdges to refine the edges and
output the Markov equivalence class.

Figure 13: An illustrative example by applying Algorithm 1 to the measured variables in Figure 8(c).
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