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Abstract

Training deep neural network classifiers that are certifiably robust against adver-
sarial attacks is critical to ensuring the security and reliability of AI-controlled
systems. Although numerous state-of-the-art certified training methods have been
developed, they are computationally expensive and scale poorly with respect to
both dataset and network complexity. Widespread usage of certified training is fur-
ther hindered by the fact that periodic retraining is necessary to incorporate new
data and network improvements. In this paper, we propose Certified Robustness
Transfer (CRT), a general-purpose framework for reducing the computational over-
head of any certifiably robust training method through knowledge transfer. Given a
robust teacher, our framework uses a novel training loss to transfer the teacher’s
robustness to the student. We provide theoretical and empirical validation of CRT.
Our experiments on CIFAR-10 show that CRT speeds up certified robustness train-
ing by 8× on average across three different architecture generations while achiev-
ing comparable robustness to state-of-the-art methods. We also show that CRT can
scale to large-scale datasets like ImageNet.

1 Introduction
Deep Neural Networks (DNNs) are susceptible to adversarial evasion attacks [31, 9], that add a small
amount of carefully crafted imperceptible noise to an input to reliably trigger misclassification. As a
defense, numerous training methods have been proposed [25, 40, 35] to grant empirical robustness
to a DNN. But in the absence of any provable guarantees for this robustness, these defenses were
frequently broken [1, 32]. These failures have motivated the development of training methods
that grant certifiable/provable robustness to a classifier, hence safeguarding it against all attacks
(known or unknown) within a pre-determined threat model. Such methods are broadly categorized
as either deterministic or probabilistic [23]. Deterministic robustness training methods [12, 26, 33,
34, 28, 10, 41, 30] rely on computing provable bounds on the output neurons of a classifier for
a given perturbation budget in the input space. However, the deterministic robustness guarantees
provided by these methods come at a high computational cost. Probabilistic robustness training
methods address this limitation by providing highly probable (e.g., with 0.99 probability) robustness
guarantees at a greatly reduced computational cost. Within this category, randomized smoothing-
based methods [19, 3, 29, 22, 20, 7, 37, 39, 16, 15] are considered the state-of-the-art for certifiable
robustness in the ℓ2-space. Even so, these training methods remain an order of magnitude slower than
standard training. In commercial applications where constant model re-deployment occurs to provide
improvements (see Figure 1), re-training using computationally expensive methods is burdensome.
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Figure 1: Evolution of DNN architectures on the ImageNet dataset. We plot the performance (top-1
accuracy) and the number of parameters of a few popular architectures (year of release is noted in
brackets). Newer generations attempt to improve performance and/or reduce network parameters.

In this work, we reduce the training overhead of randomized smoothing-based robustness training
methods with minimal impact on the robustness achieved. We propose Certified Robustness Transfer
(CRT), a knowledge transfer framework that significantly speeds up the process of training ℓ2
certifiably robust image classifiers. Given a pre-trained classifier that is certifiably robust (i.e.,
teacher), CRT trains a new classifier (i.e., student) that has comparable levels of robustness in a
fraction of the time required by state-of-the-art methods. CRT brings down the cost of training
certifiably robust image classifiers to be comparable to standard training while preserving state-
of-the-art robustness. On CIFAR-10, CRT speeds up training by an average of 8× across three
different architecture generations compared to a state-of-the-art robustness training method [15].
Furthermore, we show that state-of-the-art robustness training is only necessary to train the initial
classifier. Afterward, CRT can be continuously reused to transfer robustness in order to expedite
future model re-deployments and greatly reduce costs associated with computational resources. Our
contributions can be summarized as follows:

• We present Certified Robustness Transfer (CRT), the first framework, to our knowledge, that
can transfer the robustness of a certifiably robust teacher classifier to a new student classifier.
CRT greatly reduces the time required to train certifiably robust image classifiers relative to
existing state-of-the-art methods while achieving comparable or better robustness.

• We provide a theoretical understanding of CRT, showing how our approach of matching
outputs enables robustness transfer between the student and teacher irrespective of the
certified robustness training method used to train the teacher.

• On CIFAR-10, we show that CRT trains certifiably robust classifiers on average 8× faster
than a state-of-the-art method while having comparable or better Average Certified Radius
(by 8% in the best case). Furthermore, CRT reduces the cumulative computational cost of
training three classifiers by 87.84%.

• We also show that CRT can be reused in a recursive manner, thus supporting a continuous re-
deployment scenario (e.g., in commercial applications). Finally, we show that CRT remains
effective on a large-scale dataset, ImageNet.

2 Background
In this section, we briefly introduce certified robustness and discuss notable existing methods for
training certifiably robust image classifiers using randomized smoothing.

2.1 Preliminaries
Problem Setup. Consider a neural network classifier f parameterized by θ (denoted fθ) trained
to map a given input x ∈ Rd to a set of discrete labels Y using a set of i.i.d. samples
S = {(x1, y1), (x1, y1), · · · , (xn, yn)} drawn from a data distribution D. The output of the classifier
can be written as fθ(x) = argmaxc∈Y zcθ(x). Here zθ(x) is the softmax output of the classifier and
zcθ(x) denotes the probability that image x belongs to class c.
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Certified Robustness via Randomized Smoothing. The robustness of the classifier fθ for a given
input pair (x, y) is defined using the radius of the largest ℓ2 ball centered at x within which fθ has a
constant output y. This radius is referred to as robust radius and it can mathematically be expressed as:

R(fθ;x, y) =

{
inf

fθ(x′ )̸=fθ(x)
∥x′ − x∥2 , when fθ(x) = y

0 , when fθ(x) ̸= y
(1)

Within this ℓ2-neighborhood of x, fθ is considered to be certifiably robust. Therefore, to improve
the robustness of a classifier, one needs to maximize this robust radius corresponding to any point
sampled from the given data distribution. Directly maximizing the robust radius of a DNN classifier
is an NP-hard problem [17]. Therefore, several prior works attempt to derive a lower bound for
the robust radius [21, 19, 3]. This lower bound, often termed as the certified radius, satisfies the
following condition: 0 ≤ CR(fθ;x, y) ≤ R(fθ;x, y), for any fθ, (x, y). In this paper, we utilize the
certified robustness framework derived by Cohen et al. [3] using randomized smoothing. Given a
classifier fθ, they first define the smooth classifier gθ as:
Definition 2.1. For a given (base) classifier fθ and σ > 0, the smooth classifier gθ corresponding to
fθ is defined as follows:

gθ(x) = argmax
c∈Y

Pη∼N (0,σ2I)(fθ(x+ η) = c) (2)

Simply put, gθ returns the class c, which has the highest probability mass under the Gaussian
distribution N (x, σ2I). Using Theorem 2.2, they proved that if the smooth classifier correctly
classifies a given input x, it is certifiably robust at x. They also provided an analytical form of the ℓ2
certified radius at x.
Theorem 2.2. Let fθ : Rd 7→ Y be a classifier and gθ be its smoothed version (as defined in
Definition 2.1). For a given input x ∈ Rd and corresponding ground truth y ∈ Y , if gθ correctly
classifies x as y, i.e.,

Pη(fθ(x+ η) = y) ≥ max
y′ ̸=y

Pη(fθ(x+ η) = y′) (3)

then gθ is provably robust at x within the certified radius R given by:

CR(gθ;x, y) =
σ

2
[Φ−1(Pη(fθ(x+ η) = y))− Φ−1(max

y′ ̸=y
Pη(fθ(x+ η) = y′))] (4)

where Φ is the c.d.f. of the standard Gaussian distribution.

This certified radius is a tight lower bound of the robust radius defined in Equation 1, i.e., it is
impossible to certify gθ at x for a radius larger than CR.

2.2 Training Methods for Maximizing Certified Radius

In addition to the theoretical framework discussed above, Cohen et al. [3] also propose a simple
yet effective method for training the base classifier in a way that maximizes the ℓ2 certified radius
of the smooth classifier, as expressed in Equation 4. We include an evaluation of their method in
Appendix ??. Following their work, several other works build upon the randomized smoothing frame-
work and propose training methods that better maximize the ℓ2 certified radius of the smooth classi-
fier. Salman et al. [29] proposed combining adversarial training [25] with randomized smoothing
(called SmoothAdv). They adapted the vanilla PGD attack to target the smooth classifier gθ instead of
the base classifier fθ. Zhai et al. [39] proposed a new robustness loss, a hinge loss that enforces maxi-
mization of the soft approximation of the certified radius. Their method (called MACER) is faster
than SmoothAdv as it does not use adversarial training. More recently, Jeong et al. [15] proposed
training with a convex combination of samples along the direction of adversarial perturbation for
each input to regularize over-confident predictions. Their method (called SmoothMix) is the current
state-of-the-art in the domain of ℓ2 certified robust image classifiers. Finally, we note the Consistency
regularization method proposed by Jeong et al. [16], which adds a regularization loss to existing
methods that helps better maximize the certified radius.
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Table 1: Training on CIFAR-10 using a ResNet110 classifier on a single Nvidia V100 GPU. State-of-
the-art robustness training methods significantly slow down training compared to standard training.

METHOD TRAINING SLOWDOWN FACTOR

SMOOTHADV 46.20×
MACER 20.86×
SMOOTHMIX 4.97×

3 Maximizing Certified Radius via Knowledge Transfer
Although prior works have proposed methods for increasing the certified radius of the smooth
classifier, their training overhead is significant, making them much slower than standard training.
As we show in Table 1, training a certifiably robust ResNet110 classifier to convergence using
SmoothAdv, MACER, and SmoothMix is 46.20×, 20.86×, and 4.97× slower, respectively, compared
to training a non-robust classifier with standard training.

Given constant innovations in architecture design (Figure 1) and the influx of new data, which may
result in various tweaks to deployed networks that elicit retraining, the large overhead of state-of-the-
art robustness training methods makes preserving certified robustness across model re-deployment
difficult. Therefore, we propose Certified Robustness Transfer (CRT), a training method that improves
the usability of certified robustness training methods by dramatically reducing their training overhead
while preserving the certified robustness. Given the base classifier of a pre-trained certifiably robust
smooth classifier, we leverage the knowledge transfer framework to guide the training of a new base
classifier (and its associated robust smooth classifier).1 In this section, we describe our method and
provide theoretical justification for its effectiveness.

3.1 Transferring Certified Robustness

From Equation 4, it follows that training the base classifier to maximize Pη(fθ(x + η) = y) for
any given input x will result in the maximization of the certified radius associated with the smooth
classifier, provided Equation 3 is satisfied. Thus, for the base classifier fθ(x), our goal is to maximize
the following quantity over the training set:

n∑
i=1

Eη1[fθ(xi + η) = yi] ≈
n∑

i=1

Eη[z
yi

θ (xi + η)] (5)

In the above equation, like prior works [3, 29, 39], we leverage the fact that the softmax output of
a classifier can be treated as a continuous and differentiable approximation of its argmax output.
Methods like SmoothAdv [29], MACER [39] and SmoothMix [15] that target ℓ2 certifiable robustness
propose training objectives that maximize this term.

Now, suppose we have a pre-trained base classifier fϕ. It follows that Eη[z
y
ϕ(x+ η)] ≥ 0. Through

straightforward algebraic manipulations (see Appendix ??), we derive the following lower bound:
n∑

i=1

Eη[z
yi

θ (xi + η)] ≥ −
n∑

i=1

Eη[z
yi

ϕ (xi + η)− zyi

θ (xi + η)] (6)

That is to say that, for a given input xi, if we minimize the difference between the softmax outputs
of the teacher and the student (fϕ and fθ) corresponding to the correct label yi, we will maximize
Equation 5 for the student. However, to ensure that the student has a non-trivial certified radius, we
must also ensure that Equation 3 is satisfied. If we assume that Equation 3 holds true for the teacher
(i.e., the base classifier of a certifiably robust smooth classifier), this condition can also be achieved
for the student by matching the overall softmax output of the student to that of the teacher.

3.2 Certified Robustness Transfer (CRT)

Based on the previous discussion, we now describe our method for training a certifiably robust
classifier through knowledge transfer. First, we obtain a pre-trained base classifier fϕ, which has
been trained using a randomized smoothing based robustness training method as this maximizes

1If no pre-trained classifier is available, we first train an architecture of lower complexity (i.e., fast to train)
compared to the target architecture (Section 5.1).
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Algorithm 1 Certified Robustness Transfer (CRT)
1: Input: Training data distribution D, certifiably robust teacher base classifier fϕ, noise level σ,

total training iterations T , learning rate α
2: Output: Certifiably robust student base classifier fθ
3: θ ← random initialization
4: i← 0
5: while i < T do
6: From D, sample a batch of inputs {x1, x2, · · · , xn}.
7: From N (0, σ2I), generate a batch of Gaussian noise samples {η1, η2, · · · , ηn}.
8: li ← 1

n

∑n
j=1 ∥zϕ(xj + ηj)− zθ(xj + ηj)∥2

9: θ ← θ − α · ∇θli
10: i← i+ 1
11: end while

Eη[z
y
ϕ(x+ η)]. Next, we use fϕ as a teacher to train a new student base classifier fθ. The student

is trained to match the output of the teacher. In doing so, we can maximize the certified radius of
the associated smooth classifier gθ (Equation 6), as well as ensure that Equation 3 is satisfied. We
describe our implementation in Algorithm 1. Given a batch of inputs, we first perturb them with
additive Gaussian noise. Next, we compute the ℓ2 distance between the student and the teacher’s
outputs for these Gaussian perturbed inputs. This distance serves as our loss function, and we update
the parameters of the student to minimize this loss. At test time, the classifier fθ is converted to its
smooth version gθ following Definition 2.1.

3.3 Prior Works on Robustness Transfer

Several prior works have examined transferring adversarial robustness between classifiers, but these
works have been limited to transferring empirical rather than certified robustness [2, 8, 14, 42, 43].
Of note is the work by Goldblum et al. [8] in which they combine adversarial training [25] with
knowledge distillation [13]. They show that distilling knowledge from a large network to a small
network improves its empirical robustness as compared to training the small network on its own, but
their method makes no effort to improve the computational cost of adversarial training.

4 Evaluation
Our goal is to improve the usability of randomized smoothing based robustness training methods. In
this section, we demonstrate how CRT enables the reuse of an existing certifiably robust classifier
to train new certifiably robust classifiers at significantly reduced training cost compared to prior
methods. In our first experiment, we train a ResNet110 classifier with a state-of-the-art method, i.e.,
SmoothMix [15]), and use CRT to transfer its robustness to train several newer generation classifiers.
In a second experiment, we recursively use CRT to train a newer generation classifier using the
previous generation classifier that was also trained using CRT. In each experiment, we compare
the certified robustness of classifier trained using CRT against a classifier trained using SmoothMix
(Section 4.1). We find that classifiers trained using CRT are similarly robust as when trained using
SmoothMix but only require a fraction of training time (Section 4.2). Our main results are generated
using the CIFAR-10 dataset [18], but we also demonstrate the effectiveness of CRT on ImageNet [5]
(Section 5.3). Both these datasets are open-source and free for non-commercial use.

Architectures. We use several popular DNN architectures that were proposed to either improve upon
the visual recognition performance of the previous generation architectures or preserve performance
while requiring significantly fewer parameters (or both). For the CIFAR-10 experiments, we use
ResNet110 [11], ResNeXt29-2x64d [36], DLA [38], and RegNetX_200MF [27].2

Training details. All SmoothMix classifiers were trained using the code made available by the
authors3 and the hyperparameters reported by them [15]. All CRT classifiers were trained using
Stochastic Gradient Descent till convergence (200 epochs), with a batch size of 128. Further
hyperparameter details are available in Appendix ??. Unless specified, we report results for noise

2We use the CIFAR-10 version of these architectures, code [MIT License]: https://github.com/
kuangliu/pytorch-cifar.

3SmoothMix code [MIT License]: https://github.com/jh-jeong/smoothmix
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level σ = 0.25 in the main paper. Additional results for higher noise levels σ = 0.5 and 1.0 are
reported in Appendix ??.

Evaluation Metrics. We report our results using two metrics. First, as done in prior work, we measure
the certified robustness of a classifier based on (1) the certified test accuracy at ℓ2 radius r 4, which
is defined as the fraction of test set inputs that the smooth classifier classifies correctly within an ℓ2
ball of radius r centered at each input, and (2) average certified radius (ACR), which is the average
of the certified radius across all inputs in the test set:

ACR(gθ) =
1

ntest

ntest∑
i=1

CR(gθ;xi, yi)

On CIFAR-10, we compute these metrics using the entire test set. Second, we measure training time
of a classifier based on the per-epoch time and total training time. The total training time is computed
once the model’s loss has converged. All classifiers were trained on the same machine with a single
Nvidia Titan V GPU.

4.1 Certified Robustness Comparison

Standard CRT Training. Given a ResNet110 classifier trained using SmoothMix, we transfer its
robustness to several newer generation classifiers. We compare the certified robustness of these
classifiers with their SmoothMix trained versions. The results are summarized in Table 2. We observe
that using CRT does not reduce the certified robustness of the trained classifier compared to training
with SmoothMix. In fact, interestingly, CRT trained classifiers exhibit higher certified robustness
compared to their SmoothMix baseline. Not only do CRT trained classifiers have higher ACR
(improvement of 8.1% in the best case), they also exhibit higher certified accuracy at different ℓ2 radii.
Furthermore, CRT remains effective even as the generation gap between the student and the teacher
increases. This implies that the same teacher can potentially be reused indefinitely, amortizing the
teacher’s training cost to a constant. These results empirically validate our theoretical justification of
CRT. Finally, we note that in Table 2, the accuracy on clean inputs and ACR of CRT trained classifiers
follow the same trend as in Figure 1, thus motivating the need for periodic model re-deployment to
incorporate architectural improvements.

Table 2: The certified robustness of classifiers with different architectures trained on CIFAR-10
using SmoothMix [15] and CRT. We use CRT to transfer the robustness of a ResNet110 trained
using SmoothMix. We report certified test accuracy at different values of ℓ2 radius and the Average
Certified Radius (ACR). The architectures are sorted chronologically based on published date. The
noise level σ is set to 0.25.

ARCHITECTURE 0.00 0.25 0.50 0.75 ACR

SMOOTHMIX [15]

RESNET110 [11] 76.89 68.25 57.42 46.26 0.550

RESNEXT29-2X64D [36] 75.98 65.40 53.78 41.03 0.516
DLA [38] 77.72 68.53 57.69 45.56 0.551
REGNETX_200MF [27] 76.48 66.79 56.36 44.47 0.538

CRT (RESNET110 TEACHER)

RESNEXT29-2X64D [36] 77.57 69.00 58.31 47.16 0.558
DLA [38] 77.31 68.91 58.26 46.34 0.554
REGNETX_200MF [27] 77.89 69.57 59.36 47.28 0.564

Recursive CRT Training. We now explore the effectiveness of CRT if it is used recursively, i.e., the
newest generation is trained using a CRT trained classifier from the previous generation as the teacher.
We begin with a ResNet110 trained using SmoothMix. Then, all subsequent classifiers are trained
using CRT recursively and report the results in Table 3. The chain length measures the number of times
CRT was used. For example, the DLA network, with a chain length of 2, is the result of using CRT

4Note that the certified accuracy at r = 0 represents the clean accuracy of the smooth classifier.
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Table 3: The certified robustness of classifiers with different architectures trained on CIFAR-10 using
CRT recursively. We report certified test accuracy at different values of ℓ2 radius and the Average
Certified Radius (ACR). Here, the previous generation classifier is used to train the current generation
one. Chain length represents the number times CRT was used in training. The noise level σ is set to
0.25. CRT remains effective despite recursive use.

ARCHITECTURE CHAIN LENGTH 0.00 0.25 0.50 0.75 ACR

RESNEXT29-2X64D [36] 1 77.57 69.00 58.31 47.16 0.558
DLA [38] 2 78.46 70.05 60.01 48.30 0.570
REGNETX_200MF [27] 3 78.16 69.00 58.69 47.00 0.559

twice: once to transfer the SmoothMix trained ResNet110 network’s performance to the ResNeXt29-
2x64d network and once to transfer the CRT trained ResNeXt29-2x64d network’s performance to the
DLA network. We observe that the certified robustness of the resulting classifiers remains high even
with recursive use of CRT. The empirical results are to be expected given our theoretical understanding
of CRT: In order to train a robust student, we only require that the teacher is already robust (i.e.,
satisfies the condition of Theorem 2.2) irrespective of the training method used to achieve robustness.
Thus, we expect CRT to remain effective even at longer chain lengths. In Section 5.2, we will highlight
the relationship between the teacher’s training method and the robustness of a CRT trained student.

4.2 Training Time Comparison

Having established that CRT effectively transfers certified robustness between classifiers, we now
evaluate its training overhead. For comparison, we also evaluate the training overhead of SmoothMix.
In Table 4, we report the per-epoch time and total time of training different architectures with each
method. For brevity, we only compare the training time for standard CRT.5 We observe that the per-
epoch time of CRT is significantly lower than SmoothMix. Similarly, when trained until convergence,
the total training time of CRT is significantly lower. Across the three architectures that we run
our experiments on, CRT achieves an average epoch time speedup of 10.75×. Comparing overall
training times, CRT speeds up training by, on average, 8.06×. If we consider the real-world scenario
where the model has to be periodically redeployed to incorporate architectural improvements, the
cumulative training time using SmoothMix is 96.21 hours as each new architecture is trained from
scratch. With CRT, the cumulative time is reduced to 11.70 hours representing a 87.84% savings in
costs associated with computational resources.

Teacher’s availability. So far, we assumed the availability of a certifiably robust teacher (ResNet110).
We argue that this is a reasonable assumption as the amortized cost associated with the one-time
training of a robust teacher is negligible across many generations of the model. Regardless, in
Section 5.1, we examine a scenario where the teacher is unavailable. Under this scenario, we
demonstrate how CRT can be used to speedup the training of ResNet110 for use as teacher.

Table 4: Training time statistics for SmoothMix and CRT. We report the mean and 95% confidence
interval computed over all training epochs. CRT is on average 8× faster than SmoothMix across all
three architectures.

ARCHITECTURE
SMOOTHMIX [15] CRT (RESNET110 TEACHER)

EPOCH TIME (S) TOTAL TIME (H) EPOCH TIME (S) TOTAL TIME (H)

RESNET110 [11] 455.55 ± 1.17 18.98 - -

RESNEXT29-2X64D [36] 1085.09 ± 0.50 45.21 86.41 ± 0.11 4.80
DLA [38] 854.41 ± 0.09 35.60 62.24 ± 0.40 3.46
REGNETX_200MF [27] 369.42 ± 0.51 15.39 61.92 ± 0.30 3.44

5Recursive CRT differs in time by an insignificant factor due to forward pass through a different teacher.
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5 Discussion
In this section, we address the standout concerns about CRT. The section layout is as follows: in
Section 5.1, we discuss the scenario in which a certifiably robust teacher is not readily available and
demonstrate how CRT can still speed up robustness training; in Section 5.2, we examine how the
method used to train the teacher affects the robustness of the student; in Section 5.3, we study the
scalability of CRT using the ImageNet dataset; in Section 5.4, we compare CRT with a closely related
prior work on fast certified robustness training, i.e., Consistency regularization [16]; in Section 5.5,
we discuss the limitations of CRT; in Section 5.6, we address the broader impact of CRT.

5.1 Teacher Not Available

We’ve designed CRT under the assumption that a certifiably robust teacher is already available.
However, even if a certifiably robust teacher is not available, CRT can still speed up training. Given
a certifiable robust training method and a large network architecture, we can reduce the training
overhead by robustly training a comparatively smaller network first. Then, we can use CRT to
transfer the robustness of the small network to a larger network. In Table 5, we present results
for such a process. First, we trained a ResNet20 network using SmoothMix, then we used CRT to
train a ResNet110 network. We compare the robustness of a ResNet110 trained using this process
with one trained using SmoothMix. As we can see, the CRT ResNet110 network has comparable
robustness with the SmoothMix ResNet110 network. However, even when adding the teacher and
student training times, CRT still speeds up training by approximately 2× relative to SmoothMix.

Table 5: Certified robustness and total time of a ResNet110 classifier trained on CIFAR-10 using
SmoothMix and CRT. For CRT, we train a ResNet20 teacher first using SmoothMix and report total
time as the time taken to train the teacher and the student. The noise level σ is set to 0.25. The
ResNet110 trained using CRT achieves an ACR comparable to the SmoothMix ResNet110 while
achieving a ∼ 2× speedup in total training time.

METHOD 0.00 0.25 0.50 0.75 ACR TOTAL TIME (H)

SMOOTHMIX [15] 76.89 68.25 57.42 46.26 0.550 18.98
CRT (RESNET20 TEACHER) 75.68 67.20 56.30 44.83 0.540 10.07

5.2 Teacher Training Method

We train a ResNet20 classifier using MACER [39], SmoothAdv [29], and SmoothMix [15]. For
MACER and SmoothAdv training, we use the code made available by the authors67 and the hyperpa-
rameters reported by them. Using CRT, we transfer the robustness of each teacher to a ResNet110 clas-
sifier. The results are reported in Table 6. For reference, we also report robustness of a ResNet110 net-
work trained independently using the chosen robustness training methods. Overall, we observe a slight
variation in the robustness of the CRT trained networks depending on the teachers training method.
Based on Equation 6, this is expected as maximizing the teacher’s performance will in turn maximize
the performance of the student. Our empirical results align with this reasoning: the MACER teacher
was the least robust of the three methods, and its student is similarly the least robust of the students.
However, in all cases, the CRT trained network obtained certified robustness comparable to its teacher.

5.3 Scalability

Here, we study the effectiveness of CRT on a large-scale dataset, i.e., ImageNet. For this purpose, we
train ResNet18 classifiers using three certified robustness training methods (MACER, SmoothAdv,
and SmoothMix). Next, we transfer their robustness to a ResNet50 classifier. The results were
generated on a 500 sample test set (following prior works [29, 39, 15]) and are summarized in Table 7.
For reference, we also report robustness of a ResNet50 network trained independently using the
chosen robustness training methods. In all cases, we observe that students achieve certified robustness
comparable to their respective teachers. Therefore, CRT remains effective even on a more complex
dataset.

6MACER code [No license available]: https://github.com/RuntianZ/macer
7SmoothAdv code [MIT License]: https://github.com/Hadisalman/smoothing-adversarial
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Table 6: For CIFAR-10 dataset, certified robustness achieved on training the CRT teacher (ResNet20)
with different methods. The student classifier is ResNet110. For reference, we also report robustness
of ResNet110 trained independently using chosen methods. The noise level σ is set to 0.25. Students
attain comparable ACR to their respective teachers.

TEACHER (RESNET20) STUDENT (RESNET110)

TRAINING METHOD ACR TRAINING METHOD ACR

SMOOTHADV [29] 0.531 CRT 0.519
MACER [39] 0.507 → CRT 0.528
SMOOTHMIX [15] 0.522 CRT 0.540

SMOOTHADV [29] 0.547
STUDENT TRAINED DIRECTLY MACER [39] 0.531

SMOOTHMIX [15] 0.550

Table 7: ImageNet results using CRT and three robustness training methods. We report both the
ACR of the ResNet18 teacher and its ResNet50 student. For reference, we also report robustness
of ResNet50 trained independently using chosen methods. The noise level σ is set to 0.5. Students
attain comparable ACR to their respective teachers.

TEACHER (RESNET18) STUDENT (RESNET50)

TRAINING METHOD ACR TRAINING METHOD ACR

SMOOTHADV [29] 0.684 CRT 0.684
MACER [39] 0.574 → CRT 0.576
SMOOTHMIX [15] 0.653 CRT 0.661

SMOOTHADV [29] 0.820
STUDENT TRAINED DIRECTLY MACER [39] 0.653

SMOOTHMIX [15] 0.799

5.4 Comparison with Consistency Regularization [16]

In Section 4, we compared CRT against SmoothMix as it has state-of-the-art ACR. However, another
closely related work was recently published by Jeong & Shin [16], which shows state-of-the-art
ACR and potential training time improvements. They proposed a consistency regularization loss that
improves the certified robustness of smooth classifiers by enforcing the base classifier’s soft outputs to
be consistent across multiple noisy copies of a given input. Therefore, their additional computational
overhead scales linearly with the number of noisy samples used to compute the consistency loss.
With respect to computational overhead, CRT adds only one forward pass, i.e., the pass through the
teacher. When paired with Gaussian data augmentation training, their regularization loss significantly
improves the certified robustness of a smooth classifier. By applying their regularization loss over
only two noisy copies of the input, they can achieve better certified robustness than prior state-of-the-
art robustness training methods like MACER [39] and SmoothAdv [29].

The key difference between CRT and consistency regularization is in the training overhead when
combined with other state-of-the-art certified training methods. Consistency regularization augments
classifier training with an additional loss term. Therefore, their training overhead is dominated by the
training method selected. In their experiments, they focused on Gaussian data augmentation, which
adds little to no training overhead relative to standard training. However, if a more computationally
intensive method was selected (e.g., MACER), they remark their training overhead would dramatically
increase. With respect to CRT, if a teacher is available (i.e., a previous generation model), the
overhead of CRT is agnostic to the training method. If it is not available, we demonstrated in Section
5.1, that CRT can still greatly reduce training overhead. For interested readers, we include results for
transferring robustness from a teacher trained using Consistency regularization in Appendix ??.
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5.5 Limitations

In this paper, we use probabilistic certified robustness methods as they rely on Theorem 2.2 and, thus,
are designed to maximize the certified radius (Equation 4). We found that deterministic methods (e.g.,
CROWN-IBP [41]) impose a stricter training requirement on the base teacher classifier. For a given
input, deterministic training methods require the base classifier to be correct for all inputs within the
ℓ2-norm ball, rather than simply be likely to correctly classify inputs within the ℓ2-norm ball. This
restriction lowers the potential ACR of the smooth teacher classifier, which also lowers the ACR
of the student trained using CRT. For example, when using CROWN-IBP [41] to train a ResNeXt
base classifier, the ACR for the corresponding smooth classifier is only 0.064. When transferring the
robustness of this ResNeXt classifier to a WideResNet34-10 student, we get an ACR of 0.065.

Additionally, we note that the classifier architectures we present in the paper are restricted to CNNs.
Recently, a new class of transformer-based image classifiers [6, 24, 4] have been proposed that show
improved performance over CNN classifiers. We briefly studied the effectiveness of CRT when
transferring robustness between CNN and transformer architectures using ViT [6] and present the
results in Appendix ??, but further exploration is needed. Finally, CRT has only been studied using
the ℓ2 norm and image data due to the limitations of current certified robustness training methods.

5.6 Broader Impacts

As we have shown, our work improves the efficiency of training certifiably robust classifiers, in an
effort to improve the security of AI-powered systems. Beyond the broad negative societal impacts of
machine learning, we are not aware of any impacts specific to our work.

6 Conclusion
In this paper, we proposed the first general-purpose framework to speed up the training of certifiably
robust classifiers using knowledge transfer and randomized smoothing. Our proposed method,
Certified Robustness Transfer (CRT) enables transferring the certified robustness of a classifier to
another classifier at a cost comparable to standard training. We provided a theoretical understanding
of CRT and provided empirical evidence of its effectiveness. On CIFAR-10, we showed that
across several generations of classifier architectures, CRT trained classifiers 8× faster than when
using a state-of-the-art training method, while achieving comparable or better certified robustness.
Furthermore, CRT can reduce the training overhead of certified robustness training methods even
when an initial robust classifier is not present. The use of machine learning in security and safety
critical environments motivates a need for models with certifiably robust performance, but the training
overhead of existing certified robustness training methods inhibits their usability. Our work addresses
this issue, especially for commercial applications where periodical model re-deployment is inevitable.
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1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See Section 4.

(b) Did you describe the limitations of your work? [Yes] See Section 5.5.
(c) Did you discuss any potential negative societal impacts of your work? [No] In this

paper, we propose a method to improve the usability of certified robustness training
methods. Furthermore, beyond the broad negative societal impacts that results for ML,
we are unaware of any specific to our work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We have read the ethics review guidelines and acknowledge that our paper
conforms to them.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 2

for foundational theoretical results from prior work and Section 3 for the CRT specific
results.

(b) Did you include complete proofs of all theoretical results? [Yes] The complete theoreti-
cal justification for CRT is included in Appendix ??. For proofs for other foundational
results such as Theorem 2.2, see the respective paper.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] See Ap-
pendix ??.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix ??.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We include 95% confidence interval for our timing re-
sults. However, computing error bars for certified accuracy and ACR requires training
multiple classifiers and performing the costly process of certification multiple times.
Additionally, we observed that most prior works do not compute such error bars.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] While in Sections 4.2 and 5.1, we
include the total training time results to support our claims as well as the GPU model.
We do not include such information for all experiments.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] When specified by the asset creator,

we included the license.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See Appendix ??.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]
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