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1 Appendix

1.1 Highlights of our contribution

To sum up, our contributions are:

• We propose a novel fine-grained spatial-aware communication strategy, where each agent can
decide where to communicate and pack messages only related to the most perceptually critical spatial
areas. This strategy not only enables more precise support for other agents, but also more targeted
request from other agents in multi-round communication.

• We propose Where2comm, a novel collaborative perception framework based on the spatial-aware
communication strategy. With the guidance of the proposed spatial confidence map, Where2comm
leverages novel message packing and communication graph learning to achieve lower communication
bandwidth, and adopts confidence-aware multi-head attention to reach better perception performance.

• We conduct extensive experiments to validate Where2comm achieves state-of-the-art performance-
bandwidth trade-off on multiple challenging real/simulated datasets across views and modalities.

1.2 Detailed information about the system pipeline

Alg. 1 presents the pipeline of our multi-round spatial confidence-aware collaborative perception
system.

1.3 Detailed information about the optimization problem of collaborative perception

The constrained optimization in Sec.3 is the mathematical formation of collaborative perception.
It is hard to obtain the global optimum due to hard constrains and non-differentialability of binary
variables. Therefore, the proposed Where2comm essentially introduces an auxiliary variable and
decomposes the original problem into two sub-optimization problems, each one of which is easy to
solve.

To understand the details, let us consider a setting of fixed communication bandwidth and communi-
cation round, K = 1, B = [B1]. Then, the optimization is

max
θ,P

N∑
i=1

g
(
Φθ

(
Xi, {Pi→j}Nj=1

)
,Yi

)
, s.t.

N∑
i,j=1

|Pi→j | ≤ B1.
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Algorithm 1 Multi-round spatial confidence-aware collaborative perception system

1: Define N as the number of agents , K as communication round
2: # Initialization
3: for i = 1, 2, . . . , N , do
4: F (0)

i = Φenc(Xi) ∈ RH×W×D ▷ Extract intermediate feature
5: end for
6: for k = 0, 1, . . . ,K − 1, do
7: for i = 1, 2, . . . , N , do # Each agent is computing individually
8: C

(k)
i = Φgenerator(F (k)

i ) ∈ RH×W ▷ Generate spatial confidence map
9: for j = 1, 2, . . . , N , do

10: # Message packing
11: R

(k)
i = 1−C

(k)
i ∈ RH×W ▷ Pack request map

12: if k = 0 then
13: M

(k)
i→j = Φselect(C

(k)
i ) ∈ {0, 1}H×W ▷ Select critical areas

14: else
15: M

(k)
i→j = Φselect(C

(k)
i ⊙R

(k−1)
j ) ∈ {0, 1}H×W ▷ Select requested areas

16: end if
17: Z(k)

i→j = M
(k)
i→j ⊙F (k)

i ∈ RH×W×D ▷ Pack spatially sparse features
18: # Communication graph learning
19: if k = 0 then
20: A

(k)
i→j = 1 ▷ Broadcast critical features and request

21: else
22: A

(k)
i→j = maxh,w

(
M

(k)
i→j

)
h,w

∈ {0, 1} ▷ Communicate only when necessary

23: end if
24: end for
25: # Communication
26: Send Pi→j =

(
Z(k)

i→j ,R
(k)
i

)
to other agents

27: Receive {Pj→i =
(
Z(k)

j→i,R
(k)
j

)
, j ̸= i} from other agents

28: # Message fusion
29: F (k+1)

i = ffuse

(
F (k)

i , {(Z(k)
j→i,R

(k)
j ), j = 1, 2, ..., N}

)
∈ RH×W×D

30: end for
31: Store F (k+1)

i and {R(k)
j , j ̸= i} for the next round

32: end for
33: O(K)

i = Φdec(F (K)
i ) ▷ Output the final detections

Since there is only one round, we do not consider the request map, then, the message sent from the
ith agent to the jth agent is Pi→j = Zi→j = Mi→j ⊙Fi, whose spatial sparsity is determined by
the binary selection mask Mi→j . Note that Mi→j determines where to communicate, and is the key
of the proposed Where2comm. Then, the original optimization is equivalent to

max
θ,M

N∑
i=1

g
(
Φθ

(
Xi, {Mi→j}Nj=1

)
,Yi

)
, s.t.

N∑
i=1

N∑
j=1,j ̸=i

|Mi→j | ≤ b1,Mi→j ∈ {0, 1}H×W ,

(1)
where Fi can attribute to the network Φθ(·) and input data Xi and b1 = B1/D with D the channel
number of Fi. Due to the binary constrains, it is hard to optimize (1) directly. Instead, we decom-
pose (1) into two sub-optimization problems and optimize the binary selection matrix Mi→j and the
network parameters θ once at a time: i) obtain a feasible binary selection matrix Mi→j by optimizing
a proxy constrained problem; ii) given the feasible binary selection matrix Mi→j , optimize the
perception network parameter θ. The constraint is satisfied in i) and the perception goal is achieved
in ii). Specifically, two sub-optimization problems are

• Obtain a feasible binary selection matrix Mi→j . This essentially optimizes where to allocate the
communication bandwidth. Intuitively, the spatial confidence reflects the perceptually critical level,
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so that those spatial regions with higher spatial confidence will provide more critical information to
help the partners and should have a higher priority be selected.

Following this spirit, we consider a proxy constrained problem as follows,

max
M

N∑
i=1

N∑
j=1,j ̸=i

Mi→j ⊙Ci, s.t.

N∑
i=1

N∑
j=1,j ̸=i

|Mi→j | ≤ b1,Mi→j ∈ {0, 1}H×W ,

where Ci is the spatial confidence map. Note that i) even this optimization problem has hard
constraints and non-differentialability of binary variables, it has an analytical solution that naturally
satisfies all the constraints in (1); and ii) even we cannot solve the original objective, this proxy
objective still carries the similar idea to promote better, yet more compact perception. This solution
is obtained by selecting those spatial regions whose corresponding elements in M rank top-b1. The
detailed steps of selection function are: i) arrange the elements in the input matrix in descending
order; ii) given the communication budget constrain, decide the total number (b1) of communication
regions; iii) set the spatial regions of M, where elements rank in top-b1 as the 1 and 0 verses.

• Given the feasible binary selection matrix, optimize the network parameter θ. This essentially
optimizes the perception performance. The sub-problem is

max
θ

N∑
i=1

g
(
Φθ

(
Xi, {Mi→j}Nj=1

)
,Yi

)
.

This can be solved by standard supervised learning. For example, the perception evaluation metric
g(·) can be evaluated by the detection loss calculated between detections and the ground-truth and the
detection loss is optimized with an Adam optimizer. We thus get the optimized perception network
parameter θ. Note that this sub-problem does not involve any constraints and is thus easy to optimize.

1.4 Detailed information about the module design

Observation encoder. Here we elaborate on the warping functions for the monocular camera, where
the depth is unknown and estimated. Instead of directly projecting 2D features to flat ground space,
we first lift them to 3D voxel space and then collapse them to the BEV. This design considers all the
possible depths/altitudes, introducing flexibility in the projection, and mitigating the distortion effect
caused by information loss in imaging. The detailed steps are: 1) Categorical Depth Distribution
Network (CaDDN [1]), which is a recent and effective method to warp image feature to BEV feature,
is applied to estimate the depth distribution for each image feature point. 2) Each feature point is
wrapped from the 2D image space to the 3D physic space according to the known camera parameters.
3) The 3D voxel features are flattened to BEV features. Briefly, the warping function is unfolded
as follows: for each image feature point locates at (u, v), given the estimated categorical depth di,
and the known camera projection matrix P ∈ R3×4, 3D physical space coordinates [x, y, z]T is
calculated conditioned on the image feature coordinates [u, v, di]T based on the projection function:
[u, v, di]

T = P · [x, y, z, 1]T .

Spatial confidence-aware message packing. Fig. 1 presents the detail about the spatial confidence-
aware message packing module. For the message from agent i to agent j at kth communication round,
the module takes the spatial confidence map C

(k)
i of agent i and the request map R

(k−1)
j of agent j

as input, and outputs the message P(k)
i→j including the masked feature map Z(k)

i→j and the request map
of agent i.

Spatial confidence-aware communication graph construction. Fig. 2 presents the comparisons on
the communication graph with previous works. Fully connected versus agent-level partially connected
versus ours spatial-decouple partially connected communication. Fully connected communication
results in a large amount of bandwidth usage, growing on the order of O(N2), where N is the number
of agents in a network. Agent-level partially connected communication prune irrelevant connections
between agents while may erroneously sever the information connection. Spatial-decouple partially
connected communication could further flexibly prune irrelevant connections per-location and can
substantially reduce the overall network complexity.

Spatial confidence-aware message fusion. Fig. 3 presents the detail about the spatial confidence-
aware message fusion module. Given the received messages {P(k)

j→i, j ∈ Ni}, each agent i attentively
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Figure 1: Spatial confidence-aware message packing module. ⊙ denotes point-wise multiplication, ⊖
denotes point-wise minus by a matrix with the same shape as the input and filled with 1. Best viewed
in color. Grey denotes the location being filled with zeros for the binary selection matrix M

(k)
i→j and

the feature map Z(k)
i→j .

à à

Spatial-decouple partially connectedAgent-level partially connectedFully connected 

Figure 2: Spatial confidence-aware communication graph construction module. We spatially decouple
the full feature map, and could flexibly involve the informative spatial areas in the communication.
This Spatial-decouple partially connected communication could further flexibly prune irrelevant
connections per-location and is more bandwidth-efficient.

Figure 3: Spatial confidence-aware message fusion module. Each agent attentively augments the
features with the received messages at each location. And the per-location multi-head attention are
separately operated at each location in parallel, it takes the features and the corresponding confidence
scores as input, and outputs the augmented features.
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Table 1: Overall performance on CoPerception-UAVs, OPV2V, V2X-Sim and DAIR-V2X. Comm
denotes the communication volume calculated with Equation (2).
Dataset CoPerception-UAVs OPV2V V2X-Sim1.0 DAIR-V2X
Method/Metric Comm AP@0.50/0.70 Comm AP@0.50/0.70 Comm AP@0.50 Comm AP@0.50/0.70
No Collaboration 0.00 57.67/29.52 0.00 22.65/9.09 0.00 45.80 0.00 50.03/43.57
Late Fusion 15.77 53.12/37.88 11.87 8.24/3.84 8.83 46.70 11.45 53.12/37.88
When2com 28.37 61.63/33.55 22.28 19.69/8.29 20.00 46.70 22.62 51.12/36.17
V2VNet 29.95 59.82/33.14 23.87 37.47/14.67 21.58 55.30 24.21 56.01/42.25
V2X-ViT 28.37 59.12/41.57 22.28 39.82/16.43 20.00 57.30 22.62 54.26/43.35
DiscoNet 28.37 59.74/29.71 22.28 36.00/12.50 20.00 58.00 22.62 54.29/44.88

Where2comm

11.76 60.19/34.94 5.67 40.11/15.36 6.70 47.60 11.40 50.98/39.11
14.27 60.23/34.93 15.49 42.15/16.09 8.29 49.10 15.58 51.01/39.10
15.73 61.30/35.29 16.13 43.37/16.84 9.52 50.60 17.03 53.53/40.70
17.96 63.04/36.10 17.04 44.07/17.15 10.41 51.80 17.53 55.84/42.44
19.04 63.94/37.16 17.86 44.68/17.77 11.10 54.20 18.19 58.46/44.46
21.62 65.10/38.98 18.43 45.23/18.02 12.27 56.60 20.56 63.54/48.78
23.33 65.32/39.25 18.92 46.04/18.23 12.80 57.00 21.78 63.76/48.94
25.31 65.46/39.27 18.92 46.04/18.23 13.98 58.90 22.35 63.71/48.89
28.48 65.71/39.38 22.71 47.14/19.07 20.00 59.10 22.62 63.71/48.93

augments the features with the received messages at each location. And the request map R
(k)
j in

the received message is firstly decoded to the confidence map C
(k)
j via a point-wise minus. Then

the per-location multi-head attention are separately operated at each location in parallel, it takes the
features and the corresponding confidence scores as input, and outputs the augmented features.

Sensor positional encoding. Sensor positional encoding is conditioned on the physical distance
between the known sensor coordinates and each BEV gird’s coordinate in the 3D physic space. It is
introduced to provide spatial prior, as the smaller the sensing distance is, the clear the observation
would be. Mathematically, similar to the position encoding in [2], our sensor positional encoding is
given by SPE(dis,2p) = sin(dis/100002p/D), SPE(dis,2p+1) = cos(dis/100002p/D) where dis is
the physical distance, p is the dimension, D is the total channel dimension of the BEV feature map,
sin and cos denote the sine and cosine functions.

1.5 Detailed information about experimental settings

Implementation details. For camera-only 3D object detection task on OPV2V, we implement the
detector following CADDN [1]. The model is trained 100 epoch with initial learning rate of 1e-3,
and decay by 0.1 at epoch 80. For LiDAR-based 3D object detection task, our detector follows
MotionNet [3]. We train 120 epoch with learning rate 1e-3. For the camera-only 3D object detection
task on CoPerception-UAVs, our detector follows the CenterNet [4] with DLA-34 [5] backbone. The
model is trained 140 epoch with learning rate 5e-4.

Figure 4: Where2comm achieves consis-
tently superior performance-bandwidth
trade-off on V2X-Sim2.0 [6].

Table 2: Overall performance on V2X-Sim2.0 [6]. Comm
denotes the communication volume calculated with Equa-
tion( 2). Metric AP@(0.50/0.70) is used.

Method/Metric Comm AP@0.50/0.70 Method Comm AP@0.50/0.70
No Collaboration 0.00 65.93/51.79

Where
2comm

13.84 75.72/65.13
Late Fusion 14.84 72.33/62.12 17.47 79.14/67.05
When2com 26.04 62.15/49.42 19.84 81.69/70.79
V2VNet 27.62 80.80/71.22 21.98 81.94/72.10
V2X-ViT 26.04 78.73/63.17 24.13 82.99/73.05
DiscoNet 26.04 69.73/55.12 25.93 83.77/74.09

Inference strategy in multi-round setting. For the single-round communication, all the communi-
cation budget are used in this broadcast communication round. For the two-round communication,
a small bandwidth (about 20%) is allocated to activate the collaboration; for the next round, the
remained relatively large (about 80%) bandwidth is allocated to transmit the targeted information to
meet agents’ request. For more than two rounds communication setting, we strategically allocate
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(a) C(0)
1 (b) M(0)

1→2 (c) W(0)
1→1 (d) Ô(0)

1

(e) R(0)
2 (f) Z(0)

2→1 (g) W(0)
2→1 (h) Ô(1)

1

Figure 5: Visualization of collaboration between Vehicle 1 and Vehicle 2 on OPV2V dataset,
including spatial confidence map (C(0)

1 ), selection matrix (M(0)
1→2), message ({R(0)

2 ,Z(0)
2→1}) in the

communication module, attention weight in the fusion module (W(0)
1→1,W(0)

2→1), and Vehicle 1’s
detection results before (Ô(0)

1 ) and after (Ô(1)
1 ) collaboration. Green and red boxes denote ground-

truth and detection, respectively. The objects occluded can be detected through transmitting spatially
sparse, yet perceptually critical message.

communication budget across multiple communication rounds. For the initial broadcast round, a
small bandwidth (about 20%) is allocated to activate the collaboration; for the next round, a relatively
large (about 60%) bandwidth is allocated to transmit the targeted information to meet agents’ request;
then, the bandwidth is gradually reduced, accounting for the communication degradation with the
increasing rounds.

Communication volume. Our communication volume is the same as DiscoNet [7], the only
difference is that our log base is 2, while it is 10, so our number is about 3.32 times theirs. The
base 2 is chosen to align with the metric bit/byte, this is, communication volume counts the message
size by byte in log scale with base 2. Mathematically for the selected sparse feature map Z(k)

i→j =

M
(k)
i→j ⊙F (k)

i ∈ RH×W×D, the communication volume is

log2
(
|M(k)

i→j | ×D × 32/8
)
, (2)

where | · | denotes the L0 norm counting the non-zero elements in the binary selection matrix, this
is, the total spatial girds need to be transmitted, and for each feature point D denotes the channel
dimension, 32 is multiplied as float32 data type is used to represent each number, 8 is divided as the
metric byte is used.

1.6 Benchmarks

We conduct extensive experiments on all the available collaborative perception benchmarks. Tab. 1
presents the overall performance on the four datasets, CoPerception-UAVs, OPV2V [8], V2X-
Sim1.0 [7] and DAIR-V2X [9]. And we further benchmark the updated V2X-Sim2.0 [6] in Fig. 4
and Tab. 2. For this LiDAR-based 3D object detection task, our detector follows PointPillar [10]. We
see that where2comm consistently achieves significant improvements over previous methods on all
the benchmarks.

1.7 Visualization

Visualization of collaboration in OPV2V and V2X-Sim. Fig. 5 and Fig. 6 illustrates
how Where2comm is empowered by the proposed spatial confidence map on OPV2V and V2X-
Sim dataset. In the scene, with Vehicle 2’s help, Vehicle 1 is able to detect the missed objects in
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(a) X1 in BEV (b) C(0)
1 (c) M(0)

1→2 (d) W(0)
1→1 (e) Ô(0)

1

(f) X2 in BEV (g) R(0)
2 (h) Z(0)

2→1 (i) W(0)
2→1 (j) Ô(1)

1

Figure 6: Visualization of collaboration between Vehicle 1 and Vehicle 2 on V2X-Sim dataset,
including spatial confidence map (C(0)

1 ), selection matrix (M(0)
1→2), message ({R(0)

2 ,Z(0)
2→1}) in

the communication module, attention weight in the fusion module (W(0)
1→1,W(0)

2→1), and Drone 1’s
detection results before (Ô(0)

1 ) and after (Ô(1)
1 ) collaboration. Green and red boxes denote ground-

truth and detection, respectively. The objects occluded by a tall building can be detected through
transmitting spatially sparse, yet perceptually critical message.

C
oP
-U
A
V

V2
X
-S
im

O
PV
2V

(a) No Collaboration (b) When2com (c) DiscoNet (d) Where2comm
Figure 7: Where2comm qualitatively outperforms the state-of-the-art methods in CoPerception-UAVs,
V2X-Sim and OPV2V datasets. Green and red boxes denote ground-truth and detection, respectively.

the single view. Fig. 5 (a-d) shows Vehicle 1’s spatial confidence map, binary selection matrix, ego
attention weight, and the detection results by its own observation. Fig. 5 (e-f) shows Vehicle 2’s
message sent to Drone 1, including the request map (opposite of confidence map) and the sparse
feature map, achieving efficient communication. Fig. 5 (g) shows the attention weight for Vehicle 1
to fuse Vehicle 2’s messages, which is sparse, yet highlights the objects’ positions. Fig. 5 (d) and
(h) compares the detection results before and after the collaboration with Vehicle 2. We see that the
proposed spatial confidence map contributes to spatially sparse, yet perceptually critical message,
which effectively helps Vehicle 1 detect occluded objects.

Visualization of detection results. Fig. 7 shows that Where2comm qualitatively outperforms the
state-of-the-art methods in CoPerception-UAVs, V2X-Sim and OPV2V datasets.

1.8 Ablation on bandwidth allocation

Fig. 8 shows the bandwidth allocation ablation study in multi-round communication setting. We see
that allocating more bandwidth in the second and subsequent communication rounds achieves a better
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(a) 2-rounds communication. (b) 3-rounds communication.

Figure 8: Bandwidth allocation ablation study in multi-round communication. (a-b) shows the percep-
tion performance and communication bandwidth trade-offs for 2- and 3-round communication using
different bandwidth allocation strategies on the OPV2V dataset. The legend shows the bandwidth
ratio from the initial communication round to the entire communication round. Allocating more band-
width in the second and subsequent communication rounds achieves a better performance-bandwidth
trade-off than allocating all bandwidth in the initial communication round.

performance-bandwidth trade-off than allocating all bandwidth in the initial communication round,
and the gain is stable for different bandwidth allocation strategies. The reason is that multi-round
communication employs a request map in the second and subsequent communication rounds to
denote the spatial area where each agent needs more information, which enables more targeted and
efficient communication.

1.9 Discussion on the realistic limitations

There are many challenges in a collaborative perception system. In this work, we focus on the biggest
challenge in current collaborative perception systems; that is, the trade-off between communication
bandwidth and perception performance. This challenge has been actively addressed in previous
works [11–13, 7]. Because collaborative perception is enabled and also severely limited by the
communication capacity, which is critically reflected in the highly dynamic and limited bandwidth
in real-world communication systems. Where2comm flexibly adapts to various communication
bandwidths, achieving superior performance-bandwidth trade-off.

Here we further discuss other realistic limitations, assess the robustness of our system and future
improvements to be done.
• For other realistic communication issues such as latency, where2comm communicates strategically
when necessary, rather than all the time or everywhere, to reduce the possibility of encountering
communication problems. In addition, a prediction module could be integrated to estimate the missed
or delayed frames according to the historically received frames. And by focusing on the informative
spatial regions, where2comm can reduce the estimation difficulty.
• For the time synchronisation issue, by using the powerful transformer architecture-based fusion
module, where2comm can attentively augment the features with the received asynchronous features
from other agents. In addition, where2comm can introduce positional encoding conditioned on
delay time and easily extend to global multi-head attention to further reduce the effects of time
synchronization.
• For the noisy localization issue, where2comm exchanges the intermediate features among agents,
which has a relatively low spatial resolution, thus is relatively robust to noisy pose. In addition,
where2comm can easily extend to a deformable transformer architecture like [14] to further alleviate
the feature distortion caused by the noisy localization.
• For the attack issue, by focusing on specific spatial regions and attentively fusing the received
features from other agents, where2comm is relatively less likely to be attacked.
• For the data availability, where2comm works on both RGB and point cloud modalities, and is
sensor friendly, so it can be deployed on cheap camera sensors and lidar sensors.
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Figure 9: As an important component of the UAV swarm, collaborative perception could fundamen-
tally resolve various reception-field restrictions in the traditional single-agent perception.

Figure 10: Two types of UAV swarm formation. The left shows the discipline formation mode, where
the swarm keeps a static array and the right shows the dynamic formation mode, where each UAV
navigates independently in the scene.

1.10 CoPerception-UAVs dataset details

CoPerception-UAVs dataset collects data from drones, see Fig. 9. As the rapid development of an
unmanned aerial vehicle (UAV) significantly enhances human’s ability to perceive the world from an
aerial perspective. UAV-based systems have been widely used in numerous applications, including
search and rescue, security and surveillance, photography, geographical mapping, as well as traffic
monitoring. Through collaboration, UAV swarm can further distribute multiple tasks and achieve
higher flexibility, stronger robustness, and a larger perception range, leading to significant advantages
in harsh and complex environments. Unfortunately, collaborative perception mainly focuses on
the vehicles and ignores the UAV literature. To provide more diverse views and challenging
benchmark for the collaborative perception community, here we present the first comprehensive
large-scale collaborative perception dataset for UAV swarm so far.

Since building a dataset in the real world is too expensive and laborious, in this initial version,
we consider a virtual dataset based on the co-simulation of AirSim [15] and Carla [16], where
AirSim simulates the UAV swarms and Carla simulates the complex background scenes and dynamic
foreground objects. In the simulation, we consider that the UAV swarm is flying over diverse
simulated scenes at various altitudes. Each UAV has a sensing device to collect RGB images, a
computation device to perceive the environment with a perception model, and a communication
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device to transmit perception information among UAVs. In this setting, the UAV swarm is able
to achieve 2D/3D object detection, pixel-wise or bird’s-eye-view (BEV) semantic segmentation
in a collaborative manner. Our dataset consists of 131.9k synchronous images collected from 5
coordinated UAVs flying at 3 altitudes over 3 simulated towns with 2 types of swarm formation. To
enable the model training and testing, each image is fully annotated with the pixel-wise semantic
segmentation labels, 2D bounding boxes of vehicles, as well as 3D bounding boxes on the ground
and the semantic mask from BEV view. This benchmark can enable the evaluation of collaborative
perception methods on the important perception tasks: 2D/3D/BEV object detection and semantic
segmentation. The dataset details as unfolded as follows.

Data collection. Our proposed dataset is collected by the co-simulation of CARLA [16] and
AirSim[15] (both under MIT license). We use CARLA to generate complex simulation scenes and
traffic flow; and use AirSim to simulate UAV swarm flying in the scene. The flight route of UAVs is
controlled by AirSim and sample data are collected randomly at about 4-second intervals.

Map creation. The simulation scenes, including the road layout, static objects, and traffic flow,
are created based on CARLA [16] simulation. We take three open-source maps (town4 to town6)
provided by CARLA as the basic road layouts, which are the three largest maps in scale. To increase
the complexity and diversity of the scenes and make the perception tasks more challenging, we
customize the original maps, adding and replacing various buildings, vegetation, roadblocks, barriers,
and other static objects with various assets provided by CARLA.

Traffic flow creation. Moving vehicles in the scene are managed through CARLA. Hundreds of
vehicles are spawned in each scene by script spawn_npc.py provided by CARLA. The initial location
and motion trajectory of each vehicle is determined by the map’s road layout.

Sensor setup. Each UAV is equipped with 5 RGB cameras in 5 directions and 5 semantic cameras
collecting semantic ground truth for RGB cameras. The cameras include a bird’s eye view camera
and four cameras facing forward, backward, right, and left with a pitch degree of −45◦. Each camera
has an FoV of 90◦ and the resolution is 800× 450. On each UAV, all the cameras are fixed and their
internal relative position and rotation degree are invariable. The translation (x, y, z) and rotation
(w, x, y, z in quaternion) of each camera in both global and ego coordinates are recorded during
data collection. With such a sensor setting, a UAV at the height of 40m can mostly cover an area of
200m× 200m.

Formation flying. The UAV swarm moves and executes tasks in the three-dimensional space, where
the situation could be much more complex than those of vehicles or roadside units. In our proposed
dataset, we take into consideration two main factors that may affect the perception and collaboration
patterns of UAV swarms: flight formation and altitude. Each UAV swarm consists of 5 UAVs. We
arrange two types of formation modes for a UAV swarm: discipline mode, where all 5 UAVs keeps a
consistent and relatively static array, and dynamic mode, where each UAV navigates independently in
the scene; see Fig. 10. The former simulates the situation where the swarm of UAVs is executing a
same specific task such as exploring an unknown area, search and rescue; while the latter simulates
the monitoring and patrolling tasks in the city.

Fully-annotated data are provided in our proposed dataset, including synchronous images with
pixel-wise semantic labels, 2D & 3D bounding boxes of vehicles, and BEV semantic map; see 11.

Camera data. We collect synchronous images from all cameras on 5 UAVs, which is 25 images in
a sample. Camera intrinsics and extrinsics in global coordinate are provided to support coordinate
transformation across various UAVs. In total, 123.8K images are collected for the discipline swarm
mode and 8.1K for the dynamic swarm mode.

Bounding boxes. During data collection, 3D bounding boxes of vehicles are recorded at the same
moment with images, including location (x, y, z), rotation (w, x, y, z in quaternion) in the global
coordinate and their length, width and height. The location (x, y, z) is the center of the bounding box.
Then we provide 2D bounding boxes by projecting the 3D bounding boxes to the image perspective
plane of each camera, resulting in 1.94M 3D bounding boxes and 3.6M 2D bounding boxes in total.

Data usage. In total, CoPerception-UAVs has 131.9K aerial images and 1.94M 3D boxes. We
randomly split the samples into train/validation/test, resulting 91,175/19,500/20,250 images, and
1,316,536/303,888/319,576 3D bounding boxes. The dataset is organized in a similar way with
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Figure 11: Data and annotations of one sample. From top to bottom: RGB image, image with 3D
bounding boxes, image with semantic labels, and BEV map with semantic labels. From left to right
are from different cameras equipped on four UAVs.

the widely-used autonomous driving dataset, nuScenes [17]; so it can be used directly with the
well-established nuScenes-devkit.
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