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Abstract

With the advent of deep learning, a substantial amount of work has gone into understanding
what loss landscapes of neural networks look like and how their structure can be exploited, with
the possible applications ranging from better generalization to sparsification, explainability and
robustness to adversarial attacks. In this context, the Hessian of the network loss with respect
to the parameters is paramount to the description of seconder-order information. However,
since the Hessian is quadratic in the number of parameters of the network, computation and
storage of the full Hessian is prohibitively expensive even for small datasets and toy models
using current tools. In this paper, we present O2Grad, an extensible Python package on top
of Pytorch which enables second order backpropagation for common building blocks of neural
networks. Although impractical for large neural networks, we show that O2Grad can be used to
considerably speed up the calculation of the full Hessian with respect to the current two-stage
backpropagation method in Pytorch for small-sized networks. The theoretical considerations
provide a starting point for building similar, more optimized tools, while the package itself can
already be used out-of-the-box to speed up full Hessian calculation of toy models in research,
paving the way for a more rigorous investigations of the Hessian in the future.

1 Introduction

2 Theoretical Preliminaries

2.1 Calculating Hessian Eigenpairs
Quickly calculating the eigenvalues and eigenvectors of neural network Hessians remains a tricky
task, since the Hessian is a matrix of N2 values if N is the number of network parameters, and
modern neural networks are notorious for having a high number of parameters, OpenAI’s GPT-3
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being the most extreme example at the time of writing this thesis with 175 billion parameters
[Brown et al., 2020]. This makes it practically unfeasible to calculate the full eigenvalue spectrum for
larger models, at least not by virtue of first calculating the Hessian. A possible alternative is to use
Power Iteration or improvements thereof such as Stochastic Power Iteration and Lanczos’ algorithm
to compute the eigenvalues and eigenvectors of the Hessian [Sa et al., 2017]. The underlying idea, in
a nutshell, is to iteratively compute the dot product of the Hessian with a vector v until the vector
converges against the eigenvector of the largest eigenvalue. Eigenvectors of successive eigenvalues
can then be obtained by subtracting the previously obtained spectral components from the Hessian
(making use of the spectral decomposition of the Hessian), which guarantees that the eigenvector
obtained next will correspond to the next largest eigenvalue of the Hessian. Thankfully, calculating
the dot product of the Hessian of an ANN with a vector v does not require explicitly computing the
full Hessian of the network and can be done efficiently using B.A. Pearlmutter’s R{.} technique
without a quadratic bottleneck [Pearlmutter, 1994]. The modern Machine Learning framework
PyTorch also provides a built-in function hvp() in the autograd.functional package that can
in principle be used to calculate the Hessian of the network, which is exploited by the package
pytorch-hessian-eigenthings 1 [Golmant et al., 2018]. However, while successive application of power
iteration avoids the quadratic memory bottleneck of calculating the full Hessian, the eigenvectors and
their eigenvalues must be calculated one after another in this approach, thus leading to a tradeoff in
speed, since the method cannot be parallelized (or only to little degree). We believe that in terms of
speed and for moderately sized neural networks, the approach of directly calculating the eigenvalues
Hessian may be a better approach, even more so given the availability of fast SSDs that would also
allow for the storage of larger Hessians. Furthermore, to reduce the memory and computational
complexity, one might consider using approximations of the Hessian rather than the actual
Hessian. A lightweight approximation of the Hessian can be attained by approximating the Hessian
as a diagonal matrix and calculating only the diagonal entries, thus neglecting terms L

∂θi∂θj
where

parameters θi and θj are not the same. This approximation is used, for instance, in the Optimal
Brain Damage algorithm [Cun et al., 1990] which is used for neural network parameter pruning. On
the other hand, that particular algorithm is not concerned with the eigenvalues and eigenvectors
of the Hessian, but rather with obtaining a computationally viable approximation of the Hessian
vector product H · v. In general, the Hessian of a neural network cannot be expected to be diagonal,
and thus the eigenvalues and eigenvectors of the Hessian should be expected to deviate considerably
from the diagonal approximation (as our experiments in section ?? also show). However, it does
have the advantage of having few non-zero values, allowing the Hessian to be stored with linear
memory complexity O(N). Furthermore, the eigenvalues can also be computed in linear time, since
they simply correspond to the values on the diagonal, while the eigenvectors are known in advance
to be the canonical basis vectors of RN.

A similar approach that uses more information on the curvature is to calculate a so-called
block diagonal approximation: Assuming the neural network consists of layers l(1), l(2), ..., l(T ), the
elements of the Hessian will have the form

∂L
∂θ

(s)
i ∂θ

(t)
j

, (1)

where θ
(s)
i and θ

(t)
j could be parameters from different layers l(s) and l(t). The idea of the block

1https://github.com/noahgolmant/pytorch-hessian-eigenthings
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diagonal approximation, then, is to neglect cross-layer terms by setting the respective second-order
derivatives to zero, giving rise to a block-matrix structure. This approximation contains more
curvature information than just the diagonal of the Hessian and should therefore be better suited to
compute eigenvalues and eigenvectors, although generally, the Hessian of neural networks can also
not be expected to have a block-diagonal structure (see Appendix A.1). Assuming a network of T
layers in which the largest layer has k parameters, the memory complexity of the block-diagonal
approximation can be bounded by O(Tk2), which is better than the lax upper bound of O(T 2k2)
for the actual Hessian. Furthermore, calculating the eigenvalues and eigenvectors of the block-
diagonal approximation incurs a lower time complexity (and memory complexity, given a suitable
representation) than for those of the actual Hessian. This stems from the fact that the ’blocks’ in
the block-diagonal matrix act on non-interacting subspaces of the latent space, allowing also for the
eigenvalues and eigenvectors to be calculated on the respective subspaces. More formally:

Theorem 2.1. Let A ∈ KN×N be the block-diagonal transformation matrix of a linear operator,
i.e. the matrix can be written as direct sum A =

⊕n
i=1 An, where Ai ∈ KNi are the transformation

matrices describing the linear operation on the respective subspaces and
∑n

i=1 Ni = N . Let us write
v = (v1, v2, ..., vn) ∈ KN , with vi ∈ KNi to denote a vector of the operator space. Then, the set of
all eigenvectors of operator A are given by

eigvec(A) = {(v1, 0, ..., 0), v1 ∈ eigvec(A1)} ∪ {(0, v2, ..., 0), v2 ∈ eigvec(A2)} ∪ ...

∪ {(0, 0, ..., vn), vn ∈ eigvec(An)} (2)

Proof: For the action of A on an arbitrary vector v, we can write

Au = (A1 ⊕A2 ⊕ ...⊕An)u = (A1u1,A2u2, ...,Anun) (3)

Let vi be an eigenvalue of Ai with eigenvalue λi, s.t. Aivi = λivi. Then, the action of A on the
vector (v1, ...,vi, ...,vn) with vj = 0∀i ̸= j is simply

A(0, ...,vi, ...,0) = (A10, ...,Aivi, ...,An0) = (0, ..., λivi, ...,0) (4)
= λi(0, ...,vi, ...,0) (5)

Thus, we know that for any subspace, the respective ≤ Ni eigenvectors of Ai can be extended
to eigenvectors of A, giving a total of ≤

∑n
i=1 Ni = N eigenvectors constructed in this way.

Furthermore, there can be no linearly independent eigenvectors other than these, for if that were
the case, there would be an eigenvector Av = λv s.t.

(A1v1, ...,Anvn) = (λv1, ..., λvn), (6)

implying Aivi = λvi, thus λ being an eigenvalue on all subspaces where vi is nonzero. But then λv
is a linear combination of those eigenvectors

λv = λ(v1,0, ...,0) + λ(0,v2, ...,0) + λ(0,0, ...,vn), (7)

in contradiction to our assumption, and we are done.

Practically, this means that the time complexity for calculating all eigenvalues and eigenvectors
of the block-diagonal approximation can be reduced to an upper bound O(Tk3) rather than the lax
upper bound of O(T 3k3), which is a considerable improvement.
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2.2 Second-Order Optimization
Due to the presence of the Hessian in the updates, our chaos-pruning optimization approach can be
understood as a Second Order Optimization method. There have been numerous attempts to use
second-order derivatives for neural network optimization in the past, with arguably most of them
being rooted in Newton’s method. In optimization, Newton’s method on a variable x is given by
the iteration formula:

x(t+1) = x(t) −H(x(t))−1J(x(t)), (8)
where J is the Jacobian of the loss w.r.t. the inputs, and H−1 is the inverse of the Hessian of the
loss w.r.t. the inputs. For reasons already explained, calculating the actual Hessian, no less inverting
it, is generally a practically unfeasible task, which is why Second Order Approximation Methods
typically try introduce modifications to Newton’s method or introduce some approximation of the
Hessian that is easy to invert. Specifically, block-diagonal approximations of the Hessian have been
used in deep learning methods recently, for instance in the Practical Gauss-Newton Optimisation
approach [Botev et al., 2017] (A. Botev, H. Ritter, D. Barber) or in the Block-diagonal Hessian-free
Optimization [Zhang et al., 2017] approach (H. Zhang et al). Both of the aforementioned approaches
use the so-called generalized Gauss-Newton-Matrix instead, which has the useful property of being
positive semidefinite and is defined as

G := Jy
w
THyJy

w, (9)

where Jy
w is the Jacobian of all intermediate outputs w.r.t. their respective layer parameters and

Hy is the Hessian of the loss w.r.t model parameters. Another curvature matrix often used is the
Fisher information matrix, which is equal to the negative expected Hessian of the log-likelihood

F = −Ep(x|w)

[
Hlog(p(x|w))

]
. (10)

Second order optimization approaches using the Fisher information matrix are studied under the label
"natural gradient descent" [Zhang et al., 2017, p.5 l.39] [Amari, 1998] [Pascanu and Bengio, 2014]
[Roux et al., 2007]. Notably, the more recent K-FAC method [Martens and Grosse, 2020] uses a
sophisticated block-wise Kronecker-factored approach without the need of a block-diagonal matrix
to compute an easily invertible approximation of the Fisher matrix.

3 Hessian Calculation

3.1 Two-stage Backpropagation
To our knowledge, the easiest out-of-the-box way to calculate the Hessians w.r.t. parameters in
autodifferentiation packages such as PyTorch is Two-Stage Backpropagation. That is, let us say the
autodifferentiation package provides a function grad(), which given a model f parametrized by w,
given loss function L and input x will calculate the gradients ∂L

∂w . Furthermore, let us assume that
the function grad() is implemented using only operations supported for backpropagation, such that
the calculation of the gradient gets recorded on a computational graph. The computational graph
gives us a representation of the gradient function of the neural network for a specific input, and we
can backpropagate through this secondary computation graph from each partial derivative of the
gradient ∂L

∂wi
to obtain its respective column of the Hessian

∂

∂wj

(
∂L

∂wi

)
=

∂2L

∂wj∂wi
. (11)
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Combining the gradients over all i yields the full Jacobian. Algorithm 1 provides a pythonic
pseudocode implementation.

Algorithm 1 Pythonic pseudocode for the calculation of the Hessian from backpropagation in two
stages (first from the loss, then from the gradients of the loss computed.)
def twostage_backpropagation(x, y, f, L):

loss = L(f(x), y)
dLdw = grad(loss)
H = array(N, N)
for i in range(N):

H[:,i] = grad(dLdw[i])
return H

Unfortunately, the complexity of this algorithm is rather difficult to estimate, since it depends
on the exact implementation of the backpropagation algorithm. However, given a time cost of T
for the regular backpropagation step (i.e. backpropagating from the loss L), and given that the
computational graph for calculating the gradient ∂L

∂w should contain the computation graph for
calculating the loss L as a subgraph, we should expect the time complexity to be at least in the
order of NT + T = (N + 1)T if N is the number of parameters in the network.

3.2 Second Order Backpropagation
The method we implement for calculating the Hessian of the network using Second-Order Back-
propagation is equivalent to the Stagewise Second-Order Backpropagation algorithm described by E.
Mizutani and S.E. Dreyfus in [Mizutani et al., 2005]. However, we provide a more general formulation
of the algorithm applicable not only to classical feed-forward ANNs such as the MLP (fully-connected
layers and sigmoid nonlinear activations), but also to modern deep learning architectures and derive
expressions for the local derivative tensors required to perform the calculation.

3.3 Diagonal Hessian Blocks
Consider a strictly sequential, feed-forward neural network with L layers, expressed mathematically
as

y(s+1) = f(s)(y(s)), f(s) : RNs → RNs+1 ∀s ∈ {0 ≤ 1 ≤ ... ≤ L− 1}, (12)

where y(0) or layer 0 is the input to the network and f(s) is a potentially parametrized transformation
function (for example a linear transformation or a non-linear activation function) on which we
impose the following conditions:

1. The Jacobian and Hessian

Jy,(s)
x (x) :=

{
∂f

(s)
i (x)
∂xj

}
ij

Hy,(n)
xx (x) :=

{
∂2f

(s)
i (x)

∂xj∂xk

}
ijk

(13)

with respect to the input should be defined for almost any x. From now on, we refer to these
as Output-Input-Jacobian (OIJ) and Output-Input-Hessian (OIH), respectively.
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2. Additionally if f(s) is a parametrized function f(s)(x) ≡ f(w(s);x), the Jacobian and Hessian

Jy,(s)
w (w(s);x) =

{
∂f

(s)
i (x)

∂w
(s)
j

}
ij

Hy,(s)
ww (w(s);x) =

{
∂2f

(s)
i (x)

∂w
(s)
j w

(s)
k

}
ijk

(14)

with respect to the function parameters should be defined for almost any w(s). We shall
refer to these as Output-Parameter-Jacobian (OPH) and Output-Parameter-Hessian (OPH),
respectively.

3. Finally, if f(s) is a parametrized function, we also demand that the mixed Hessian

Hy,(s)
xw (w(s);x) =

{
∂2f

(s)
i (x)

∂xj∂w
(s)
k

}
ijk

(15)

is defined for almost any x, w(s). We shall call this tensor mixed Output-Parameter-Hessian
(mOPH).

In practice, it has been observed that for typical neural network architectures, the network parameters
are distributed in a ball around zero and therefore, it will suffice to demand that the parameter
Hessians specified above are defined in a small subset of the entire parameter space. As a further
remark, note that contrary to the Jacobian and Hessian of a scalar function (which are 1st order
and 2nd order tensors, respectively), these are 2nd and 3rd order tensors.
Now, consider the Hessian of the network with respect to two parameters w

(s)
i , w

(t)
j . For now, let us

set s = t, i.e. both are parameters of the same layer s. The Hessian can be rewritten as

∂2L
∂w

(s)
i ∂w

(s)
j

=
∂

∂w
(s)
i

(
∂L
w

(s)
j

)
(16)

Using the chain rule of partial derivatives, we can write

∂2L
∂w

(s)
i w

(s)
j

=
∂

∂w
(s)
i

(∑
k

∂y
(s)
k

∂w
(s)
j

∂L
∂y

(s)
k

)
. (17)

Using the sum rule of derivatives to apply the differential operator to each sum term, followed by
the product rule, this can be further rewritten to

∂2L
∂w

(s)
i w

(s)
j

=
∑
k

∂

∂w
(s)
i

(
∂y

(s)
k

∂w
(s)
j

∂L
∂y

(s)
k

)
=
∑
k

∂2y
(s)
k

∂w
(s)
i ∂w

(s)
j

∂L
∂y

(s)
k

+
∂y

(s)
k

∂w
(s)
j

(
∂

∂w
(s)
i

∂L
∂y

(s)
k

)
(18)

Finally, we apply the chain rule of partial derivatives again and reorder the terms to obtain

∂2L
∂w

(s)
i w

(s)
j

=
∑
k

∂2y
(s)
k

∂w
(s)
i ∂w

(s)
j

∂L
∂y

(s)
k

+
∑
k

∂y
(s)
k

∂w
(s)
j

∑
l

∂y
(s)
l

∂w
(s)
i

∂

∂y
(s)
l

∂L
∂y

(s)
k

(19)

=
∑
k

∂L
∂y

(s)
k

∂2y
(s)
k

∂w
(s)
i ∂w

(s)
j

+
∑
k,l

∂y
(s)
l

∂w
(s)
i

∂2L
∂y

(s)
l ∂y

(s)
k

∂y
(s)
k

∂w
(s)
j

(20)
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Comparing with equations (13) and (14), and substituting x← y(s), observe that we have rewritten
the Loss-Parameter-Hessian as a tensor dot product of (1) the Loss-Input-Gradient, (2) the Loss-
Input-Hessian, (3) the OPH and (4) the OPJ:

∂2L
∂w

(s)
i w

(s)
j

=
[
g(s)T ·Hy,(s)

ww (y(s);w(s))
]
ij
+
[
Jy,(s)
w

T (y(s);w(s)) ·H(s) · Jy,(s)
w (y(s);w(s))

]
ij
. (21)

Disregarding the functional dependencies and dropping the indices for more clarity:

∂2L
∂w(s)w(s)

= g(s)T ·Hy,(s)
ww + Jy,(s)

w
T ·H(s) · Jy,(s)

w . (22)

The Loss-Output-Hessian can be obtained in an analogous fashion as

∂2L
∂y

(s−1)
i ∂y

(s−1)
j

=
∑
k

∂L
∂y

(s)
k

∂2y
(s)
k

∂y
(s−1)
i ∂y

(s−1)
j

+
∑
k,l

∂y
(s)
l

∂y
(s−1)
i

∂L
∂y

(s)
l ∂y

(s)
k

∂y
(s)
k

∂y
(s−1)
j

. (23)

The derivation steps are completely analogous to those for the Loss-Parameter-Hessian, but replacing
parameter w(s) with y(s−1), i.e. the input to layer s. Comparing the above equation with (13) and
(14) and substituting x← y(s), this can be written more succinctly as an expression depending on
four distinct tensors, namely (1) gradient and (2) Hessian w.r.t. the output of layer s, as well as (3)
OIJ and (4) OIH:

H(s−1) := g(s)T ·Hy,(s)
xx + Jy,(s)

x
T ·H(s) · Jy,(s)

x . (24)

Putting together equations (22) and (24), it becomes apparent that the respective matrices H(s−1)

and H(s−1)
w for any layer s can be computed using an extension of the Vanilla feedforward and

backpropagation step in regular neural networks (see algorithm 2), which involves calculating OIJ,
OIH, OPJ and OPH in the feedforward step.

3.4 Off-Diagonal Hessian Blocks
The off-diagonal Hessian blocks, i.e. those blocks where s ̸= t, are more difficult to compute.
However, observe that due to the second derivative being symmetric,

H(s,t) =

{
∂2L

∂w
(s)
i ∂w

(t)
j

}
ij

=

{
∂2L

∂w
(t)
j ∂w

(s)
i

}
ij

= H(t,s). (25)

Thus only T 2

2 − T off-diagonal blocks need to be calculated and w.r.o.g. it suffices to consider the
case s < t. We write

∂2L
∂w

(s)
i ∂w

(t)
j

=
∂

∂w
(s)
i

(
∂2L
∂w

(t)
j

)
(26)

As for the diagonal Hessian blocks, we start by using the chain rule to rewrite the partial derivatives
w.r.t. the layer s parameter as

∂2L
∂w

(s)
i ∂w

(t)
j

=
∂y

(s+1)
k

∂w
(s)
i

∂

∂y
(s+1)
k

(
∂L

∂w
(t)
j

)
=

∂y
(s+1)
k

∂w
(s)
i

∂

∂y
(s+1)
k

(
∂L
∂y

(t)
l

∂y
(t)
l

∂w
(t)
j

)
. (27)
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Algorithm 2 Pythonic pseudocode for the modified feedforward and backpropagation step required
to compute the Loss-Parameter-Hessians for every diagonal block (here denoted dL2dw2).
def feedforward(x, t, layers, criterion):

y, dydx, dy2dx2, dydw, dy2dw2 = {}
y[0] = x
for s in [1, 2, ..., T]:

y[s] = layers[s](y[s-1])
dydx[s] = layers[s].get_output_input_jacobian(y[s-1], y[s])
dy2dx2[s] = layers[s].get_output_input_hessian(y[s-1], y[s])
if layer[s].is_parametric():

dydw[s] = layers[s].get_output_param_jacobian(y[s-1], y[s])
dy2dw2[s] = layers[s].get_output_param_hessian(y[s-1], y[s])

loss = criterion(y[T], t)

def backpropagation(loss, layers, criterion):
dLdy, dL2dy2 = {}, {}
dLdx[T+1] = criterion.get_output_input_jacobian(loss)
dL2dx2[T+1] = criterion.get_output_input_hessian(loss)
for s in [T, T-1, ..., 1]:

dLdw = matmul(dLdy, dydw)
dL2dy2 = dL2dx2[s+1]
dLdy = dLdx[s+1]
dL2dx2[s] = matmul(dLdy, dy2dx2[s])
dL2dx2[s] += matmul(transpose(dydx[s]), dL2dy2, dydx[s])
if layer[s].is_parametric():

dL2dw2[s] = matmul(dLdy, dy2dw2[s])
dL2dw2[s] += matmul(transpose(dydw[s]), dL2dy2, dydw[s])

Note that we have omitted the sum signs in the above equation following Einstein’s Sum Notation
to save space. Now, rather than directly using the product rule, which would give us derivatives for
mixed layers s and t, we first apply the chain rule again to obtain

∂2L
∂w

(s)
i ∂w

(t)
j

=
∂y

(s+1)
k

∂w
(s)
i

∂y
(t−1)
m

∂y
(s+1)
k

∂

∂y
(t−1)
m

(
∂L
∂y

(t)
l

y
(t)
l

∂w
(t)
j

)
, (28)

after which we apply the product rule, yielding

∂2L
∂w

(s)
i ∂w

(t)
j

=
∂y

(s+1)
k

∂w
(s)
i

∂y
(t−1)
m

∂y
(s+1)
k

((
∂

∂y
(t−1)
m

∂L
∂y

(t)
l

)
∂y

(t)
l

∂w
(t)
i

+
∂L
∂y

(t)
l

∂2y
(t)
l

∂y
(t−1)
m ∂w

(t)
j

)
. (29)

And using the chain rule one more time we obtain

∂2L
∂w

(s)
i ∂w

(t)
j

=
∂y

(s+1)
k

∂w
(s)
j

∂y
(t−1)
m

∂y
(s+1)
k︸ ︷︷ ︸

=:U(s+1,t−1)

(
∂y

(t)
o

∂y
(t−1)
m

∂2L
∂y

(t)
o ∂y

(t)
l

∂y
(t)
l

∂w
(t)
i

+
∂L
∂y

(t)
l

∂2y
(t)
l

∂y
(t−1)
m ∂w

(t)
j

)
. (30)
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With the exception of the Output-Input-Jacobian defined as U(s+1,t−1), this expression depends
exclusively on local derivatives, i.e. such ones that can be calculated at the respective layers s or t
given their inputs, outputs and parameters. In terms of equations (13) and (14), we can rewrite this
expression more succinctly as

H(s,t) = Jy,(s+1)
w

T ·U(s+1,t−1) ·
(
g(t)T ·H(t)

xw + Jy,(t)
x

T ·H(t) · Jy,(t)
w

)
︸ ︷︷ ︸

=:V(t)

. (31)

Now we still require a way of calculating what we call the chained Output-Input-Jacobian (cOIJ)
U(s+1,t−1), which can be obtained using the OIJs of the intermediate layers through iterated
application of the chain rule:

∂y
(t−1)
m

∂y
(s+1)
k

=
∑
m1

∑
m2

...
∑
mt−2

∂y
(s+2)
m1

y
(s+1)
k

∂y
(s+3)
m2

∂y
(s+2)
m1

...
∂y

(t−1)
m

∂y
(t−2)
mt−2

(32)

⇒U(s+1,t−1) = Jy,(s+1)
x · Jy,(s+2)

x · ...Jy,(t−1)
x (33)

To avoid having to perform the full matrix chain multiplication for each U(s+1,t), we can use a
dynamic programming scheme:

V(t,t) := V(t), V(s,t) = Jy,(s)
x ·V(s+1,t) (34)

Building upon the backpropagation step of Algorithm 2, this leads us to an updated backpropa-
gation step as shown in Algorithm 3. Figure 1 illustrates the feedforward and backpropagation step
of the algorithm.

3.5 Local Derivatives
Next, we provide explicit expressions for the derivative tensors from equations (13), (14) and (15) -
OIJ, OIH, OPJ, OPH, mOPH - for commonly used layers in modern deep learning architectures.
As we will show in the implementation section, although the Jacobians and Hessians of a layer can
be calculated implicitly in PyTorch using the autograd functions jacobian() and hessian() when
applying some tricks, the respective function evaluations are far too slow (especially when feeding
the network high-dimensional inputs) for running a performing Second-Order Backpropagation.
Thus, it is more efficient to compute explicit expressions for the respective tensors and generate
them on demand.

3.6 Parametric Layers
3.6.1 Fully Connected Layers

The earliest specified and most common type of parametric layers are linear, a.k.a. fully-connected
layers, which for an input x ∈ RD, weights w ∈ RD′×D and bias b ∈ RD′

operate as:

yi = fi(x) =
D−1∑
j=0

wijxj ,+bi. (35)
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(a) Feedforward

(b) Backpropagation

Figure 1: Illustration of the Stagewise Second-Order Backpropagation algorithm and the local
derivatives computed at every layer, for a network of L layers. Here, layers L − 2 and L are
parametric layers, while L− 1 is a non-parametric layer.

We arrive at the following expressions for the Jacobians and Hessians:

OIJ :
∂yi
∂xk

=
∑
j

wijδjk = wik, OIH :
∂2yi

∂xk∂xl
= 0 (36)

OPJ :
∂yi
∂wkl

=
∑
j

δ(ij),(kl)xj =
∑
j

δikδjlxj = δikxl,
∂yi
∂bk

= δik (37)

OPH :
∂2yi

∂wmo∂wkl
= 0,

∂2yi
∂bl∂bk

= 0,
∂2yi

∂wlm∂bk
= 0 (38)

mOPH :
∂2yi

∂wlm∂xk
= δ(ik),(lm) = δilδkm,

∂2yi
∂xk∂bl

= 0 (39)
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Algorithm 3 Pythonic pseudocode for the modified backpropagation step required to compute the
full Loss-Parameter-Hessian (here denoted dL2dw2) including off-diagonal blocks.
def backpropagation(loss, layers):

dLdy, dL2dy2 = {}, {}
dLdx[T+1] = criterion.get_output_input_jacobian(loss)
dL2dx2[T+1] = criterion.get_output_input_hessian(loss)
for s in [T, T-1, ..., 1]:

dLdw = matmul(dLdy, dydw)
dL2dy2 = dL2dx2[s+1]
dLdy = dLdx[s+1]
dL2dx2[s] = matmul(dLdy, dy2dx2[s])
dL2dx2[s] += matmul(transpose(dydx[s]), dL2dy2, dydx[s])
for t in V[s+1].keys():

V[s][t] = matmul(transpose(dydx[s]), V[s+1][t])
if layer[s].is_parametric():

V[s][s] = matmul(dLdy, dy2dxdw[s])
V[s][s] += matmul(transpose(dydx), dL2dy2, dydw)
for t in V[s+1].keys():

dL2dw2[s][t] = matmul(transpose(dydw), V[s+1][t])
dL2dw2[s][s] = matmul(dLdy, dy2dw2[s])
dL2dw2[s][s] += matmul(transpose(dydw[s]), dL2dy2, dydw[s])

The above expressions are valid assuming single-sample inputs. For a batch of inputs, the network
function is applied to every sample of the batch individually and there are no interactions between
different batch samples, so for x ∈ RB×D if B is the batch and D is the number of input dimensions:

∂yb′i
∂xbk

=
∑
j

wij
∂xb′j

∂xbk
=
∑
j

wijδ(b′j),(bk) =
∑
j

wijδb′bδjk = wikδb′b (40)

So for all local derivative tensors that depend on the input, the expressions for batched inputs can
simply be obtained by computing the tensor product of the single-sample derivative tensors with
a Kronecker delta over the two batch dimensions, e.g. J̃

y

x = Jy
x ⊗ IB. This applies to all layers

discussed in this section with the only exception of Batch Normalization layers.

3.6.2 1D Convolutions

Convolution Layers [LeCun et al., 1998] are a sparse type of Linear layers that have become popular
for ML tasks on input data with highly localized information, such as audio tracks or images. When
the index counts from zero, the Vanilla convolution in 1D without bias can be written as:

yi = fi(x) = K ⋆ x =

M−1∑
k=0

Kkxi+k (41)

The sum formula is to be interpreted as follows: Given a position i of the output vector, start at the
same position i in the input vector and compute the dot product of the next m fields (size of the
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convolution kernel) of x with kernel K. If the convolution is strided with a stride s, the convolution
kernel will be shifted by s over the input at every step, so for output yi, the first field of the input
to be scalar multiplied with the kernel will be at xs·i. If the kernel is dilated by a factor d, any two
successive kernel fields are d− 1 empty fields apart, and thus the k-th field of x to be multiplied
with the k-th field of the kernel is xd·k. Taking these two together, the adapted convolution formula
becomes:

yi = fi(x) = K ⋆ x =

M−1∑
k=0

Kkxs·i+d·k (42)

Furthermore, we need to account for padding. If a convolution is applied with a symmetric
padding of size P to the input, the convolution is applied to a padded input vector x̃ defined as
follows:

x̃i =


pli, i < P

xi−P , P ≤ i < n+ P

pri−n−P , n+ P ≤ i < n+ 2P

, (43)

where pl,pr ∈ RP . A common choice is to use a random initialization or zero-padding, i.e. setting
pl = pr = 0. As a final complication, convolution layer in deep learning are usually implemented
with an additional channel dimension and a bias. Therefore, the single-sample inputs become 2D
tensors x ∈ RC×D, the kernels become 3D tensors K ∈ RC′×C×M , and we introduce a bias vector
b ∈ RC′

, allowing for the action of the convolution layer to be written now as

yαi = fα
i (x) =

M−1∑
k=0

C−1∑
β=0

Kαβ
k x̃β

s·i+d·k + bα. (44)

Using this, we can now proceed to calculate the derivatives. We start with the OIJ:

∂yαi
∂xγ

j

=

M−1∑
k=0

C−1∑
β=0

Kαβ
k

∂x̃β
s·i+d·k
∂xγ

j

, (45)

where the partial derivative of x̃ can be expanded with equation (43) as

∂x̃β
s·i+d·k
∂xγ

j

=



∂pl,β
s·i+d·k
∂xγ

j
, i < P

∂x̃β
s·i+d·k−P

∂xγ
j

, P ≤ i < n+ P

∂pr,β
s·i+d·k−n−P

∂xγ
j

, n+ P ≤ i < n+ 2P

. (46)

Since the padding values are independent from the inputs xj , the respective derivatives would
become zero and we are thus left with

∂x̃β
s·i+d·k
∂xγ

j

= I ((s · i+ d · k − P = j) ∧ (β = γ) ∧ (P ≤ i < n+ P ))

= I(s · i+ d · k − P = j) · δβγ · I(P ≤ i < n+ P ), (47)
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where I is the indicator function. Inserting this back into equation (42) and omitting the last tensor,
we obtain

∂yαi
∂xγ

j

=

M−1∑
k=0

C−1∑
β=0

Kαβ
k I(s · i+ d · k − P = j)δβγ

= Kαγ
k I((s · i+ d · k − P = j) ∧ (0 ≤ k < M))

= Kαγ
k I

(
k =

j − s · i+ P

d

)
I(0 ≤ k < M), (48)

and it is clear that applying the derivative w.r.t. the input one more time yields 0 since the kernel
does not depend explicitly on the input.
The OPJ with respect to kernel parameters can be derived similarly:

∂yαi

∂Kγδ
j

=

M−1∑
k=0

C−1∑
β=0

∂Kαβ
k

∂Kγδ
j

x̃β
s·i+d·k =

M−1∑
k=0

C−1∑
β=0

δαγδβδδjkx̃
β
s·i+d·k = δαγ x̃δ

s·i+d·j (49)

From equation (48), applying the derivative w.r.t. the kernel parameters to obtain the mOPH yields

∂2yαi

∂Kδη
l ∂xγ

j

= δαδδγηδklI

(
k =

j − s · i+ P

d

)
I(0 ≤ k < M)

= δαβδγηI

(
l =

j − s · i+ P

d

)
. (50)

The second indicator function I(0 ≤ l < M) resulting from application of the Kronecker delta δkl
drops out, since l is an index of the kernel on the left side, and thus the indicator function’s predicate
is guaranteed to always be true. From equation (49) for the OPJ, it is clear that the OPH must
be 0, since the padded input does not depend on the kernel. As for the derivatives w.r.t. the bias,
these are equivalent to the ones for the linear layer. Putting everything together, we can summarize
the local derivatives of the convolution layer as follows:

OIJ :
∂yαi
∂xγ

j

= Kαγ
k I

(
k =

j − s · i+ P

d

)
I(0 ≤ k < M), OIH :

∂2yαi
∂xδ

l ∂x
γ
k

= 0 (51)

OPJ :
∂yαi

∂Kγδ
j

= δαγ x̃δ
s·i+d·j ,

∂yαi
∂bβ

= δαβ (52)

OPH :
∂2yαi

∂Kηκ
l ∂Kγδ

j

= 0,
∂2yαi

∂Kγδ
l ∂bβ

= 0,
∂2yαi
∂bγ∂bβ

= 0 (53)

mOPH :
∂2yαi

∂Kδη
l ∂xγ

j

= δαδδγηI

(
l =

j − s · i+ P

d

)
,

∂2yαi
∂bδ∂xγ

j

= 0 (54)

3.6.3 2D Convolutions

2D convolution layers are almost identical to 1D convolutions, but differ in that their inputs
are expected to be 3D tensors, i.e. x ∈ RC×D1×D2 and the convolution kernel is a 4D tensor
K ∈ RC′×C×M1×M2 that is slided over two dimensions of the input and dot multiplied with the
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third (the channel dimension). The equations look exactly as for the 1D convolution, but with an
extra dimension:

yαi1i2 = fα
i1i2(x) =

M1−1∑
k1=0

M2−1∑
k2=0

C−1∑
β=0

Kαβ
k1k2

x̃β
s1·i1+d1·k1,s2·i2+d2·k2

+ bα (55)

Note that a 2D convolution kernel operates completely independently on the two convolved input
dimensions, and the convolution layer can have different strides s1, s2 ∈ N+, different dilations
d1, d2 ∈ N+ and even different paddings P1, P2 ∈ N applied to the two dimensions of the convolution.
As a consequence, the derivatives can be decomposed into non-interacting terms for the first and for
the second convolution dimension. To better illustrate this, consider the OPJ which can be written
as

∂yαi1i2
∂Kγδ

j1j2

=

M1−1∑
k1=0

M2−1∑
k2=0

C−1∑
β=0

∂Kαβ
k1k2

∂Kγδ
j1j2

x̃β
s1·i1+d1·k1,s2·i2+d2·k2

=

M1−1∑
k1=0

M2−1∑
k2=0

C−1∑
β=0

δαγδβδδk1j1δk2j2 x̃
β
s1·i1+d1·k1,s2·i2+d2·k2

= δαγ x̃δ
s1·i1+d1·j1,s2·i2+d2·j2 (56)

For the remaining tensors, the derivation is analogous. In total, the derivatives can be summarized
as follows:

OIJ :
∂yαi1i2
∂xγ

j1j2

= Kαγ
k1k2

I

(
k1 =

j1 − s1 · i1 + P1

d1

)
I

(
k2 =

j2 − s2 · i2 + P2

d2

)
·

I(0 < k1 ≤M1)I(0 < k2 ≤M2) (57)

OIH :
∂yαi1i2

∂xδ
l ∂x

γ
j1j2

= 0 (58)

OPJ :
∂yαi

∂Kγδ
j1j2

= δαγ x̃δ
s1·i1+d1·j1,s2·i2+d2·j2 ,

∂yαi1,i2
∂bβ

= δαβ (59)

OPH :
∂2yαi

∂Kηκ
l1l2

∂Kγδ
j1j2

= 0,
∂2yαi

∂Kγδ
l1l2

∂bβ
= 0,

∂2yαi
∂bγ∂bβ

= 0 (60)

mOPH :
∂2yαi1i2

∂Kδη
l1l2

∂xγ
j1j2

= δαδδγηI

(
l1 =

j1 − s · i1 + P1

d1

)
I

(
l2 =

j2 − s · i2 + P2

d2

)
,

∂2yαi1i2
∂bδ∂xγ

j1j2

= 0. (61)

3.6.4 Transposed Convolutions

Transposed Convolution Layers [Dumoulin and Visin, 2018] (also known as Deconvolution Layers)
were introduced to meet the need for upsampling layers in architectures such as Autoencoders and
act as an inverse operation to regular convolutions. As seen in the previous two sections, in a
convolution any valid subwindow of the input is dot multiplied with a convolution kernel K striding
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over the input image to a single output element. In Transposed Convolutions, the convolution kernel
strides over the output and each valid subwindow of the output maps back to a single input element
multiplied with multiple kernel elements. More formally, while in a 1D convolution with stride s,
dilation d and padding P , an output yi is connected to an input xj iff

j = s · i+ d · k − P, (62)

in a transposed convolution the connection relation can be obtained through inversion of output
and input, i.e. an output yi is connected to an input xj iff

i = s · j + d · k − P. (63)

Solving for j and replacing the index of the input x in equation (41) with the expression j, it
follow we can also write a simple 1D transposed convolution as

yi = fi(x) = K
T
⋆ x + b =

M−1∑
k=0

Kkx⌊ i−k·d+P
s ⌋ + bi (64)

Thus, the full formula for transposed convolutions becomes:

yαi = fα
i (x) =

M−1∑
k=0

Kαβ
k x̃β

⌊ i−k·d
s ⌋

+ bα. (65)

Aside from the flipped output and input dimension indices, the expressions for the local derivatives
of the convolution layer are therefore analogous to those of the 1d convolution layer and take the
form

OIJ :
∂yαi
∂xγ

j

= Kαγ
k I

(
k =

j · s− i+ P

d

)
I(0 ≤ k < M), OIH :

∂2yαi
∂xδ

l ∂x
γ
k

= 0 (66)

OPJ :
∂yαi

∂Kγδ
j

= δαγ x̃δ

⌊ i−j·d
s ⌋,

∂yαi
∂bβ

= δαβ (67)

OPH :
∂2yαi

∂Kηκ
l ∂Kγδ

j

= 0,
∂2yαi

∂Kγδ
l ∂bβ

= 0,
∂2yαi
∂bγ∂bβ

= 0 (68)

mOPH :
∂2yαi

∂Kδη
l ∂xγ

j

= δαδδγηI

(
l =

j · s− i+ P

d

)
,

∂2yαi
∂bδ∂xγ

j

= 0 (69)

For 2D transposed convolutions, the kernel operates independently on each input dimension (just
like for regular 2D convolutions) and thus, the formulas for a 2D convolution layer can be transferred
to the formulas for a 2D transposed convolution layer in the same way as for 1D equivalents. For
the sake of brevity, we will omit the 2D formulas here.

3.6.5 Batch Normalization

Batch Normalization is a widespread layer used in Deep Learning architectures and was proposed
by Sergey Ioffe and Christian Szegedy to solve the problem of covariate shits in deeper neural
network layers and thereby increase model performance[Ioffe and Szegedy, 2015]. Although newer
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research seems to suggest that Batch Normalization does little to reduce covariate shift and the
performance benefits may instead come from other mechanisms such as a smoothing of the loss
landscape [Santurkar et al., 2019], it has still found its way into the default toolbox of Deep Learning
researchers and practitioners. It works by computing the mean and standard deviation of the neural
network activations over a minibatch of samples and then removing the mean and renormalizing the
activations to end up with a mean-free, normalized distribution of activations. At training time, for
an input x ∈ RB×C and parameters β, γ ∈ RC 2, the output of a Batch Normalization layer can be
described as

yki = γkx̂k
i + βk, x̂k

i =
xk
i − µk

B√
(σk

B)
2 + ϵ

, (70)

where µk
B, σk

B are the mean and standard deviation calculated over all elements of the minibatch for
the given channel k, i.e.

µk
B =

B∑
b=1

1

B
xk
b , σ2

B =
B∑

b=1

1

B

(
xk
b − µk

B
)2

. (71)

Note that in all calculations of the Output-Input-Jacobian up until this point, we have been
calculating partial derivatives ∂yi

∂xj
, because we implicitly assumed that the expression for the outputs

contained no hidden dependencies on the inputs through other variables, i.e. y = f(x). However,
since the expression for the output in equation (70) contains variables µK

B and σk
B which are implicitly

dependent on the inputs - y = f(x,µB(x),

The last term can be omitted due to the derivative of the variance with respect to the mean being
zero:

∂(σm
B )2

∂µm
B

=

B∑
b=1

2

B
(xm

b − µm
B ) = 2

(
B∑

b=1

xm
b

B
−

B∑
b=1

µm
B
B

)
= 2

(
µm
B −B

µm
B
B

)
= 0. (72)

Writing νkB := ((σk
B)

2 + ϵ), we can resolve the above derivatives

∂x̂k
i

∂xl
j

= (νkB)
− 1

2
∂xk

i

∂xl
j

= (νkB)
− 1

2 δijδ
kl (73)

∂x̂k
i

∂(µm
B )

= (νkB)
− 1

2
−∂µk

B
∂µm

B
= −(νkB)−

1
2 δkm (74)

∂µm
B

∂xl
j

=
1

B

B∑
b=1

∂xm
b

∂xl
j

=
δml

B
(75)

∂x̂k
i

∂(σm
B )2

= (xk
i − µk

B)

(
−1

2

)
(νkB)

− 3
2 δkm (76)

∂(σm
B )2

∂xl
j

=
1

B

B∑
b=1

∂(xm
b − µm

B )2

∂xl
j

=
1

B

B∑
b=1

2(xm
b − µm

B )
∂xm

b

∂xl
j

=
2

B
(xl

j − µl
B)δ

ml, (77)

2Although we have used symbol γ for the learning rate earlier, this γ is a parameter of the Batch Normalization
layer, left unchanged out of notation convention.
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and inserting back into equation (??), we obtain

dx̂k
i

dxl
j

= (νkB)
− 1

2 δijδ
kl − 1

B

∑
m

(νkB)
− 1

2 δkmδml − 1

B

∑
m

(xk
i − µk

B)(x
l
j − µl

B)(ν
k
B)

− 3
2 δkmδml

= δkl
(
δij −

1

B

)
(νkB)

− 1
2 − 1

B
δkl(xk

i − µk
B)(x

k
j − µk

B)(ν
k
B)

− 3
2 . (78)

For the Output-Input-Hessian, we have two derivatives to compute.

d2x̂k
i

dxr
sdx

l
j

= δkl
(
δij −

1

B

)
d

dxr
s

(νkB)
− 1

2 − 1

B
δkl

d

dxr
s

(xk
i − µk

B)(x
k
j − µk

B)(ν
k
B)

− 3
2 . (79)

The derivative for the square root term can be resolved by using the total differential rule again.
Note that the terms involving transitive dependencies of the variance on the inputs is obviated, since
we have already found the partial derivative of the standard deviation with respect to the mean
to be zero in equation (72). Furthermore, since the square root term does not contain any explicit
dependency on the inputs or the means (only implicit), the first two terms become 0 and we are left
with two derivatives (1) and (2) to compute:

d(νkB)
− 1

2

dxr
s

=
∂(νkB)

− 1
2

∂xr
s︸ ︷︷ ︸

=0

+
∑
m

∂µm
B

∂xr
s

∂(νkB)
− 1

2

∂µm
B︸ ︷︷ ︸

=0

+
∑
m

∂(σm
B )2

∂xr
s︸ ︷︷ ︸

(1)

∂(νkB)
− 1

2

∂(σm
B )2︸ ︷︷ ︸

(2)

. (80)

For the first derivative term, we have already derived an expression in (77) for which we only have
to substitute the indices, and the second derivative term can be simplified to obtain

(1) :
∂(σm

B )2

∂xr
s

=
2

B
(xr

s − µr
B)δ

mr (81)

(2) :
∂(νkB)

− 1
2

∂(σm
B )2

= −1

2
(νkB)

− 3
2
∂(σk

B)
2

∂(σm
B )2

= −1

2
(νkB)

− 3
2 δkm. (82)

Inserting back into (80), we find

d(νkB)
− 1

2

dxr
s

= − 1

B

∑
m

(xr
s − µr

B)(ν
k
B)

− 3
2 δkmδmr = − 1

B
(xr

s − µr
B)(ν

k
B)

− 3
2 δkr. (83)

The second derivative term of equation (79) is a bit more complex to compute:

d

dxr
s

(
(xk

i − µk
B)(x

k
j − µk

B)(ν
k
B)

− 3
2

)
=

∂(...)

∂xr
s︸ ︷︷ ︸

(1)

+
∑
m

∂µm
B

∂xr
s︸ ︷︷ ︸

(2)

∂(...)

∂µm
B︸ ︷︷ ︸

(3)

+
∑
m

∂(σm
B )2

∂xr
s︸ ︷︷ ︸

(4)

∂(...)

∂(σm
B )2︸ ︷︷ ︸

(5)

(84)

For derivative (4), we can use (81) without any modifications. For derivative (2), we can substitute
the indices in expression (75) to arrive at

∂µm
B

∂xr
s

=
1

B
δmr (85)
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We resolve the unknown derivatives (1), (3), and (5) as follows:

(1) :
∂

∂xr
s

(xk
i − µk

B)(x
k
j − µk

B)

((σk
B)

2 + ϵ)
3
2

=
δisδ

kr(xk
j − µk

B) + δjsδ
kr(xk

i − µk
B)

((σk
B)

2 + ϵ)
3
2

(86)

(3) :
∂

∂µm
B

(xk
i − µk

B)(x
k
j − µk

B)

((σk
B)

2 + ϵ)
3
2

=
−δkm(xk

j − µk
B)− δkm(xk

i − µk
B)

((σk
B)

2 + ϵ)
3
2

(87)

(5) :
∂

∂(σm
B )2

(xk
i − µk
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Inserting the expressions for derivatives (1), (2), (3), (4), and (5) back into equation (84), we obtain
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In total:
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Using these, we can write the entirety of the local derivatives as follows:

(OIJ):
dyki
dxl
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= γk dx̂
k
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dxl
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(91)

(OPJ):
dyki
dγl

= δklx̂k
i ,

dyki
dβk

= δkl (92)

(OPH):
d2yki

dγrdγl∂
= 0,

d2yki
dγrdβl

= 0,
d2yki

dβrdβl
= 0 (93)

(mOPH):
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(94)

For 1D Batch Normalization with an additional input dimension (i.e. operating on input tensors
x ∈ RB×C×D), the derivation of the expression is equivalent, but the statistics are calculated not
only over the batch dimension, but also over the additional input dimension. Thus, the expressions
can be obtained simply by substituting the batch indices with 2-dimensional multi-indices, and the
number of elements B with BC, as demonstrated below for the OIJ (for pre-output x̂):

dx̂k
i1,i2

dxl
j1,j2

= δkl
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δi1,j1δi2,j2 −
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)
(νkB)

− 1
2 − 1
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k
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2 . (95)
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For 2D and higher-order Batch Normalization, the expressions are analogous, but with (D + 1)-
dimensional multi-indices instead.

3.7 Nonparametric Layers
3.7.1 Activation Functions

For our experiments, we use two different activation functions: Sigmoid and ReLU. Although many
other activation functions exist, we focus on these as they are arguably the most relevant and
common activation functions in modern deep learning.

f(x) = ReLU(x) = max(0,x) (96)
Jy
x = ReLU′(x) = Θ(x) (97)

Hy
xx = ReLU′′(x) = 0, (98)

where Θ is the Heaviside step function.

f(x) = Sigmoid(x) =
1

1 + exp(−x)
(99)

Jy
x = Sigmoid′(x) = Sigmoid(x)(1− Sigmoid(x)) (100)

Hy
xx = Sigmoid′′(x) = Sigmoid(x)(1− Sigmoid(x))(1− 2 Sigmoid(x)) (101)

All of the above functions should be interpreted as element-wise, i.e. yi = f(xi).

3.7.2 Pooling Layers

A special case of non-parametric functions are Pooling layers such as AveragePooling and MaxPooling
layers. These are comparable to convolutions in that they can be understood as a function moving
over the input, but contrary to convolution layers there are no learnable parameters (no learnable
kernel and no bias at all) and there is no action on a channel dimension. The action of an
AveragePooling layer of window size M , stride s, dilation d and padding P on an input y ∈ RD is
given by

yi = fi(x) =
1

M

M−1∑
k=0

x̃s·i+d·k, (102)

where x̃ is the padded input vector defined as in equation (43). This leads to the local derivatives

OIJ :
∂yi
∂xj

=
1

M

M−1∑
k=0

∂x̃s·i+d·k

∂xj
=

1

M
I (j = s · i+ d · k ∧ 0 ≤ k < M)

=
1

M
I

(
0 ≤ j − s · i

d
< M

)
(103)

OIH :
∂yi

∂xk∂xj
= 0. (104)
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For MaxPooling, the layer action can be expressed as

yi = fi(x) = max
k∈{0,1,...,M−1}

(x̃s·i+d·k) , (105)

i.e. each output node is connected to exactly one input node from its respective subwindow, namely
the node with the maximum value, thus giving us the local derivatives

OIJ :
∂yi
∂xj

= I

(
j = argmax

k∈{0,1,...,M−1}
(x̃s·i+d·k)

)
, OIH :

∂2yi
∂xk∂xj

= 0. (106)

In 2D pooling layers, the window operates independently on both input dimensions, as was
the case with 2D convolution layers. Therefore, for a window size M1 ×M2, the respective local
derivatives of the 2D AveragePool layer are

OIJ :
∂yi

∂xj1j2

=
1

M1M2
I

(
0 ≤ j1 − s1 · i

d1
< M1

)
I

(
0 ≤ j2 − s2 · i

d2
< M2

)
, (107)

OIH :
∂2yi

∂xk1k2
∂xj1j2

= 0. (108)

The expressions for the 2D Maxpooling layer are obtained analogously.
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3.8 Beyond Sequential Architectures
3.8.1 Parallel Layers

Figure 2: Feedforward ANN with parallel layer
structure.

So far, we have described Second Order Back-
propagation for purely linearly sequential feed-
forward ANN architectures. While this covers
a great deal of applications, it may be inter-
esting to consider architectures where the out-
put of one layer is forked to be fed as input
to not just one, but several subsequent layers,
i.e. there is a layer n− 1 and subsequent layers
(1, n), (2, n), ..., (N,n) all satisfying

y(α,n) = f(α,n)(x(n−1)). (109)

In First Order Backpropagation, this is easy
enough, with the gradients at the fork simply
adding up. Unfortunately, for the Hessian with
respect to the loss in Second Order Backpropa-
gation this is not the case, since the expression
contains a quadratic interaction term of the par-
allel layers. Consider a neural network with a
layer structure as featured in Figure 2, with N
parallel, sequential subnetworks, each subnet-
work having a depth of nα layers. Let us define ñ := max{nα|1 ≤ α ≤ N}. As already shown, the
Loss-Input-Hessian can be written as

∂2L
∂xi∂xj

=
∑
k

∂L
∂yk

∂2yk
∂xi∂xj

+
∑
k,l

∂yl
∂xi

∂2L
∂yl∂yk

∂yk
∂xj

. (110)

Next, we expand the expressions using yk =
∑

α yαk to find:
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=:T1

+
∑
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∑
k,l

∂yβl
∂xi

∂2L
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∂yαk
∂xj︸ ︷︷ ︸
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(111)

Now, for more clarity let us define y(α,n−1) := x and y(α,nα) := yα to denote that x is the input to
subnetwork α, while yα is the output at layer nα of subnetwork α. We observe that the first terms
T1 would correspond to the Hessian at the input layer in a purely linearly sequential subnetwork α,
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i.e.

T1 =
∑
k

∂L
∂y

(α,nα)
k

∂2y
(α,nα)
k
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j

≡ H(α,n−1) (112)

Furthermore, we notice we can rewrite the second term using the cOIJs U(α,0),(α,nα) and
U(β,0),(β,nβ). Writing Uα and Uβ for short, we arrive at

T2 =
∑
k,l

∂y
(β,nβ)
l

∂y
(β,n−1)
i

∂2L
∂yl∂yk

∂y
(α,nα)
k

∂y
(α,n−1)
j

= (Uβ)T ·H(ñ) ·Uα. (113)

Introducing the matrix
UΣ :=

∑
α

Uα, (114)

we can put everything together to find{
∂2L

∂xi∂xj

}
ij

=
∑
α

H(α,n−1) +
∑
β ̸=α

(Uβ)TH(ñ)Uα

=
∑
α

H(α,n−1) +

∑
β

(Uβ)T

 ·H(ñ) ·

(∑
α

Uα

)
−
∑
α

(Uα)TH(ñ)Uα

=
∑
α

H(α,n−1) + (UΣ)T ·H(ñ) ·UΣ −
∑
α

(Uα)T ·H(ñ) ·Uα. (115)

For an algorithmic implementation, this means that each layer should multiply their OIJ with the
next layer’s cOIJ to obtain its own cOIJ.

3.9 Residual Connections
Residual connections represent a particularly simple instance of a parallel network architecture. Let
h(n), ...,h(n+m) be successive layers of a neural network and let F := h(n+m) ◦ ...h(n+1) ◦ h(n) define
the concatenation of these layers. Then, the output of this subnetwork F with an additional residual
connection is given by

y(n+m) = y(n) + F(y(n)). (116)

This means we have two parallel networks f(n,1) = F and the identity network f(n,2) = id. Thus,
setting ñ = n+m, the matrices for the residual connection itself are:

U2 = J(n2)
x = I (117)

H(2,n2)
x = g(n2)T ·Hy,(n2)

xx︸ ︷︷ ︸
=0

+J(n2)
x

T ·H(n2) · J(n2)
x = H(ñ). (118)

Using the above equation and inserting it into the expression for UΣ and subsequently into equation
(115), and making use of the symmetry of H(ñ) such that ATH(ñ) = (H(ñ)A)T :{

∂2L
∂xi∂xj

}
ij

= H(1,n−1) + H(ñ) + I ·H(ñ) ·U1 + U1T ·H(ñ) · I (119)

= H(1,n−1) + H(ñ) + H(ñ) ·U1 + (H(ñ) ·U1)T (120)
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3.10 Exclusions
Although we have done our best to cover a wide array of layers currently used in Deep Learning
architectures, a multitude of other layers exist, among them LayerNormalization [Ba et al., 2016],
Attention Layers [Vaswani et al., 2017], and different kinds of sampling layers used in generative
models to name just a few. These have been excluded from the thesis’ body of work both due to
time constraints and for practical reasons: Attention Layers in particular compute tensors with
third-order dependencies on three tensor inputs (dot multiplied with keys, value and query matrices
respectively), which would lead to local derivatives with few non-zero elements and as we will see in
the next chapter, this is a critical requirement for realizing an implementation that can compete
with ordinary second-order backpropagation techniques.

4 Implementation
In this chapter, we discuss the implementation of Stagewise Second Order Backpropagation that
we will use in the experiments of the subsequent chapter to calculate the Hessian and Hessian
approximations.

4.1 O2Grad - A Package for Second Order Backprop
To assess the practical viability of using Second Order Backpropagation to calculate the Hessian
(and approximations thereof), we implemented a package based on PyTorch which we call O2Grad
- a combination of autograd, the autodifferentiation package used in PyTorch, and O2, which is
short for Order Two. The motivation for implementing this package is that at the time of writing
the thesis, none of the currently leading ML frameworks support Second Order Backpropagation
(as investigated in [Mizutani et al., 2005] and expanded upon in this thesis) out of the box. Our
package was implemented with the following requirements in mind:

1. Extensibility: It should be possible to extend the package to support layers and architectures
beyond the ones discussed in the previous section.

2. Reach: The package was supposed to be usable for as many ML researchers as possible.

3. Ease of use: The package should integrate as smoothly as possible with pre-existing ML
frameworks and workflows.

With these in mind, we decided to implement the package building upon PyTorch rather than
competing autodifferentiation ML frameworks Tensorflow/Keras 3 and JAX 4. The reasons for this
decision were as follows: (1) We are familiar with the API of PyTorch and thus expected the
implementation to be the simplest there. (2) At the moment we started working on the thesis,
Tensorflow/Keras was lacking flexibility compared to PyTorch, not supporting some critical
functionality for our use case. For instance, it was only possible to exchange layers with wrapped
layers in a model only to a limited extent (a requirement which is important for design reasons that
we will discuss later). (3) Although JAX can be argued to have the same level of functionality as
PyTorch, it is still a comparatively young and experimental ML framework. It also does not

3https://github.com/tensorflow/tensorflow
4https://github.com/google/jax
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provide implementations for neural networks out of the box (although libraries building on top of
JAX such as FLAX 5 and Haiku 6 do). (4) Finally, the code for a majority of papers currently being
published in major ML conferences up until recently has been written using PyTorch [He, 2019],
which seems to suggest that PyTorch is currently the most popular framework for ML
research.

A version of the package is available along with the rest of the code written for this thesis on a
public GitHub repository 7. Possible future versions will be provided on a separate repository 8.

4.2 Design
Adhering to the requirement of extensibility, we wanted the workflow using O2Grad to diverge as
little as possible from using regular PyTorch. However, the layers provided in Pytorch had to be
expanded with functions to compute the local derivatives discussed in section 3.3, since there is no
out-of-the-box way to do this in Pytorch. Therefore, we designed the general workflow to be as
follows:

1 model = nn.Sequential(...) #Define a sequential model.
2 criterion = nn.MSELoss() #Define a loss criterion.
3 o2model = O2Model(model, criterion) #Prepare the model.
4 o2model.zero_grad() #Set the model gradients to zero.
5 yhat = o2model(x) #Compute prediction from feed-forward step on input.
6 loss = o2model.criterion(yhat, y) #Compute prediction loss.
7 loss.backward(create_graph=True) #Backpropagate loss
8 hessian = o2model.get_hessian() #Retrieve Hessian of the model.

With the exception of steps 3 and 8, these steps are exactly how one would go about computing
the gradients of a model in Vanilla PyTorch. Step 3 is required to wrap the model’s layers and
the loss criterion in matching O2Grad layers and loss criteria that will allow for Second Order
Backpropagation. Three mayor base classes are required to make this possible: O2Loss and O2Module,
and O2Model to wrap everything together, with the second class branching into further subclasses
O2Layer, O2ParametricLayer and O2Container. Figure 3 illustrates the relationships between the
classes of the O2Grad module graphically.

4.2.1 O2Loss

O2Loss is a wrapper class that extends from PyTorch’s torch.nn.Module. Its instances are created
by passing an instance of torch.nn.Module that computes a loss. It is used to enable Second Order
Backpropagation for Pytorch Loss modules and exposes the three core functions

1. def get_loss_input_jacobian(self, x: torch.Tensor,
t: torch.Tensor) -> torch.Tensor

5https://github.com/google/flax
6https://github.com/deepmind/dm-haiku
7https://github.com/luisherrmann/thesis2021
8https://github.com/luisherrmann/o2grad
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2. def get_loss_input_hessian(self, x: torch.Tensor,
t: torch.Tensor) -> torch.Tensor | SparseSymmetricMatrix

3. def get_loss_input_hessian_cached(self) -> Optional[torch.Tensor]

which get an input tensor and a target tensor to calculate the respective OIJ and OIH, respectively.
The two quantities can be calculated by fetching the input x in the forward step and calculating the
Loss-Input-Jacobian and the Loss-Input-Hessian using the integrated PyTorch functions jacobian()
and hessian() from the autograd.functional subpackage.

4.2.2 O2Layer

O2Layer is an abstract class that extends from PyTorch’s torch.nn.Module. It is used to provide
an interface for atomic layers. It exposes the core functions

1. def get_output_input_jacobian(self, x: torch.Tensor) -> torch.Tensor

2. def get_output_input_hessian(self, x: torch.Tensor) -> torch.Tensor

3. def get_loss_input_hessian(self, dLdy: torch.Tensor,
dL2dy2: torch.Tensor | SparseSymmetricMatrix,
dydx: torch.Tensor,
dy2dx2: torch.Tensor,
delete: Sequence[str] = []) -> torch.Tensor

4. def get_chained_output_input_jacobian_cached(self
) -> Optional[torch.Tensor]

For get_output_input_jacobian() and get_output_input_hessian(), the abstract class pro-
vides default implementations using the functions jacobian() and hessian(), which can be used
to obtain the respective Jacobian and Hessian using automatic differentiation, but we observed
that this base implementation is very slow compared to directly computing the Jacobian and
Hessian. Therefore, the idea is that modules for specific layers with O2Grad support extend from
this abstract class and provide their own implementation of these two core functions. The method
get_loss_input_hessian() is used to compute the LIH of the layer, and a default implementation
is also provided here. However, classes implementing this abstract class should not override this
method unless a more efficient implementation specific to the respective layer class is desired. The
second method is important for composed layers and will be discussed further below. Currently
supported modules that extend directly from this class are

1. O2Reshape

2. O2Sigmoid, O2ReLU

3. O2MaxPool1d, O2AvgPool1d

4. O2MaxPool2d, O2AvgPool2d
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4.2.3 O2ParametricLayer

O2ParametricLayer is an abstract class that extends from O2Layer and, in addition to all methods
exposed by O2Layer, also exposes the four core methods

1. def get_output_param_jacobian(self,
x: torch.Tensor) -> torch.Tensor

2. def get_output_param_hessian(self,
x: torch.Tensor) -> torch.Tensor

3. def get_mixed_output_param_hessian(self,
x: torch.Tensor) -> torch.Tensor

4. def get_loss_param_hessian(self, dLdy: torch.Tensor,
dL2dy2: torch.Tensor | SparseSymmetricMatrix,
dydw: torch.Tensor,
dy2dw2: torch.Tensor,
delete: Sequence[str] = []

) -> torch.Tensor | SparseSymmetricMatrix

with the first three method returning the OPJ, OPH and mOPH, respectively. Unlike for the
methods to compute the OIJ and OIH, a default implementation is not provided here, since there is
no general way to compute these tensors using the jacobian() and the hessian() function. Thus,
implementing these methods is mandatory when extending from O2ParametricModule. The fourth
method is used to compute the Loss-Parameter-Hessian for the respective parameter and provides a
default implementation that should not be overridden when implementing this abstract class except
to provide a more efficient implementation for that specific layer class. Currently supported modules
that extend directly from this class are

1. O2Linear

2. O2Conv1d, O2TransposeConv1d

3. O2Conv2d, O2TransposeConv2d

4. O2BatchNorm1d, O2BatchNorm2d

4.2.4 O2Container

In order to build complex models, we need composed layers that can be used to build complex
models. This functionality is covered by the O2Container class, which is an abstract class exposing
the API for composed layers. An O2Container may consist of other O2Module instances, either
O2Layer or O2Container, but it must not include regular PyTorch modules since this would mess
with the ability to run a Second Order Backpropagation through the full model. The class exposes
the following core methods:

1. def get_output_input_jacobian(self) -> torch.Tensor

2. def get_output_input_jacobian_cached(self) -> torch.Tensor
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3. def get_loss_input_hessian(self,
dL2dy2: torch.Tensor | SparseSymmetricMatrix

) -> torch.Tensor | SparseSymmetricMatrix

4. def get_loss_input_hessian_cached(self
) -> Optional[torch.Tensor | SparseSymmetricMatrix]

5. def set_chain_output_input_jacobian(self, value: bool) -> None

6. def set_chain_end_output_input_jacobian(self, value: bool) -> None

7. def get_chained_output_input_jacobian_cached(self
) -> Optional[torch.Tensor]

The functionality of the first four methods should be clear from the verbose names and the previous
class descriptions. The last three are needed to enable calculating of cOIJs, which in turn are required
for parallel layer compositions such as skip blocks. How exactly these methods interact is clarified
in section 4.2.7 on module nesting. As far as implementations go, since we have constrained the
theoretical analysis of this thesis to sequential architectures and ones with parallel connections, we
restrict the implementations to sequential layers and residual blocks, which are reasonably complex
and common building blocks in modern Deep Learning architectures. We provide two composite
layers

1. O2Sequential and

2. O2Residual,

where the former is an O2grad-compatible wrapper for torch.nn.Sequential, and the latter is a
wrapper for a custom class extending torch.nn.Module called Residual, which simply calculates
x+ f(x) if composed of an O2Module that would otherwise calculate a function f .
An important detail to note is that the API expects no such thing as composite parametric layers, since
we believe these can be worked around by implementing suitable subclasses of O2ParametricLayer
and composing them accordingly. The idea underlying the O2Container class is merely to provide a
way to combine layers and pass the loss Hessian back to previous layers using the local derivatives
calculated in its sublayers.

4.2.5 O2Model: Putting Everything Together

Finally, the O2Model class is where everything comes together. An O2Model instance is created
by passing an instance of (1) torch.nn.Module representing a PyTorch model, and (2) a second
instance of torch.nn.Module representing a loss criterion, for example torch.nn.MSELoss(). The
submodules of the model must all be torch.nn.Module instances supported by O2Grad or O2Module
instances. Upon instantiation, the model uses the method replace_with_o2modules() from the
o2grad.recursive package to replace all submodules with O2Module instances, if needed. In
addition, it prepares the modules for backpropagation by (1) distributing the model settings as
well as the Hessian shared object, (2) setting the next_layer attribute in all modules, (3) adding
backward hooks and (4) enabling Second Order Backpropagation in the atomic modules. API
methods intended for user interaction include:
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<<Interface>>

O2Layer

<<Interface>>

O2Layer

- settings
- callbacks

+ get_output_input_jacobian()
+ get_output_input_hessian()
+ get_loss_input_hessian()
+ add_callbacks()
+ add_default_callbacks()

O2LossO2Loss

- _shared_objects

+ get_output_input_jacobian()

<<Interface>>

O2ParametricLayer

<<Interface>>

O2ParametricLayer

-memberName

+ get_output_param_jacobian()
+ get_output_param_hessians()
+ get_mixed_output_param_hessian()
+ get_loss_param_hessian()

O2SequentialO2Sequential

...

<<Interface>>

O2Container

<<Interface>>

O2Container

- dyydx
- chain_dydx
- chain_end_dydx
- callbacks

+ o2children()
+ named_o2children()
+ get_output_input_jacobian()
+ get_output_input_jacobian_cached()
+ get_chained_output_input_jacobian_cached()

1..*1..*

O2LinearO2Linear

...

torch.nn.Lineartorch.nn.Linear

...

<<Interface>>

torch.nn.Module

<<Interface>>

torch.nn.Module

+ forward()

11

O2ModelO2Model

- _shared_objects

<<Interface>>

O2Module

<<Interface>>

O2Module
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Figure 3: UML class diagram illustrating relationships between the main interfaces/classes, along
with some of most important attributes and methods. For instance, an O2Linear layer extends from
O2ParametricLayer and wraps around a torch.nn.Linear layer to extend the latter with Second
Order Backpropagation functionality.

28



1. def distribute_settings(self,
settings=None,
condition: Callable[[nn.Module], bool] = lambda m: True

) -> None

Can be used to distribute a dictionary with settings among all layers satisfying a given
condition.

2. def enable_o2backprop(self) -> None

Enables Second Order Backpropagation.

3. def disable_backprop(self) -> None

Disables Second Order Backpropagation. Calling .backward() on a loss computed from the
model while Second Order Backprop is disabled in this model will not trigger any O2Grad
methods, but run a simple backpropagation.

4. def clear_cache(self) -> None

Forcibly deletes any temporarily stored derivative tensors calculated in the backpropagation
step to free up memory.

Apart from these, the following methods are available to retrieve second order derivative
information:

1. def get_hessian_as_dict(self,
as_type: str = 'dense',
diagonal_blocks=False

) -> Dict[str, torch.Tensor | SparseSymmetricMatrix]

2. def get_hessian_from_input_as_dict(self, input: torch.Tensor,
target: torch.Tensor,
as_type: str = 'dense',
diagonal_blocks=False,
per_batch=False

) -> Dict[str, torch.Tensor | SparseSymmetricMatrix]

3. def get_hessian(self,
as_type: str = 'dense',
as_file=False,
diagonal_blocks=False

) -> torch.Tensor | SparseSymmetricMatrix

4. def get_hessian_from_input(self, input: torch.Tensor,
target: torch.Tensor,
as_type: str = 'dense',
as_file=False,
diagonal_blocks=False,
per_batch=False) -> torch.Tensor | SparseSymmetricMatrix
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5. def get_hessian_eigs_from_input(self, input: torch.Tensor,
target: torch.Tensor,
diagonal_blocks = False

) -> Tuple[torch.Tensor, torch.Tensor]

Methods with the optional parameter diagonal_blocks will return a block diagonal approxima-
tion of the Hessian if the parameter is set to True. The last method will return the eigenvalues and
eigenvectors either of the full Hessian or of the block diagonal approximation, and uses Theorem 2.1
to compute the eigenvalues more efficiently.

4.2.6 Backpropagating Through Simple Models

The starting point for the backpropagation is provided by the O2Loss module. This module’s OIH
is in fact the same as the local LIH, since the output of the module is the loss, and the calculation
of the LIH can be done efficiently in the forward pass of this module using the jacobian() and
hessian() functions of the torch.autograd.functional package.
For all other modules, the calculation of the local derivatives is done in the backpropagation step
rather than in the forward pass as suggested in our original algorithm formulation (see Algorithm
3), since this allows us to generate and keep in memory the respective tensors only as long as they
are needed, therefore reducing the maximum memory usage of the whole Hessian calculation from
start to end. For atomic layers the backpropagation is the most straight-forward, largely following
the pseudocode formulation of the backpropagation discussed earlier. However, other than the
pseudocode might suggest, we do not use a for-loop to implement the (outer) iteration over the
layers, since it is a well-known fact that for-loop performance is usually not very good in Python,
and PyTorch’s autograd engine does already iterate through all layers anyway. Instead, we use the
PyTorch torch.nn.Module method register_backward_hooks() to trigger the Second Order BP
step (see Figure 4). This allows us to register a callback that fires after the module’s backward()
method has been called and receives a module reference and a torch.Tensor representing the
backpropagated loss gradients for that module (with respect to the module’s output, i.e. the LOJ).
Assuming the next layer’s LIH - the current layer’s LOH - has already been calculated and stored by
the next module, the current layer can retrieve this tensor using the next_layer pointer and calling
that module’s get_loss_input_hessian_cached() method. If the layer is configured to chain the
OIJ (and is not a chaining end), it will additionally retrieve the next module’s cOIJ by calling its
get_chained_output_input_hessian_cached() method. Then, the module proceeds to compute
its LIH and the cOIH, and tries to store the tensors to its cache using the try_cache() method,
before trying to delete the tensors retrieved from the next module from that module’s cache. This is
done to immediately free up memory resources used for storing those tensors in an effort to cope
with the memory bottleneck of the Second Order BP algorithm.
Naturally, if the module is an instance of O2ParametricLayer, its local Hessian and the respective
mixed Hessians are also calculated when calling backprop_step().

4.2.7 Backpropagating Through Nested Models

In strictly sequential models without nesting, it is clear which module has to be assigned as
next_layer to any given layer, because a layer’s LOH is the LIH of the next module in the sequence.
However, when the model is nested, it might seem like there are modules on several nesting levels
that qualify as next module for a layer. As an example, in Figure 5, both comp2 and fc2 are
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O2LayerO2Layer O2ModuleO2Module

capture_backprops()

._callbacks._callbacks

next_layer.get_loss_input_hessian_cached()

._cache._cache

on_capture()

try_store('dLdy', .)

SUCCESS

backprop_step()

on_complete()

dL2dy2

try_store('dyydx', .)

SUCCESS

next_layer.try_clear_cache('dL2dx2', .)

SUCCESS

next_layer.get_chained_output_input_jacobian_cached()

dzdy

next_layer.try_clear_cache('dyydx', .)

SUCCESS

try_store('dL2dx2', .)

SUCCESS

autogradautograd

Figure 4: UML sequence diagram illustrating the interactions between an O2Layer and the next
module during backpropgation. The objects denoted ._callbacks and ._cache are attributes of
O2Module, but are included with separate lifelines for more clarity. The backpropagation step is
triggered by the autograd engine calling the backward hook capture_backprops(), and exited by
calling the O2Layer callback oncomplete(). In a purely sequential architecture, the next_layer is
an instance of O2Loss or O2Layer or O2Container.
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Figure 5: A nested module, with blue lines denoting parent-child relationship (e.g. fc1 is
a child of comp1 ) and grey arrows denoting next_layer-relationships, where LOH(layer) =
LIH(layer.next_layer). The dashed arrows point to modules that are direct feedforward suc-
cessors on the same nesting level, but which do not satisfy said relationship.

modules that come after relu1 and hence, both might seem like suitable candidates for succession.
Indeed, if comp2 were an O2Sequential layer, this would be true, since the input would be passed
unmodified to comp2, hence not affecting the LIH. In an O2Residual however, this would not be
the case (see 120). Generally, the input to an O2Container always precedes the input to one of its
sublayers. Hence, the LOH of any given module must be the LIH of that successive layer with the
lowest nesting level. More formally:

Theorem 4.1. Let l1, l2 be successive (atomic) O2Layers, and let p be their maximum-depth common
ancestor (i.e. there is no node v with depth(v) >= depth(p) s.t. both l1 and l2 are its children).
Furthermore, let p1, p2 be direct children of p and let l1 be on a branch of p1, l2 on a branch of p2.
Then, the LOH of l1 corresponds to the LIH of p1.

Assigning the next layer to any module can therefore be done through a simple recursion as
featured in Algorithm 4.

Algorithm 4 Recursive function Python code for setting the next layer from which to backpropagate
the LIH of a module in nested architecture.
def set_next_layer(module, layer) -> None:

if isinstance(module, O2Layer):
module.next_layer = layer

elif isinstance(module, O2Container):
module.next_layer = layer
children = [*module.o2children(), layer]

for i in range(len(children)-1):
set_next_layer(children[i], children[i+1])

However, there are two remaining problems that need to be tackled in order for the Second Order
Backpropagation to work: (1) The O2Container layer needs to compute the OIH and cOIJ using the
results of the submodules and (2) the execution order of backward hooks during backpropagation is
strictly sequential, but not strictly hierarchical. By hierarchical execution order, we mean that
backward hooks of a composed module (such as torch.nn.Sequential) get executed only after
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the backward hooks of all its submodules have been executed. Unfortunately, in PyTorch, this is
generally not the case. For instance, consider a composed PyTorch module as in Figure 4.2.7. If the
execution of the backward hooks were hierarchical, the order of backward hook execution would
be as follows: model['fc2'] -> model['fc1'] -> model. However, our experiments show that
the actual execution order is consistently model['fc2'] -> model -> model['fc1']. So while the
order of backward hook execution is strictly sequential for modules on the same nesting level,
the order is not hierarchical across nesting levels. The above toy example is merely designed to
bring forth our point, but we have confirmed this kind of behavior also with more complex models,
with the composed module backward hooks being executed after the last submodule’s backward
hooks. This is a problem, since - taken together with point (1) - it means we cannot use backward
hooks to run Second Order BP through composed modules, at least not out-of-the-box.

fc1: nn.Linear (3) fc2: nn.Linear (1)

model: nn.Sequential (2)

Figure 6: A nested PyTorch model annotated with the module’s execution order of backward hooks.

The solution we devised for this problem was to use a callback chaining system to com-
pute O2Containers’ local derivatives only after those of all their O2Layer children have been
computed. The sequence diagram of Figure 8 provides a graphical description of how the call-
back system works. O2Container modules can add callbacks to their children which point to
an own method or callback. In this way, an O2Container can register a function controlled by
its own scope with one of its O2Layer children. So whenever a O2Layer’s backpropagation step
completes, it calls the on_complete() callback, where the parent O2Container has registered
its own on_child_complete() callback during initialization. The registered callback calls the
children_complete() function to evaluate whether all children of the O2Container module have
finished evaluating. If so, the on_child_complete() callback triggers the on_children_complete()
callback, which starts the backprop_step() on the O2Container module. For example, the
O2Sequential would register its on_child_complete() callback with the first O2Layer in its layer
sequence and always return True in children_complete(), because the first module in the sequence
being complete implies that the other modules in the sequence have also completed. An O2Residual
layer simply registers its on_children_complete() callback with its only direct O2Layer child, and
thus also always returns True in children_complete(). While these two O2Container realizations
do not require more than one child to finish, a composite layer with n parallel layers as discussed
in section 3.8.1 would require all of the n parallel layers to notify their completion, thus need for
different callbacks on_child_complete() and on_children_complete().

In the backpropagation step, the O2Container module goes essentially through the same steps
as an O2Layer instance, accessing the next module’s LIH and cOIJ. However, while an atomic layer
requires only the cached input to compute its own OIJ and LIH, an O2Container may have to
access its children cOIJ and LIH as well. Such is the case with the O2Residual layer, which requires
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the cOIJ of its only direct child to calculate its OIJ, and both the cOIJ and the LIH of its only
direct child to calculate its own LIH (see Section 3.9). The O2Container also handles the deletion
of those cached tensors in the children from which they are extracted, since by the time they have
been used by the parent’s backpropagation step, the tensors are no longer required: Previous layers,
even those on the same nesting level as the children of the O2Container, will require the tensors
either from the O2Container itself or from a parent of the O2Container, thus having next_layer
point to one of those.

Figure 7: A nested model with OIJ chaining in the O2Residual layer res1. Layers that chain their OIJ
to the next module (where chain_dydx = True and chain_end_dydx = False) are highlighted in
teal, OIJ chaining ends (where chain_dydx = True and chain_end_dydx = True) are highlighted
in lime green.

A detail that we have not explained so far is how the sublayers of a container handle chaining of
the OIJs. Consider, for instance, an architecture as in Figure 7. The root-level O2Sequential does
not need to chain the OIJs of its children, because it is the root-level layer and thus it does not have
to backpropagate anything. On nesting level 1, the O2Sequential seq1 does not need to chain its
children’s OIJs either, because computing its own OIJ (which would be the chained OIJ over all its
direct children) is not required anywhere in its backpropagation step. However, the O2Residual
layer res1 requires the OIJ of its direct child, seq2, in order to calculate its own LIH for the purpose
of backpropagating it to seq1 and its children. Therefore, the O2Container must enable chaining
in seq2, since it can only calculate its own OIJ by chainin the OIJs of its children. But seq3 and
seq4, too, can only calculate their own OIJ by chaining their respective children’s OIJs. That is, all
direct and indirect children of res1 need to enable chaining. This is what the attribute chain_dydx,
chain_end_dydx and the respective setter methods

1. def set_chain_output_input_jacobian() and

2. def set_chain_end_output_input_jacobian()

are for. On initialization, the O2Residual module will call the first setter with argument True on
seq2. This will set seq2.chain_dydx to True, and call the setter method on all children of seq2, and
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so on, therefore recursively setting all children of res1 to chaining mode. Additionally, the last child
(in feedforward order) of any O2Container below res1 is marked as chaining end: The layers need
to know if they are an intermediate or an end point of the OIJ chaining, since this will determine
the iteration step. That is, res1 needs to tell seq2 it’s a chaining end point, which in turn needs
to tell seq4, which finally tells relu3, and seq3 tells relu2. Note that it would not suffice to set the
last child on every nesting level below res1 as a chaining end point (in the example only relu3 on
nesting level 4), since in that case, relu2 would chain its OIJ to the cOIJ coming from seq4. But we
don’t want this to happen, because it would interfere with the OIJ calculation of the parent, seq3.
Hence, each composed layer needs to set its last layer in feedforward order to be a chaining end.

4.3 Exploiting Sparsity
4.3.1 General Considerations

The Second Order Backpropagation algorithm should, in general, be expected to suffer from a
memory bottleneck, since naively, the size of the local derivatives scales quadratically (for the
Jacobians as O(mn), where m is the size of the ’dividend’ and n the size of the ’divisor’ tensor
in the derivative) and even cubically (for the Hessians as O(mno) if n, o are the sizes of the two
’divisor’ variables’ tensors) with the total size of the tensors involved. At least, this is the case when
the local derivatives are represented as dense tensors (i.e. a dense tensor of Dth order is represented
as a D-dimensional cube of numbers). This kind of representation would quickly render the mere
storage of the local derivatives unpractical even for relatively small neural networks. For instance,
consider a fully-connected layer with an input dimension of 1000 and and output dimension of
1000. Furthermore, let us assume we feed the layer a minibatch with 64 samples, such that the
input and the output tensor of the layer have dimensions 64× 1000. In that case, the OIJ of the
linear layer would be a tensor with 642 · 10002 = 4.096 · 109 entries, which would correspond to
at least 16.384GB of memory assuming 32bit float representation. Taking into account the other
tensors that need to be stored for the duration of the Second Order Backpropagation, this is a task
that is currently only feasible for computers with lots of RAM, or with a very fast access to swap
memory, allowing the relevant elements of the tensors to be loaded into memory on demand for
tensor operations. However, the tensors of all the local derivatives discussed in this thesis have a
high sparsity - meaning that they have a high proportion of entries that are 0:

sparsity(T ) = 1− #nonzero_elements(T )

#elements(T )
(121)

One of the less sparse examples is the OIJ of the linear layer, where every output value is
connected to every input value, but only for the same sample, since linear layers do not mix elements
across the batch dimension! Thus, given input dimension M , output dimension N and batch size B,
the number of nonzero elements in the OIJ is no greater than B ×M ×N , which corresponds to a
sparsity of B−1

B . So asymptotically, as the batch size goes to infinity, the sparsity goes to 1 and the
proportion of nonzero values vanishes. Needless to say, it is a waste of memory to store every single
value of a tensor where most of the values are zero anyway, and it would be more efficient to store
the non-zero values only, along with some information regarding their position in the tensor.

A possible way of realizing this is using a sparse COO (Coordinate list) representation, in which
for each non-zero value, the value and the multi-index giving the position of the element in the
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Figure 8: UML sequence diagram illustrating the interactions between an O2Container module,
the submodule from which its backprop step is triggered and the next module, from right to left.
Caching is not included. 36



Layer OIJ OIH OPJ OPH mOPH

linear BMN 1 BMN 1 BMN

conv1d BCinCout(M−K+2P )K
S 1 BCinCoutMN 1 BCinCout(M−K+2P )

S

bn1d CB2N2 CB3N3 BNC 1 CB2N2

relu BN 1 / / /

sigmoid BN BN / / /

Table 1: O(.) upper bounds of memory complexity of the local derivate tensors for selected layers
assuming a sparse COO representation. The expressions are derived making use of the Kronecker
deltas and indicator functions appearing in the expressions for the respective local derivative tensors,
derived in the previous chapter.

tensor is stored. For instance:

A =

(
1 2
0 0

)
⇒ indices:

(
0 0
0 1

)
, values:

(
1 2

)
(122)

So given n values, a tensor of order D can be represented using at most (D + 1)N elements. By
compressing the tensor to a vector, the tensor can even be represented using only 2N elements (but
implementing some tensor operations such as the tensor dot product becomes more difficult this
way). Returning to the previous example, the OIJ of the examplary linear layer is a 2D tensor (a
matrix), and could thus be represented using 3BMN = 192 · 106 entries, which is equivalent to
1.28GB of memory, assuming the indices are represented as 64bit integers - a clear improvement
by one order of magnitude. Table 1 contains an overview of the memory complexity for the local
derivatives of selected atomic layers discussed.

Conveniently, COO sparse representation is also supported by PyTorch through the package
torch.sparse 9, which provides support for sparse COO tensor representation and operations (with
GPU support). Unfortunately, at the time of writing this thesis PyTorch does not support matrix
multiplications between sparse matrices out of the box, but this functionality is provided by the open
source pytorch_sparse 10 package, more specifically through the spspmm() function. In O2Grad, we
rely on torch.sparse and the pytorch_sparse package to provide the required functionality.

4.3.2 SparseSymmetricMatrix

The memory efficiency can be improved even further by making use of the symmetry property of the
Hessian, i.e. ∂2L

∂xi∂xj
= ∂2L

∂xj∂xi
. A matrix H ∈ Rn×n is symmetric iff it can be decomposed as a sum

H = L + D + LT , L,D ∈ Rn×n, Lij = Hij∀j < i,Dii = Hii (123)

where L is a lower triangular matrix with its entries corresponding to the subdiagonal values of H
and D is a matrix containing only the diagonal values of H. From this representation, it follows that

9https://pytorch.org/docs/1.9.0/sparse.html
10https://github.com/rusty1s/pytorch_sparse
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the memory usage of Hessian matrices can be cut approximately in half by storing tensors L and D
instead. The tensor operations relevant for our application (sum and dot product) can be realized
without ever having to store L and LT in memory at the same time. For S a sparse symmetric
matrix and T a non-sparse matrix, the sum can be calculated as S+T = (L+D+T) +LT , where
transposition of L is done in-place (freeing up the memory reserved for L) after computing the
expression in the brackets. The original tensor L can be restored by transposing LT again, which
will slightly increase the computation cost as payoff for the reduced memory usage. If both S and T
are sparse symmetric matrices with T = R + E + RT , the sum can be written as

S + T = (L + R) + (D + E) + (L + R)T , (124)

which is again a sparse symmetric matrix, so it suffices to compute the sums L+R and D+E and
store these as subdiagonal and diagonal of the resulting sparse symmetric matrix. For matrix dot
products we generally have (L + D + LT ) ·T = (L ·T + D ·T) + LT ·T. Again, holding both L
and LT in storage can be avoided by first evaluating the expression inside the brackets and then
transposing L to evaluate the rest. If T is also a sparse matrix, the expression stemming from the
above representation is more complex:

ST ·TT = L ·R + L ·E + L ·RT

+ D ·R + D ·E + D ·RT

+ LT ·R + LT ·E + LT ·RT (125)

Evaluating the above expression without increasing the memory usage will require transposing L
and R inplace at least 1 or 5 times, respectively. Note that the resulting tensor may be sparse, but
will generally not be a symmetric tensor. However, for what we call a twin dot product TT · S ·T
between a matrix S and a matrix T, the result is always symmetric if S is symmetric. This follows
simply from

(T · S ·TT )il =
∑
j,k

TijSjkT
T
kl =

∑
j,k

= TlkSkjT
T
ji = (T · S ·TT )li (126)

Since there is no class in PyTorch already providing the required functionality, we imple-
ment an own class SparseSymmetricMatrix that supports sums and dot products with instances of
torch.Tensor (both strided and sparse) and other instances of the class. In addition, we implement a
function linalg.twin_matmul_mixed(S, T) which returns an instance of SparseSymmetricMatrix
when matrix S is also an instance of the class.

In the next section, we investigate empirically how the implementation of the Second Order BP
algorithm fares in terms of time and memory usage, and try to pinpoint whether the algorithm
for computing the Hessian using Second Order Backpropagation is competitive with the best
PyTorch-based algorithm.

5 Measurements
For the measurements analyzed in this section, we use snuffles, a server kindly provided by Prof. Dr.
Tim Landgraf’s lab. The system features an AMD Ryzen Threadripper 1950X processor, 4x Nvidia
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GeForce RTX 2080 TI GPUs (Driver version 460.91.03) with 11GB VRAM, and 64GB RAM. The
system runs on Debian 5.10.46-4 (2021-08-03) x86_64. All GPU measurements are run on a single
GPU node, since our O2Grad package does currently not support multi-GPU setups. To set up
the Python environment, we use an installation of miniconda (4.10.3) and create an environment
with PyTorch 1.9.0 and CUDA version 11.2 in the accompanying cudatoolkit. The root folder of the
project repository for our thesis contains an ‘environments.yml‘ file for creating a conda environment
clone and reproducing the measurements discussed in this section. The time measurements are
performed using the timeit11 package, while the memory measurements are performed using the
memory_usage() function of the memory_profiler12 package. While PyTorch does have an own
profiling package torch.profiler, we deliberately use the above packages instead, since the memory
profiler turned out to be very slow, such that using it would have slowed down our measurements
considerably. Unfortunately, this means that the reliability of the memory usage measurements
might not be as high as they would be using the profiler provided by PyTorch. Furthermore,
since the memory_profiler module only tracks CPU memory usage, the memory measurements
performed on CUDA devices will only reflect memory usage on the CPU, but not on the CUDA
devices. We perform the measurements nonetheless, since they can be used to infer information
about the memory usage of the algorithm in combination with the measurements on CPU.

5.1 Tensor Generation
An important question to be addressed is whether the tensors should be generated in a dense or
sparse layout. While our theoretical analysis showed that the memory complexity of the sparse
representations should be expected to scale favorably compared to a dense representation, we want
to confirm this finding experimentally. To do so, we prepare a grid of batch sizes, input sizes and
output sizes for a single instance of O2Linear and compute the layer’s local derivatives using the
respective API functions, while measuring the time and estimating the memory usage from the
number of elements in the tensor. As Figure 9 demonstrates, there is a time-memory tradeoff as a
function of the input and layer dimensions for generating the OIJ of a linear layer with a sparse
versus a dense layout, although the generation times for both layouts remain roughly in the same
order of magnitude. For the dimensions investigated here, the memory sizes of the OIJ are in an
unproblematic domain. For the OIH, on the other hand, both the time for generating the tensor
and the memory required in dense layout increase so quickly that using a sparse layout is the only
scalable option for working with larger layers, as seen in Figure 10, since the OIH is zero everywhere.
The OPJ, OPH and mOPH offer a similar picture (see Table 20, 21 and 22 in Appendix C). Tables
5, 7, 9, and 10 with the measurement values can be found in Appendix B.

To see how the return layouts of the local derivative functions impact the memory usage and
computation time when used in the actual Second Order Backpropagation algorithm, we compute
the Hessian on a 100-20-10 MLP with sigmoid as activation functions and inputs of batch size 16, for
all possible configurations of return layouts. As we can see in Table 2, the highest memory usage of
10.5GB is unsurprisingly obtained when exclusively using strided tensors. While the time required
to compute the Hessian is also high at approximately 4.3s in this case, the worst configuration in
terms of runtime is obtained when only the OIJ and the OPJ are returned as sparse tensors. This
makes sense because the OIJ and the OPJ benefit the least from having a sparse representation,
and indeed the memory usage even seems to increase for the dimensions chosen in this particular

11https://docs.python.org/3/library/timeit.html
12https://github.com/pythonprofilers/memory_profiler
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Figure 9: Time-Memory tradeoff of generating the dense/sparse OIJ tensors of a O2Linear layer.
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Figure 10: Time and memory usage of generating the dense/sparse OIH tensors of a O2Linear layer.
In the sparse case, these are close to zero, since the OIH is the zero matrix.
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example. At same time, the sparse representation incurs a computational overhead, which is only
worth paying when the sparse representation strongly reduces the number of elements stored. This
also explains why a similar configuration, with the OIH also sparse, leads to the worst runtime of
4.5s. Meanwhile, the lowest memory usage is obtained when all tensors except for the OPJ are
sparse, at a mere 1.1GB, which is an improvement by one order of magnitude, and it is much faster,
too, taking only 0.19s to compute - an improvement by a factor of 21×! By returning both the OPJ
and the OIH in strided layout, the computation time can be reduced even further to a mere 0.09s,
which is an improvement by a factor of 45×, while only using slightly more memory (1.173GB vs
1.184GB). We therefore use the latter configuration as the default for the return layouts in O2Linear
layers.

While the above results already show impressive performance improvements, we can also see
that despite all our optimizations, it takes a considerable amount of almost 1.2GB of memory to
run the Second Order Backpropagation algorithm on this rather small model, already hinting at the
fact that we can probably only ever hope to use this algorithm as a scientific tool on toy models.

5.2 MLP
To see just how far we can take the algorithm, we investigate how the computation time and memory
usage scale when variating (a) input size and (b) batch size. To do so, we prepare a N - N - N MLP,
where N is the input size: Since we are interested in seeing how the algorithm performance scales
with network size, the intermediate and output layer size are always set to equal the input layer size
and are not varied as well. For each tuple (input_size, batch_size), we run the experiment for
all 4 possible configurations: {'autograd', 'o2grad'} × {'cpu', 'gpu'}. Furthermore, given any
tuple (input_size, batch_size) and for all 4 possible configurations, we calculate the maximum
absolute deviation of the Hessian computed w.r.t. the baseline configuration ('autograd', 'gpu')
- the error for the baseline configuration is zero - to (1) check that the Hessians computed are actually
correct and (2) see if there is a dependence of the quality of the Hessian computed on network size.
Table 12 contains all results (they are also available in the results folder in the official repository).

Batch Size

As we can see in Figure 11a, for an input size of 100, O2Grad on GPU is consistently faster than
the autograd methods and the absolute time remains small within the inspected range. For the
maximum batch and input size of 32 and 100, respectively, O2Grad takes 1.5s, while the autograd
methods take 15.4s and 18.3s on CPU and GPU, respectively. That’s not an improvement as big
as for the 100-20-10 network, but still a significant one if one wants to compute the Hessian of
a network frequently during the training, since calculating the Hessian would by far be the most
expensive step. Interestingly, the computation time for O2Grad on CPU grows far more quickly
than on GPU, so the initial advantage over the autograd methods at batch size 1 quickly melts away
and the autograd methods likely surpass O2Grad somewhere between a batch size of 20 and 25.
This may be because the architecture of the GPU is better suited to deal with operations on big
tensors through vectorization.

The results for the memory usage are very unintuitive, since the memory usage appears to
decrease with increasing batch size for the O2Grad methods (see Figure 12a). While the parameter
Hessian’s size itself is indeed independent from the batch size, the intermediate tensors calculated in
the algorithm are not, and therefore we would expect the memory usage to increase along with the
batch size. The behaviour shown might make sense for O2Grad on GPU, since the intermediate
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dydx dy2dx2 dydp dy2dp2 dy2dxdp time in s mem in MB
sparse sparse sparse sparse sparse 2.191 1389
sparse sparse sparse sparse strided 4.485 5684
sparse sparse sparse strided sparse 2.268 5314
sparse sparse sparse strided strided 4.564 9711
sparse sparse strided sparse sparse 0.191 1173
sparse sparse strided sparse strided 2.510 6195
sparse sparse strided strided sparse 1.195 4571
sparse sparse strided strided strided 3.638 9908
sparse strided sparse sparse sparse 0.957 2739
sparse strided sparse sparse strided 3.327 6409
sparse strided sparse strided sparse 2.005 5931
sparse strided sparse strided strided 4.333 10471
sparse strided strided sparse sparse 0.811 2807
sparse strided strided sparse strided 3.274 6575
sparse strided strided strided sparse 1.834 5893
sparse strided strided strided strided 4.173 10427
strided sparse sparse sparse sparse 0.199 1183
strided sparse sparse sparse strided 2.554 6247
strided sparse sparse strided sparse 1.224 4570
strided sparse sparse strided strided 3.477 10196
strided sparse strided sparse sparse 0.092 1184
strided sparse strided sparse strided 2.364 6234
strided sparse strided strided sparse 1.146 4489
strided sparse strided strided strided 3.446 10001
strided strided sparse sparse sparse 0.851 2695
strided strided sparse sparse strided 3.249 6328
strided strided sparse strided sparse 1.908 5843
strided strided sparse strided strided 4.285 10170
strided strided strided sparse sparse 0.755 2774
strided strided strided sparse strided 3.165 6613
strided strided strided strided sparse 1.862 5544
strided strided strided strided strided 4.027 10504

Table 2: Time and memory usage for calculating the Hessian of a 100-20-10 MLP with sigmoid as
activation function on CPU, given all possible configurations of the return layout of the different
local derivative methods. Highest time and memory usage are highlighted in bold red, lowest time
and memory usage are highlighted in bold green.
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Figure 11: Time required to compute the Hessian of an N - N - N MLP, as a function of (a)
batch size and (b) input size N , for fix input_dim and batch_size, respectively. Annotated with
minimum speedups of O2Grad on GPU over the autograd methods.

tensors will all be generated and used for computation on the GPU, which is not tracked by
memory_profiler, but this does not explain why the memory usage also decreases for O2Grad on
CPU. Further investigation is required to identify the cause. The errors of the O2Grad methods do
not appear to show any dependency on the batch size and are negligible at an order of magnitude of
10−8 (see Figure 13a).

Input Size

As we would expect, the input dimension, which for this configuration scales the number of
parameters in the network quadratically. Thus, we should expect time and memory usage to increase
quadratically with the input dimension. Consider the computation time results for a fixed batch size
of 32 (see Figure 11b). O2Grad on CPU scales least favourably in the inspected range, increasing in
an accelerated fashion and overtaking the autograd methods somewhere around an input size of
50. The increase in computation time of O2Grad on GPU also accelerates, but at a smaller rate.
Naturally, where the impact of the increasing input sizes shows most is in the memory usage (see
Figure 12b). The memory usage increases for all methods at approximately the same rate, since the
biggest consumer of CPU memory is the Hessian being generated at the end of the calculation and
all earlier computation steps stay below the total memory required at the end of the computation.
The maximum error seems to be approximately constant at a magnitude of 10−9 (see Figure 13b).
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Figure 12: Memory used to compute the Hessian of an N - N - N MLP, as a function of (a) batch
size and (b) input size N , for fix input_dim and batch_size, respectively.

MNIST

Finally, we want to prepare a model that is suitable for training on the MNIST handwritten digit
dataset 13. The dataset contains 28px × 28px greyscale images of digits with their respective labels.
While MNIST is a simple problem by today’s standards, it is suitable for training and analyzing
toy models because it is a low-dimensional problem with natural, easy-to-visualize data. For this
experiment series, we set a fix input dimension of 784, fix an output dimension of 10 and variate
only the intermediate dimension and the batch size. All measurements are featured in Table 13.

The measurement results give us an idea of the algorithm’s limitations. At a batch size of 32 and
intermediate dimension of 20, O2Grad on GPU is no longer capable of calculating the Hessian. This
also applies to an intermediate dimension of 30, irrespective of the batch size. O2Grad on CPU is
still faster than the autograd methods in this range, but takes 8.1s for an intermediate dimension
of 30 and a batch size of 32, which is a speedup of just 2.1× compared to the autograd method
on CPU, while also requiring an extra 3.5GB in memory. However, we confirmed experimentally
that an MLP can achieve a reasonable training performance for MNIST with just 20 intermediate
neurons and for a batch size of 16, and O2Grad on GPU takes just 0.5s for calculating the Hessian
of an MLP given these hyperparameters, while autograd on CPU takes a full 9.9s seconds. Of course,
these findings further reinforce the observation that O2Grad is nowhere close to being useful for
practical applications: Currently, the best non-convolutional ANN architecture is a 6-layer ANN
with a 784-2500-2000-1500-1000-500-10 architecture according to the MNIST homepage, and the
number of parameters in this network would be impossible for O2Grad to tackle. But optimal
performance is not necessarily relevant in research concerned with understanding the inner workings

13http://yann.lecun.com/exdb/mnist/
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Figure 13: Maximum absolute errors of computing the Hessian of an N - N - N MLP, as a function of
(a) batch size and (b) input size N , for fix input_dim and batch_size, respectively. The reference
Hessian is the one calculated with the autograd method on CPU.

of ANNs, while speed is often a concern.

5.3 1D CNN
So far, we have seen that O2Grad leads to a considerable reduction of Hessian calculation time for
small MLPs, while also incurring a high memory cost. However, one might hope for the results
for 1D convolutional architectures to be better, since we have shown in section 3.6.2 that the local
derivatives of 1D convolutions are very sparse. To test this idea, we set up a 1D convolutional
architecture that is determined by 4 hyperparameters: input dimension, output channels, block
count and batch size. The architecture we use for testing is shown in Figure 14. Note that we
don’t include Batch Normalization layers even though they are a common layer type used in CNN
architectures, because the local derivatives are less sparse than those of other layer types and thus
restrict the dimensions of the networks we can efficiently calculate with O2Grad. Also, note that all
local derivate tensors are generated as sparse tensors, since we noticed that the algorithm runs into
CUDA OOM exceptions very quickly otherwise, even for low-dimensional layers.

Figure 14: 1D CNN architecture used for the per-
formance measurements of O2Grad. Name map-
ping:
D - input dimension,
cout - output channels,
T - block count,
b - batch size

The full results are available in Table 14.

Input Size

For the 1D CNN , we expected the computa-
tion time as a function of the input dimension
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to scale differently due to the sparse connectiv-
ity of the convolution layers. In addition, the
greater the input size, the more downsampling
layers our CNN architecture will have. How-
ever, this expectation was mostly not met (see
Figure 15a). For the parameters considered,
the computation time with autograd on GPU
remains constant or exhibits small growth, as
was the case with the input size for the MLP,
while the computation time on the CPU seems
to drop between an input dimension 16 and 32,
before slowly (linearly?) increasing thereafter.
This time drop is rather counterintuitive and
we are not able to provide any fundamental ex-
planation for it. Therefore, we have to assume
this has something to do with internal details
of PyTorch’s implementation. For O2Grad, the
computation time matches the behaviour of the
input size in the MLP case: On the GPU, the
time increases very slowly (linearly) in the mea-
surement range, while on the CPU it increases
quadratically. More importantly however, we
notice that O2Grad on GPU provides once again
an enormous boost in computation time over the
autograd methods, with an impressive improve-
ment by a factor of 62× for the smallest input
size of 16, and a more moderate improvement by
a factor of 11× for the largest input size of 100.
Interestingly, memory usage seems to slightly
decrease for all methods as input dimension increases (see Figure 16a), which is a theoretically
unexpected result and must therefore be related to some internal of PyTorch’s backpropagation, or
possibly to Python’s garbage collection. The error appears to be stable in an order of 10−8 (see
Figure 23a).

Output Channels

Since neuron connectivity over the channel dimension of convolution layers is exactly as for a dense
linear layer, we expect the computation time as a function of channel count to scale exactly as for the
input size in the MLP, i.e. quadratically. Our measurements approximately match the expectation
(see Figure 15b). For O2Grad on GPU, computation times for the number of output channels
increases seemingly linearly as a function of channels in the inspected range. However, the memory
usage is difficult to explain, peaking at 10 channels, but dropping again at 15 channels (especially for
autograd on CPU, with a drop of memory usage by over 50%) (see Figure 16b). Since this happens
regardless of the method used, we suspect this must be related to some internal implementation
detail of autograd’s backpropagation for this kind of architecture, with the memory usage improving
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for a certain number of output channels in the O2Conv1d layer. Another possible explanation is
that this is in some way related to Python’s garbage collector. Interestingly, a similar peak can be
observed in the error at a block count of 5 (see Figure 23b) and for all of the methods compared to
the reference method, so this must be an intrinsic numerical error coming from some operation in the
default autograd backpropagation. In any case, since the errors stay within a perfectly acceptable
order of magnitude of 10−8 to 10−7, but it would be interesting to understand the origin of the
drop in memory for the output channels, since it could pave a way to an improvement in memory
efficiency of all methods.

Block Count

For the block count, we expect the computation time to scale quadratically in our chosen architecture,
since every block contains a parametric layer, and assuming those layers have the same number of
parameters, the number of Hessian blocks H[s][t] to compute increases quadratically with the
number of parametric layers and thus with the number of blocks. Our observations appear to be in
line with our theoretical expectations (see Figure 15c). Both for the memory usage and the error,
we observe a similar dependence on block count (see Figure 16c and 23c) as on channel count, and
we must assume the same explanation applies here as well.

Batch Size

As we would expect, we observe a dependence of computation time on batch size (see Figure 15d)
similar to that of the MLP, although the curvature of the quadratic increase is small for both O2Grad
methods and barely appreciated in the plot. The dependence of memory usage on batch size shows,
again, a similar behaviour as the dependence on channels and block count, with the memory usage
dropping for a batch size of 16 (see Figure 16d). We assume the underlying source is the same as
for the drop in memory usage observed in the output channels and block count plots, thus making
further investigation necessary. For the error, we observe what appears to be an approximately
linear increase as a function of batch size in both O2Grad methods, while the error for the autograd
methods remain stable (see Figure 23d). However, this may only be an apparent trend and the error
might drop to lower levels, as observed in the error plots for output channels and block count.

Although our results show that the computation time of the Hessian still benefits greatly from
the usage of O2Grad on GPU, we have yet to find out whether this benefit can be sustained for 2D
CNNs. An input size of 64 may be a reasonable size for 1D toy problems, but since 2D convolution
layers have two input dimensions, this translates to an input size of merely 8 per dimension, which
we expect to be on the lower end of what can be considered a suitable problem for 2D CNNs.
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Figure 15: Time to compute the Hessian of a 1D CNN, as a function of (a) input size, (b) output
channels, (c) block count and (d) batch size, for a fix parameter baseline of (input_size = 64,
output_channels = 15, block_cnt = 20, batch_size = 16. The parameters that are not subject
to variation in the respective graphic correspond to the baseline. All data points are averaged over 3
measurements (except when the input size is 8, in which case the data points come from a single
measurement). Annotated with smallest speedups over the autograd methods.
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Figure 16: Maximum absolute errors of computing the Hessian of a 1D CNN, as a function of (a)
input size, (b) output channels, (c) block count and (d) batch size, for a fix parameter baseline of
(input_size = 64, output_channels = 15, block_cnt = 20, batch_size = 16. The parameters
that are not subject to variation in the respective graphic correspond to the baseline. All data
points are averaged over 3 measurements (except when the input size is 8, in which case the data
points come from a single measurement).
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5.4 2D CNN
Unfortunately, the Second Order BP algorithm seems to be less suited for 2D CNNs. To test the
viability of using the algorithm for calculating the Hessian on a small 2D CNN, we use a convnet
using the same structure as the one defined in the previous section, but replace all 1D layers with
their respective 2D layer equivalents. We analyze the performance of Hessian calculations subject
to MNIST-sized input. We choose a block size of 1, channel dimensions of 10 and batch sizes of
1, 2 and 4. The results can be seen in in Figure 17 and Table 3: Using the GPU and O2Grad,
we are barely able to compute the Hessian of the network for batch size 1, and for minibatches
of size 2 and 4, the algorithm runs out of GPU memory and fails with a CUDA OOM exception.
Although for a batch size of 1 and at a 5.4s computation time, it is still 3.7× faster than autograd
(at a 20.0s), the speedup is also much smaller than the ones measured for the fully connected
network. A plausible explanation for this decrease in speedup is that autograd backpropagates
much faster through sparse layers like 2d convolutional layers than through dense layers such as
fully connected layers, thus decreasing the time advantage of O2Grad. Unfortunately, the situation
does not improve when using O2Grad on a CPU, as the algorithm consistently takes >5× more
time than its autograd counterparts, while also using far more memory as the batch size increases.
Unfortunately, this renders O2Grad useless for anything other than very small toy examples when
working with 2D (fully) convolutional architectures, but given how time-efficient autograd is at
performing a Second-Order BP through convolutional architectures in comparison, it might be better
to rely on autograd in medium- to higher-dimensional cases.

Since the prospect of calculating the Hessian online not just for shallow MLPs and 1D CNNs,
but also for 2D CNNs is an interesting research objective, we try measuring the performance for a
dataset with even smaller inputs. The USPS handwritten digit dataset 14 contains 4649 greyscale
images of handwritten digits, sized 16 × 16 pixels each, making it a suitable candidate. Table 15
gives us an impression of what can be calculated with O2Grad on GPU in this range of dimensions
with the hardware available.

Input Dimension

We observe similar behaviour in computation time for the 1D CNN and for the 2D CNN (see Figure
18a). The autograd method on CPU has the same drop in computation time from input size 4 to
input size 8, and shows signs of linearly increasing thereafter, while autograd on GPU grows linearly
at a very small rate. O2Grad on CPU also features superlinear growth, which is more stark in
the 2D convnet than in the 1D convnet however, as this method takes more time than any other
method for an input size of 20. The O2Grad method takes less time than the other methods, but
fails with an OOM exception at an input size of 20. The memory usage curves are quite different
compared to those of the 1D CNN, memory usage never being as high, and the memory usage does
not mysteriously drop from input size 4 to input size 8, but rather increase at same time that the
computation time increases. The errors appear to be more or less stable within an order of 10−7,
with the exception of autograd on GPU spiking up to an order of 10−5 at an input size of 20, but
there is no reason to suspect this is anything but an outlier. If anything, this reinforces that O2Grad
has a high accuracy within what we can reasonably expect from these methods.

14http://www.gaussianprocess.org/gpml/data/
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Figure 17: Time (left) and memory (right) usage of calculating the Hessian of a 2D CNN for MNIST,
built from two conv - relu blocks and 4 conv - relu - pool downsampling blocks, for batch sizes 1, 2
and 4. For O2Grad with CUDA, the algorithm is barely able to handle a batch size of 1, but fails
for all higher batch sizes (thus only one measurement shows up in the figure).

Output Channels

1D convolution layers and 2D convolutions layers operate the same way on the channel dimension
and thus should have a similar dependency. O2Grad on CPU and autograd on GPU show a clearly
accelerated increase of computation time, while for autograd on CPU it is less clear from our
measurements this time, but we can assume this trend to be present here as well. The O2Grad
method on GPU consistently takes less time, but fails with an OOM exception at 15 output channels.
The memory usage also accelerates as a function of output channel count, but does not drop as the
memory usage goes up to 15. Just as for the 1D CNNs, the error spikes for 5 output channels, further
supporting the theory that is due to some intrinsic numerical error during autograd backpropagation.

Block Count

As in the 1D CNN case, our measurements reflect the expected linear increase of computation time
for the O2Grad method, and a quadratic increase for the autograd methods. However, for the 2D
CNN, the quadratic increase is more pronounced, as the computation time increases considerably
from a block count of 15 to a block count of 20 (see Figure 18c). Interestingly, the measurement
for O2Grad on GPU fails with an OOM exception. This result is surprising, because the memory
required to calculate the Hessian can only increase as a function of block count through the additional
number of cOIJs that need to be stored in every step, but those get moved to the CPU in every step
to save memory. Further investigation is required to understand why this happens. Memory usage
increases linearly as expected (see Figure 19c), and the error stays well-behaved within a magnitude
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block_cnt batch_size o2grad device time in mem in MB
2 1 True cpu 128.564604 2658.899248
2 1 True cuda:0 5.418229 4520.993395
2 1 False cpu 31.015664 4761.333078
2 1 False cuda:0 20.044696 4767.152813
2 2 True cpu 268.452337 7568.507811
2 2 True cuda:0 NaN NaN
2 2 False cpu 60.421726 5229.026406
2 2 False cuda:0 15.881729 5252.066406
2 4 True cpu 529.110169 10491.128717
2 4 True cuda:0 NaN NaN
2 4 False cpu 63.658702 5303.443054
2 4 False cuda:0 16.176676 5305.862811

Table 3: Time and memory usage of calculating the Hessian of a 2D convnet for MNIST, built from
two conv - relu blocks and 4 conv - relu - pool downsampling blocks, for batch sizes 1, 2 and 4. For
O2Grad with CUDA, the algorithm is barely able to handle a batch size of 1, but fails for higher
batch sizes (these correspond to the rows with NaNs).

of 10−8 (see Figure 24c).

Batch Size

The time-dependency mirrors that of the 1D CNNs (see Figure 18d). This is what we expect, since
1D and 2D convolution layers operate exactly the same way on the batch dimension. Memory usage
increases as a function of batch size (see Figure 19d), but appears to increase at a slower rate for
higher batch sizes, but why this happens is not clear. As for the error, it seems to increase linearly
as a function of a batch size with the inspected range, just like in the 1D CNN case. However,
this seems to be the case not only for the O2Grad methods, but also for the autograd method on
GPU, suggesting the source is an accumulating numerical error in the normal backpropagation step
(possibly in gradient calculation).

5.5 Conclusion
In conclusion, we have shown that O2Grad can be used to greatly increase the speed of the Hessian
calculation of both shallow MLPs and deeper 1D and 2D CNN architectures, but only with tight
constraints. While using O2Grad can lead to speedups far greater than 10× for MLPs and 1D
CNN architectures, for the sparser 2D CNNs the speedup shrinks down to a single-digit factor.
Furthermore, O2Grad on the CPU will often be slower than the autograd method on GPU, making
only O2Grad on the GPU significantly faster. However, because the intermediate tensors calculated
can become very big and GPU memory is far more limited than RAM, it can only be used to
calculate the Hessian of small-dimensional network architectures before running out of memory.
Finally, another problem of O2Grad is that there are some parts of its time and memory complexity
as functions of the model architecture that we don’t yet fully understand, at least not given our
current measurements. Further analysis will be necessary to remove the remaining uncertainties.
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(d) 2D CNN: batch size - time

Figure 18: Time to compute the Hessian of a 2D CNN, as a function of (a) input size, (b) output
channels, (c) block count and (d) batch size, for a fix parameter baseline of (input_size = 16,
output_channels = 10, block_cnt = 10, batch_size = 8. The parameters that are not subject to
variation in the respective graphic correspond to the baseline. All data points are averaged over 3
measurements. Annotated with smallest speedups over the autograd methods.
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(a) 2D CNN: input dimension - memory usage

1 5 10 15
output channels

2000

4000

6000

8000

10000

12000

14000

16000

m
em

 in
 M

B

cpu, autograd
cpu, o2grad
gpu, autograd
gpu, o2grad

(b) 2D CNN: output channels - memory usage

1 5 10 20
block count

2000

4000

6000

8000

10000

12000

m
em

or
y 

in
 M

B

cpu, autograd
cpu, o2grad
gpu, autograd
gpu, o2grad

(c) 2D CNN: block count - memory usage

1 4 8 16
batch size

2000

4000

6000

8000

10000

12000

m
em

 in
 M

B

cpu, autograd
cpu, o2grad
gpu, autograd
gpu, o2grad

(d) 2D CNN: batch size - memory usage

Figure 19: Memory usage to compute the Hessian of a 2D CNN, as a function of (a) input size, (b)
output channels, (c) block count and (d) batch size, for a fix parameter baseline of (input_size = 16,
output_channels = 10, block_cnt = 10, batch_size = 8. The parameters that are not subject to
variation in the respective graphic correspond to the baseline. All data points are averaged over 3
measurements.
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While not suitable for productive use, it can be a useful tool for research on small toy models, and
this is just what we need for our experiments on chaotic training, to be discussed in the next section.
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A Proofs

A.1 Block-Diagonal
The Hessian of an ANN can generally not be expected to be block-diagonal. To see this, consider a
simple 2-layer network with 2 weight neurons, no bias, no activation functions and Mean Squared
Error (MSE) as loss. The network is described by equations:

x1 = w1x0, y = x2 = w2x1, l(t, y) =
1

2
(t− y)2 =

1

2
(t− w2w1x0)

2 (127)

Consider the off-diagonal block ∂2l
∂w1∂w2

. We have

∂l

∂w2
= (t− w2w1x0) · w1x0. (128)

Differentiating for w1 and using the product rule, we obtain

∂2l

∂w1∂w2
= (−w1x0) · w1x0 + (t− w2w1x0) · x0 = −(w1x0)

2 + (t− w2w1x0)x0, (129)

which is generally not 0, e.g. for w1, w2 = 1 and x0 ̸= 0 and t ̸= 2x0:

∂2l

∂w1∂w2
= (t− 2x0)x0 ̸= 0 (130)
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B Tables

B.1 Tensor Generation
Output-Input-Jacobian (OIJ)

batch
size

input
dim

output
dim

device time in s
dense

time in s
sparse

mem in MB
dense

mem in MB
sparse

1 20 20 cpu 0.000086 0.000336 1600 8000
1 20 20 cuda:0 0.000085 0.000339 1600 8000
2 20 20 cpu 0.000092 0.000364 6400 16000
2 20 20 cuda:0 0.000097 0.000365 6400 16000
8 20 20 cpu 0.000114 0.000588 102400 64000
8 20 20 cuda:0 0.000113 0.000573 102400 64000

16 20 20 cpu 0.000136 0.000878 409600 128000
16 20 20 cuda:0 0.000144 0.000869 409600 128000
32 1 20 cpu 0.000117 0.000351 81920 12800
32 1 20 cuda:0 0.000116 0.000353 81920 12800
32 2 20 cpu 0.000221 0.000416 163840 25600
32 2 20 cuda:0 0.000223 0.000409 163840 25600
32 10 20 cpu 0.000178 0.000853 819200 128000
32 10 20 cuda:0 0.000179 0.000871 819200 128000
32 20 1 cpu 0.000110 0.000344 81920 12800
32 20 1 cuda:0 0.000116 0.000346 81920 12800
32 20 2 cpu 0.000122 0.000402 163840 25600
32 20 2 cuda:0 0.000122 0.000404 163840 25600
32 20 10 cpu 0.000150 0.000863 819200 128000
32 20 10 cuda:0 0.000142 0.000867 819200 128000
32 20 20 cpu 0.000154 0.001493 1638400 256000
32 20 20 cuda:0 0.000154 0.001408 1638400 256000

Table 5: Time and memory for OIJ generation of O2Linear layer, for selected layer hyperparameters.
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Output-Input-Hessian (OIH)

batch
size

input
dim

output
dim

device time in s
dense

time in s
sparse

mem in MB
dense

mem in MB
sparse

1 20 20 cpu 0.000030 0.000025 32000 0
1 20 20 cuda:0 0.000030 0.000025 32000 0
2 20 20 cpu 0.000946 0.000033 256000 0
2 20 20 cuda:0 0.000053 0.000032 256000 0
8 20 20 cpu 0.000329 0.000037 16384000 0
8 20 20 cuda:0 0.000208 0.000035 16384000 0

16 20 20 cpu 0.010700 0.000042 131072000 0
16 20 20 cuda:0 0.008425 0.000037 131072000 0
32 1 20 cpu 0.000055 0.000027 2621440 0
32 1 20 cuda:0 0.000048 0.000027 2621440 0
32 2 20 cpu 0.000089 0.000028 10485760 0
32 2 20 cuda:0 0.000071 0.000027 10485760 0
32 10 20 cpu 0.014681 0.000038 262144000 0
32 10 20 cuda:0 0.014307 0.000038 262144000 0
32 20 1 cpu 0.003106 0.000037 52428800 0
32 20 1 cuda:0 0.003043 0.000037 52428800 0
32 20 2 cpu 0.005703 0.000037 104857600 0
32 20 2 cuda:0 0.005699 0.000044 104857600 0
32 20 10 cpu 0.030076 0.000038 524288000 0
32 20 10 cuda:0 0.029140 0.000039 524288000 0
32 20 20 cpu 0.055728 0.000039 1048576000 0
32 20 20 cuda:0 0.057546 0.000039 1048576000 0

Table 7: Time and memory for OIH generation of O2Linear layer, for selected layer hyperparameters.
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Output-Parameter-Jacobian (OPJ)

batch
size

input
dim

output
dim

device time in s
dense

time in s
sparse

mem in MB
dense

mem in MB
sparse

1 20 20 cpu 0.000075 0.000373 33600 8400
1 20 20 cuda:0 0.000121 0.000862 33600 8400
2 20 20 cpu 0.000079 0.000416 67200 16800
2 20 20 cuda:0 0.000116 0.000887 67200 16800
8 20 20 cpu 0.000127 0.000667 268800 67200
8 20 20 cuda:0 0.000118 0.000907 268800 67200

16 20 20 cpu 0.000170 0.001034 537600 134400
16 20 20 cuda:0 0.000115 0.000936 537600 134400
32 1 20 cpu 0.000087 0.000460 102400 25600
32 1 20 cuda:0 0.000118 0.000905 102400 25600
32 2 20 cpu 0.000208 0.000504 153600 38400
32 2 20 cuda:0 0.000117 0.000895 153600 38400
32 10 20 cpu 0.000193 0.001054 563200 140800
32 10 20 cuda:0 0.000117 0.000920 563200 140800
32 20 1 cpu 0.000063 0.000391 2688 13440
32 20 1 cuda:0 0.000115 0.000939 2688 13440
32 20 2 cpu 0.000103 0.000667 10752 26880
32 20 2 cuda:0 0.000115 0.000898 10752 26880
32 20 10 cpu 0.000173 0.001444 268800 134400
32 20 10 cuda:0 0.000167 0.001122 268800 134400
32 20 20 cpu 0.000185 0.001706 1075200 268800
32 20 20 cuda:0 0.000153 0.000937 1075200 268800

Table 9: Time and memory for OPJ generation of a O2Linear layer, for selected layer hyperparame-
ters.
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Output-Parameter-Hessian (OPH)

batch
size

input
dim

output
dim

device time in s
dense

time in s
sparse

mem in MB
dense

mem in MB
sparse

1 20 20 cpu 0.000420 0.000043 14112000 0
1 20 20 cuda:0 0.000261 0.000044 14112000 0
2 20 20 cpu 0.001403 0.000045 28224000 0
2 20 20 cuda:0 0.001063 0.000046 28224000 0
8 20 20 cpu 0.007626 0.000046 112896000 0
8 20 20 cuda:0 0.007034 0.000046 112896000 0

16 20 20 cpu 0.014682 0.000049 225792000 0
16 20 20 cuda:0 0.014232 0.000046 225792000 0
32 1 20 cpu 0.000075 0.000036 4096000 0
32 1 20 cuda:0 0.000063 0.000035 4096000 0
32 2 20 cpu 0.000095 0.000037 9216000 0
32 2 20 cuda:0 0.000079 0.000037 9216000 0
32 10 20 cpu 0.008087 0.000046 123904000 0
32 10 20 cuda:0 0.008237 0.000046 123904000 0
32 20 1 cpu 0.000045 0.000036 56448 0
32 20 1 cuda:0 0.000045 0.000036 56448 0
32 20 2 cpu 0.000058 0.000036 451584 0
32 20 2 cuda:0 0.000056 0.000036 451584 0
32 20 10 cpu 0.003565 0.000046 56448000 0
32 20 10 cuda:0 0.003395 0.000047 56448000 0
32 20 20 cpu 0.027337 0.000048 451584000 0
32 20 20 cuda:0 0.025825 0.000046 451584000 0

Table 10: Time and memory for OPH generation of a O2Linear layer, for selected layer hyperpa-
rameters.
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Mixed Output-Parameter-Hessian (mOPH)

batch
size

input
dim

output
dim

device time in s
dense

time in s
sparse

mem in MB
dense

mem in MB
sparse

1 20 20 cpu 0.000192 0.000307 672000 8000
1 20 20 cuda:0 0.000182 0.000306 672000 8000
2 20 20 cpu 0.001048 0.000292 2688000 16000
2 20 20 cuda:0 0.000879 0.000285 2688000 16000
8 20 20 cpu 0.012410 0.000470 43008000 64000
8 20 20 cuda:0 0.011628 0.000469 43008000 64000

16 20 20 cpu 0.047692 0.000695 172032000 128000
16 20 20 cuda:0 0.048436 0.000699 172032000 128000
32 1 20 cpu 0.000286 0.000275 3276800 12800
32 1 20 cuda:0 0.000278 0.000272 3276800 12800
32 2 20 cpu 0.001192 0.000341 9830400 25600
32 2 20 cuda:0 0.001371 0.000342 9830400 25600
32 10 20 cpu 0.050721 0.000700 180224000 128000
32 10 20 cuda:0 0.051608 0.000699 180224000 128000
32 20 1 cpu 0.000525 0.000278 1720320 12800
32 20 1 cuda:0 0.000541 0.000275 1720320 12800
32 20 2 cpu 0.001840 0.000334 6881280 25600
32 20 2 cuda:0 0.001680 0.000332 6881280 25600
32 20 10 cpu 0.084024 0.000704 172032000 128000
32 20 10 cuda:0 0.084163 0.000700 172032000 128000
32 20 20 cpu 0.332656 0.001248 688128000 256000
32 20 20 cuda:0 0.327588 0.001175 688128000 256000

Table 11: Time and memory for mOPH generation of a O2Linear layer, for selected layer hyperpa-
rameters.
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B.2 MLP
MLP Grid

output
dim

input
dim

batch
size

o2grad device time
in s

mem
in MB

err

5 5 1 False cpu 0.080 1075.0 0.00e+00
5 5 1 False cuda:2 0.174 4087.0 1.49e-08
5 5 1 True cpu 0.050 4093.8 1.49e-08
5 5 1 True cuda:2 0.092 4333.6 1.49e-08
5 5 8 False cpu 0.061 4333.7 0.00e+00
5 5 8 False cuda:2 0.109 4333.7 2.98e-08
5 5 8 True cpu 0.049 4333.8 2.98e-08
5 5 8 True cuda:2 0.065 4333.9 2.98e-08
5 5 16 False cpu 0.077 4333.9 0.00e+00
5 5 16 False cuda:2 0.100 4333.9 5.96e-08
5 5 16 True cpu 0.063 4334.3 5.96e-08
5 5 16 True cuda:2 0.077 4334.3 5.96e-08
5 5 32 False cpu 0.078 4334.4 0.00e+00
5 5 32 False cuda:2 0.093 4334.4 4.47e-08
5 5 32 True cpu 0.064 4336.0 1.79e-07
5 5 32 True cuda:2 0.093 4336.3 4.47e-08

10 10 1 False cpu 0.107 4336.4 0.00e+00
10 10 1 False cuda:2 0.271 4336.4 7.45e-09
10 10 1 True cpu 0.048 4336.4 1.49e-08
10 10 1 True cuda:2 0.061 4336.5 1.49e-08
10 10 8 False cpu 0.110 4336.5 0.00e+00
10 10 8 False cuda:2 0.220 4336.5 1.49e-08
10 10 8 True cpu 0.052 4336.5 1.49e-08
10 10 8 True cuda:2 0.079 4336.6 1.49e-08
10 10 16 False cpu 0.114 4336.6 0.00e+00
10 10 16 False cuda:2 0.261 4336.6 1.49e-08
10 10 16 True cpu 0.065 4337.2 2.98e-08
10 10 16 True cuda:2 0.097 4337.6 1.49e-08
10 10 32 False cpu 0.167 4337.6 0.00e+00
10 10 32 False cuda:2 0.262 4337.6 1.49e-08
10 10 32 True cpu 0.109 4343.2 1.49e-08
10 10 32 True cuda:2 0.139 4343.6 2.98e-08
50 50 1 False cpu 1.758 5064.2 0.00e+00
50 50 1 False cuda:2 4.496 5164.4 3.73e-09
50 50 1 True cpu 0.087 5160.3 3.73e-09
50 50 1 True cuda:2 0.111 5136.1 3.73e-09
50 50 8 False cpu 3.224 5157.8 0.00e+00
50 50 8 False cuda:2 4.299 5157.4 5.59e-09
50 50 8 True cpu 0.255 5150.6 3.73e-09
50 50 8 True cuda:2 0.181 5126.0 3.73e-09
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50 50 16 False cpu 3.173 5167.4 0.00e+00
50 50 16 False cuda:2 4.402 5169.1 3.73e-09
50 50 16 True cpu 0.740 5210.0 3.73e-09
50 50 16 True cuda:2 0.275 5236.8 3.73e-09
50 50 32 False cpu 3.391 5283.0 0.00e+00
50 50 32 False cuda:2 4.887 5283.0 3.73e-09
50 50 32 True cpu 4.314 5279.5 3.73e-09
50 50 32 True cuda:2 0.475 5237.0 5.59e-09

100 100 1 False cpu 7.225 5980.5 0.00e+00
100 100 1 False cuda:2 18.311 7427.7 2.79e-09
100 100 1 True cpu 0.577 7677.4 1.40e-09
100 100 1 True cuda:2 0.611 7567.1 2.79e-09
100 100 8 False cpu 14.236 7450.2 0.00e+00
100 100 8 False cuda:2 18.919 7459.1 1.86e-09
100 100 8 True cpu 2.267 7444.3 1.86e-09
100 100 8 True cuda:2 0.798 7298.8 1.86e-09
100 100 16 False cpu 14.433 7475.0 0.00e+00
100 100 16 False cuda:2 19.062 7479.9 1.86e-09
100 100 16 True cpu 6.596 7454.9 2.79e-09
100 100 16 True cuda:2 1.064 7266.3 2.79e-09
100 100 32 False cpu 15.358 7517.3 0.00e+00
100 100 32 False cuda:2 18.320 7501.3 2.79e-09
100 100 32 True cpu 34.348 7525.2 3.73e-09
100 100 32 True cuda:2 1.534 7168.6 2.79e-09

Table 12: Time, memory usage and computation errors for the Hessian of a N - N - N network, for
different input sizes N and batch sizes of the input. The method indicates whether O2Grad or False
is used to calculate the Hessian. Given a fix input and batch size, the error is the average absolute
deviation of the Hessian resulting from a (True, device) configuration w.r.t. to the one resulting
from the baseline configuration ('False', 'cpu'). The time results are averaged over 3 runs.
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MLP MNIST

input
dim

inter
dim

output
dim

batch
size

o2grad device time
in s

mem
in MB

err

784 10 10 1 False cpu 2.586 1194.3 0.00e+00
784 10 10 1 False cuda:2 7.406 4448.8 1.49e-08
784 10 10 1 True cpu 0.109 4471.2 7.45e-09
784 10 10 1 True cuda:2 0.375 4713.5 1.49e-08
784 10 10 8 False cpu 3.701 4709.6 0.00e+00
784 10 10 8 False cuda:2 6.640 4713.6 1.49e-08
784 10 10 8 True cpu 0.222 4889.7 1.49e-08
784 10 10 8 True cuda:2 0.137 4677.9 1.49e-08
784 10 10 16 False cpu 3.884 4731.9 0.00e+00
784 10 10 16 False cuda:2 8.177 4737.4 1.49e-08
784 10 10 16 True cpu 0.552 5170.5 2.98e-08
784 10 10 16 True cuda:2 0.198 4885.5 7.45e-09
784 10 10 32 False cpu 5.080 4834.9 0.00e+00
784 10 10 32 False cuda:2 6.994 4840.8 1.49e-08
784 10 10 32 True cpu 1.839 6857.3 2.24e-08
784 10 10 32 True cuda:2 0.400 4884.8 2.98e-08
784 20 10 1 False cpu 5.254 5227.7 0.00e+00
784 20 10 1 False cuda:2 16.914 5962.5 2.24e-08
784 20 10 1 True cpu 0.315 6733.7 1.12e-08
784 20 10 1 True cuda:2 0.365 6485.6 2.24e-08
784 20 10 8 False cpu 9.597 5944.7 0.00e+00
784 20 10 8 False cuda:2 13.731 5957.5 1.49e-08
784 20 10 8 True cpu 0.692 6718.7 1.49e-08
784 20 10 8 True cuda:2 0.430 6522.2 1.49e-08
784 20 10 16 False cpu 9.877 5959.5 0.00e+00
784 20 10 16 False cuda:2 13.950 5977.3 1.49e-08
784 20 10 16 True cpu 1.282 7121.4 2.98e-08
784 20 10 16 True cuda:2 0.512 6467.8 1.49e-08
784 20 10 32 False cpu 10.499 5953.3 0.00e+00
784 20 10 32 False cuda:2 16.594 5955.6 2.24e-08
784 20 10 32 True cpu 3.750 8458.7 2.24e-08
784 20 10 32 True cuda:2 NaN NaN NaN
784 30 10 1 False cpu 8.128 6610.4 0.00e+00
784 30 10 1 False cuda:2 27.296 7833.0 2.24e-08
784 30 10 1 True cpu 0.687 10001.8 7.45e-09
784 30 10 1 True cuda:2 NaN NaN NaN
784 30 10 8 False cpu 15.633 7818.5 0.00e+00
784 30 10 8 False cuda:2 23.265 7859.4 1.49e-08
784 30 10 8 True cpu 1.252 10053.7 1.49e-08
784 30 10 8 True cuda:2 NaN NaN NaN
784 30 10 16 False cpu 16.247 7784.2 0.00e+00
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784 30 10 16 False cuda:2 25.157 7805.2 1.49e-08
784 30 10 16 True cpu 2.538 10010.7 2.98e-08
784 30 10 16 True cuda:2 NaN NaN NaN
784 30 10 32 False cpu 17.169 7787.1 0.00e+00
784 30 10 32 False cuda:2 21.281 7821.8 2.24e-08
784 30 10 32 True cpu 8.093 11312.5 2.24e-08
784 30 10 32 True cuda:2 NaN NaN NaN

Table 13: Time, memory usage and computation errors for the Hessian of a N - N - N network, for
different input sizes N and batch sizes of the input. The method indicates whether O2Grad or False
is used to calculate the Hessian. Given a fix input and batch size, the error is the average absolute
deviation of the Hessian resulting from a (True, device) configuration w.r.t. to the one resulting
from the baseline configuration ('False', 'cpu'). The time results are averaged over 3 runs.
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B.3 1D CNN

input
dim

out
channels

block
cnt

batch
size

o2grad device time mem err

100 15 20 16 False cpu 1167.166 5668.7 0.00e+00
100 15 20 16 False cuda:3 275.005 11413.0 1.12e-08
100 15 20 16 True cpu 831.573 13723.0 5.22e-08
100 15 20 16 True cuda:3 26.063 13369.9 1.49e-08
16 15 20 16 False cpu 1256.558 17200.1 0.00e+00
16 15 20 16 False cuda:3 220.948 19061.5 1.49e-08
16 15 20 16 True cpu 52.866 19111.1 3.73e-08
16 15 20 16 True cuda:3 3.588 19026.0 2.98e-08
32 15 20 16 False cpu 826.634 23247.4 0.00e+00
32 15 20 16 False cuda:3 242.393 25049.0 1.12e-08
32 15 20 16 True cpu 135.184 25377.8 4.47e-08
32 15 20 16 True cuda:3 6.026 25082.6 2.98e-08
64 15 20 16 False cpu 946.427 29153.7 0.00e+00
64 15 20 16 False cuda:3 268.940 30929.2 1.12e-08
64 15 20 16 True cpu 393.714 31832.2 4.10e-08
64 15 20 16 True cuda:3 13.726 31207.8 2.98e-08
64 15 20 16 False cpu 1541.286 5668.5 0.00e+00
64 15 20 16 False cuda:2 262.523 11471.3 1.12e-08
64 15 20 16 True cpu 408.648 12933.8 4.10e-08
64 15 20 16 True cuda:2 14.209 13092.4 2.98e-08
64 1 20 16 False cpu 3.966 13137.7 0.00e+00
64 1 20 16 False cuda:2 1.556 11990.5 0.00e+00
64 1 20 16 True cpu 0.713 11992.0 0.00e+00
64 1 20 16 True cuda:2 1.709 11992.4 0.00e+00
64 5 20 16 False cpu 114.485 12433.9 0.00e+00
64 5 20 16 False cuda:2 37.578 12762.0 5.96e-08
64 5 20 16 True cpu 16.092 12843.6 1.79e-07
64 5 20 16 True cuda:2 1.769 12787.7 1.79e-07
64 10 20 16 False cpu 701.130 14836.5 0.00e+00
64 10 20 16 False cuda:2 129.631 15952.8 1.49e-08
64 10 20 16 True cpu 169.355 16502.4 7.45e-08
64 10 20 16 True cuda:2 6.120 16175.7 7.45e-08
64 15 20 16 False cpu 1307.781 5815.4 0.00e+00
64 15 20 16 False cuda:3 254.639 11631.1 1.12e-08
64 15 20 16 True cpu 409.102 13090.4 4.10e-08
64 15 20 16 True cuda:3 14.021 13543.1 2.98e-08
64 15 1 16 False cpu 124.388 13989.6 0.00e+00
64 15 1 16 False cuda:3 19.193 13066.8 1.49e-08
64 15 1 16 True cpu 37.302 13597.3 2.98e-08
64 15 1 16 True cuda:3 1.658 13055.2 2.98e-08
64 15 5 16 False cpu 292.324 14790.5 0.00e+00
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64 15 5 16 False cuda:3 47.777 15698.9 1.12e-08
64 15 5 16 True cpu 103.573 16362.9 2.98e-08
64 15 5 16 True cuda:3 3.828 15625.0 2.98e-08
64 15 10 16 False cpu 429.251 18219.3 0.00e+00
64 15 10 16 False cuda:3 93.289 19513.6 9.04e-08
64 15 10 16 True cpu 180.529 20316.7 2.98e-08
64 15 10 16 True cuda:3 6.746 19879.8 9.04e-08
64 15 20 16 False cpu 1453.507 5736.4 0.00e+00
64 15 20 16 False cuda:3 256.063 11516.4 1.12e-08
64 15 20 16 True cpu 408.450 13088.5 4.10e-08
64 15 20 16 True cuda:3 13.998 13413.3 2.98e-08
64 15 20 1 False cpu 1385.397 16490.2 0.00e+00
64 15 20 1 False cuda:3 304.188 16674.5 1.12e-08
64 15 20 1 True cpu 24.984 16438.8 7.45e-09
64 15 20 1 True cuda:3 3.201 16747.1 7.45e-09
64 15 20 4 False cpu 880.805 26495.0 0.00e+00
64 15 20 4 False cuda:3 286.427 30416.5 1.49e-08
64 15 20 4 True cpu 90.504 30859.6 1.49e-08
64 15 20 4 True cuda:3 4.988 31057.9 1.49e-08
64 15 20 8 False cpu 861.878 36507.1 0.00e+00
64 15 20 8 False cuda:3 290.506 39121.7 1.49e-08
64 15 20 8 True cpu 183.696 39641.1 2.24e-08
64 15 20 8 True cuda:3 7.953 39128.8 1.49e-08

Table 14: Time and memory usage of calculating the Hessian of a 1D convnet with architecture
as in Figure 14. The label ’o2grad’ indicates whether O2Grad or autograd is used to calculate the
Hessian. Given a fix input and batch size, the error is the average absolute deviation of the Hessian
resulting from a given (o2grad, device) configuration w.r.t. to the Hessian resulting from the
baseline configuration ('False', 'cpu'). Cells with NaN indicate the calculation failed with a
CUDA OOM exception. The time results are averaged over 3 runs.
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B.4 2D CNN

input
dim

out
channels

block
cnt

batch
size

o2grad device time
in s

mem
in MB

err

4 10 10 8 False cpu 1253.586 7550.6 0.00e+00
4 10 10 8 False cuda:2 73.795 17094.2 1.54e-08
4 10 10 8 True cpu 9.600 17223.9 7.45e-08
4 10 10 8 True cuda:2 1.939 17791.3 7.45e-08
8 10 10 8 False cpu 265.745 18173.7 0.00e+00
8 10 10 8 False cuda:2 82.546 18660.5 2.79e-08
8 10 10 8 True cpu 69.098 18888.9 7.45e-08
8 10 10 8 True cuda:2 3.471 18917.9 7.45e-08

16 10 10 8 False cpu 618.851 19431.1 0.00e+00
16 10 10 8 False cuda:2 88.851 19934.2 3.73e-08
16 10 10 8 True cpu 636.120 21777.9 9.31e-08
16 10 10 8 True cuda:2 22.284 20067.5 7.45e-08
20 10 10 8 False cpu 578.127 20441.9 0.00e+00
20 10 10 8 False cuda:2 95.924 20446.3 5.26e-05
20 10 10 8 True cpu 1417.006 23982.8 1.08e-07
20 10 10 8 True cuda:2 NaN NaN NaN
16 1 10 8 False cpu 2.880 1105.0 0.00e+00
16 1 10 8 False cuda:1 1.556 4132.5 0.00e+00
16 1 10 8 True cpu 1.305 4150.1 0.00e+00
16 1 10 8 True cuda:1 1.044 4394.9 0.00e+00
16 5 10 8 False cpu 115.448 4651.1 0.00e+00
16 5 10 8 False cuda:1 22.115 4914.8 3.90e-07
16 5 10 8 True cpu 117.124 5483.1 1.49e-07
16 5 10 8 True cuda:1 4.372 4963.3 3.90e-07
16 10 10 8 False cpu 756.945 5697.2 0.00e+00
16 10 10 8 False cuda:1 94.235 6776.4 3.73e-08
16 10 10 8 True cpu 696.913 8553.0 9.31e-08
16 10 10 8 True cuda:1 22.273 7356.4 7.45e-08
16 15 10 8 False cpu 988.530 9750.6 0.00e+00
16 15 10 8 False cuda:1 214.304 12645.8 4.47e-08
16 15 10 8 True cpu 2264.342 16934.6 8.94e-08
16 15 10 8 True cuda:1 NaN NaN NaN
16 10 1 8 False cpu 113.893 1313.7 0.00e+00
16 10 1 8 False cuda:2 11.749 4509.8 2.98e-08
16 10 1 8 True cpu 90.481 6061.9 7.45e-08
16 10 1 8 True cuda:3 4.119 4427.2 0.00e+00
16 10 5 8 False cpu 189.418 5465.8 0.00e+00
16 10 5 8 False cuda:2 38.428 5773.0 2.24e-08
16 10 5 8 True cpu 348.447 7375.3 7.45e-08
16 10 5 8 True cuda:3 11.423 5253.3 0.00e+00
16 10 10 8 False cpu 418.202 6406.5 0.00e+00
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16 10 10 8 False cuda:2 90.843 7257.0 3.73e-08
16 10 10 8 True cpu 661.707 9021.1 9.31e-08
16 10 10 8 True cuda:3 22.333 5617.2 0.00e+00
16 10 20 8 False cpu 5670.095 8635.1 0.00e+00
16 10 20 8 False cuda:2 267.971 10800.0 2.24e-08
16 10 20 8 True cpu 1414.708 12532.9 7.45e-08
16 10 20 8 True cuda:3 NaN NaN NaN
16 10 10 1 False cpu 336.113 1730.7 0.000e+00
16 10 10 1 False cuda:1 149.339 5494.5 2.980e-08
16 10 10 1 True cpu 79.890 5916.3 3.725e-08
16 10 10 1 True cuda:1 4.348 6499.1 2.980e-08
16 10 10 4 False cpu 400.430 6957.0 0.000e+00
16 10 10 4 False cuda:1 94.778 7412.1 2.235e-08
16 10 10 4 True cpu 323.528 8260.9 7.823e-08
16 10 10 4 True cuda:1 11.437 7513.5 2.980e-08
16 10 10 8 False cpu 401.846 8042.5 0.000e+00
16 10 10 8 False cuda:1 89.503 8439.4 3.725e-08
16 10 10 8 True cpu 631.924 10247.7 9.313e-08
16 10 10 8 True cuda:1 22.103 8637.4 7.451e-08
16 10 10 16 False cpu 516.955 8972.6 0.000e+00
16 10 10 16 False cuda:1 96.721 8983.0 7.945e-08
16 10 10 16 True cpu 1351.234 12166.0 1.788e-07
16 10 10 16 True cuda:1 NaN NaN NaN

Table 15: Time and memory usage of calculating the Hessian of a 2D convnet with architecture
as in Figure 14, but with 2D layers instead. The label ’o2grad’ indicates whether O2Grad or
autograd is used to calculate the Hessian. Given a fix input and batch size, the error is the average
absolute deviation of the Hessian resulting from a given (o2grad, device) configuration w.r.t. to
the Hessian resulting from the baseline configuration ('False', 'cpu'). Cells with NaN indicate
the calculation failed with a CUDA OOM exception. The time results are averaged over 3 runs.
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C Figures

C.1 Measurements
C.1.1 Tensor Generation
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Figure 20: Time-Memory tradeoff of generating the dense/sparse OPJ tensors of a O2Linear layer.
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Figure 21: Time and memory usage of generating the dense/sparse OPH tensors of a O2Linear
layer. In the sparse case, these are close to zero, since the OPH is a zero matrix.
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Figure 22: Time and memory usage of generating the dense/sparse mOPH tensors of a O2Linear
layer.
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C.1.2 1D CNN
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(a) 1D CNN: input size - error
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Figure 23: Absolute maximum error of calculating the Hessian of a 1D CNN, as a function of (a)
input size, (b) output channels, (c) block count and (d) batch size, for a fix parameter baseline of
(input_size = 64, output_channels = 15, block_cnt = 20, batch_size = 16. The parameters
that are not subject to variation in the respective graphic correspond to the baseline. All data
points are averaged over 3 measurements.
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C.1.3 2D CNN
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(b) 2D CNN: output channels - error
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Figure 24: Absolute maximum error of calculating the Hessian of a 2D CNN, as a function of (a)
input size, (b) output channels, (c) block count and (d) batch size, for a fix parameter baseline
of (input_size = 16, output_channels = 10, block_cnt = 10, batch_size = 8. The reference
Hessian is the one calculated using the autograd method on CPU.
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