
Efficiently Factorizing Boolean Matrices
using Proximal Gradient Descent

Sebastian Dalleiger
CISPA Helmholtz Center for Information Security

sebastian.dalleiger@cispa.de

Jilles Vreeken
CISPA Helmholtz Center for Information Security

jv@cispa.de

Abstract

Addressing the interpretability problem of NMF on Boolean data, Boolean Matrix
Factorization (BMF) uses Boolean algebra to decompose the input into low-rank
Boolean factor matrices. These matrices are highly interpretable and very useful
in practice, but they come at the high computational cost of solving an NP-hard
combinatorial optimization problem. To reduce the computational burden, we
propose to relax BMF continuously using a novel elastic-binary regularizer, from
which we derive a proximal gradient algorithm. Through an extensive set of
experiments, we demonstrate that our method works well in practice: On synthetic
data, we show that it converges quickly, recovers the ground truth precisely, and
estimates the simulated rank exactly. On real-world data, we improve upon the state
of the art in recall, loss, and runtime, and a case study from the medical domain
confirms that our results are easily interpretable and semantically meaningful.

1 Introduction

Discovering groups in data and expressing them in terms of common concepts is a central problem in
many scientific domains and business applications, including cancer genomics [23], neuroscience
[13], and recommender systems [18]. This problem is often addressed using variants of matrix
factorization, a family of methods that decompose the target matrix into a set of typically low-
rank factor matrices whose product approximates the input well. Prominent examples of matrix
factorization are Singular Value Decomposition (SVD) [10], Principal Component Analysis (PCA)
[10], and Nonnegative Matrix Factorization (NMF) [31, 21, 22]. These methods differ in how they
constrain the matrices involved: SVD and PCA require orthogonal factors, while NMF constrains the
target matrix and the factors to be nonnegative.

SVD, PCA, and NMF achieve interpretable results—unless the data is Boolean, which is ubiquitous in
the real world. In this case, their results are hard to interpret directly because the input domain differs
from the output domain, such that post-processing is required to extract useful information. Boolean
Matrix Factorization (BMF) addresses this problem by seeking two low-rank Boolean factor matrices
whose Boolean product is close to the Boolean target matrix [24]. The output matrices, now lying in
the same domain as the input, are interpretable and useful, but they come at the computational cost of
solving an NP-hard combinatorial optimization problem [30, 24, 25]. To make BMF applicable in
practice, we need efficient approximation algorithms.

There are many ways to approximate BMF—for example, by exploiting its underlying combinatorial
or spatial structure [24, 6, 5], using probabilistic inference [37, 35, 36], or solving the related Bi-
Clustering problem [28, 29]. Although these approaches achieve impressive results, they fall short
when the input data is large and noisy. Hence, we take a different approach to overcome BMF’s
computational barrier. Starting from an NMF-like optimization problem, we derive a continuous
relaxation of the original BMF formulation that allows intermediate solutions to be real-valued.
Inspired by the elastic-net regularizer [43], we introduce the novel elastic binary (ELB) regularizer to

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

sebastian.dalleiger@cispa.de
jv@cispa.de

regularize towards Boolean factor matrices. We obtain an efficient-to-compute proximal operator
from our ELB regularizer that projects relaxed real-valued factors towards being Boolean, which
allows us to leverage fast gradient-based optimization procedures. In stark contrast to the state of the
art [15, 16, 17], which requires heavy post-hoc post-processing to actually achieve Boolean factors,
we ensure a Boolean outcome upon convergence by gradually increasing the projection strength using
a regularization rate. We combine our relaxation, efficient proximal operator, and regularization rate
into an Elastic Boolean Matrix Factorization algorithm (ELBMF) that scales to large data, results in
accurate reconstructions, and does so without relying on heavy post-processing procedures. ELB and
its rate are, however, not confined to BMF and can regularize, e.g., binary MF or bi-clustering [17].

In summary, our main contributions are as follows:

1. We introduce the ELB regularizer.
2. We overcome the computational hardness of BMF leveraging a novel relaxed BMF problem.
3. We efficiently solve the relaxed BMF problem using an optimization algorithm based on

proximal gradient descent.

The remainder of the paper proceeds as follows. In Sec. 2, we formally introduce the BMF problem
and its relaxation, define our ELB regularizer and its proximal point operator, and show how to
ensure a Boolean outcome upon convergence. We discuss related work in Sec. 3, validate our method
through an extensive set of experiments in Sec. 4, and conclude with a discussion in Sec. 5.

2 Theory

Our goal is to factorize a given Boolean target matrix into at least two smaller, low-rank Boolean
factor matrices, whose product comes close to the target matrix. Since the factor matrices are Boolean,
this product follows the algebra of a Boolean semi-ring, i.e., it is identical to the standard outer
product on a field where addition obeys 1 + 1 = 1. We define the product between two Boolean
matrices U 2 {0, 1}n⇥k and V 2 {0, 1}k⇥m on a Boolean semi-ring ({0, 1} ,_,^) as

[U �V]ij =
_

l2[k]

UilVlk , (1)

where U 2 {0, 1}n⇥k, V 2 {0, 1}k⇥m, and U�V 2 {0, 1}n⇥m. This gives rise to the BMF problem.

Problem 1 (Boolean Matrix Factorization) For a given target matrix A 2 {0, 1}n⇥m, a given
matrix rank N 3 k min{n,m}, and A � B denoting logical exclusive or, discover the factor
matrices U 2 {0, 1}n⇥k and V 2 {0, 1}k⇥m that minimize

kA�U �Vk2F =
X

ij

Aij � [U �V]ij . (2)

While beautiful in theory, this problem is NP-complete [25]. Thus, we cannot solve this problem
exactly for all but the smallest matrices. In practice, we hence have to rely on approximations. Here,
we relax the Boolean constraints of Eq. (2) to allow non-negative, non-Boolean ‘intermediate’ factor
matrices during the optimization, allowing us to use linear algebra rather than Boolean algebra. In
other words, we solve the non-negative matrix factorization (NMF) problem [31]

kA�UVk2F , (3)

subject to U 2 Rn⇥k
+ and V 2 Rk⇥m

+ . In contrast to the original BMF formulation, we can solve
this problem efficiently, e.g., via a Gauss-Seidel scheme. Although efficient, using plain NMF,
however, disregards the Boolean structure of our matrices and produces factor matrices from a
different domain, which are consequently hard to interpret and potentially very dense. To benefit
from efficient optimization and still arrive at Boolean outputs, we allow real-valued intermediate
solutions and regularize them towards becoming Boolean.

To steer our optimization towards Boolean solutions, we penalize non-Boolean solutions using
a regularizer. This idea has been explored in prior work. There exists the l1-inspired PRIMP

2

regularizer [15], which is �[�|1 � 2x| + 1] for values inside [0, 1] and1 otherwise, and the l2-
inspired bowl-shaped regularizer [42], which is �(x2

� x)2/2 everywhere on the real line. Although
both have been successfully applied to BMF, both also have undesirable properties: The PRIMP
regularizer penalizes well inside the interval [0, 1] but is non-differentiable on the outside, while the
bowl-shaped regularizer is differentiable and penalizes well outside the interval [0, 1] but is almost
flat on the inside. Hence, both regularizers are problematic if used individually. Combining them,
however, yields a regularizer that penalizes non-Boolean values well across the full real line. To
combine l1- and l2-regularization, we use the elastic-net regularizer,

r(x) = kxk1 + �kxk22 ,

which, however, only penalizes non-zero solutions [43]. To penalize non-Boolean solutions, we
combine two elastic-net regularizers into our (almost W-shaped) ELB regularizer,

R(X) =
X

x2X

min{r(x), r(x� 1)} , (4)

where X 2 {U,V}. In Fig. 1, we show all three regularizers in the range of [�1, 2], for � = = 0.5.
We see that only the ELB regularizer penalizes non-Boolean solutions across the full spectrum, and
summarize our regularized relaxed BMF as follows.

Problem 2 (Elastic Boolean Matrix Factorization) For a given target matrix A 2 {0, 1}n⇥m and
a given matrix rank N 3 k min{n,m}, discover the factor matrices U 2 Rn⇥k

+ and V 2 Rk⇥m
+

that minimize
kA�UVk2F +R(U) +R(V) . (5)

Although this is a relaxed problem, it is still non-convex, and therefore, we cannot solve it straightfor-
wardly. The problem, however, is suitable for the Gauss-Seidel optimization scheme. That is, we
alternatingly fix one factor matrix to optimize the other. By doing so, we generate a sequence

Ut+1 argmin
U

kA�UVtk
2
F +R(U) , (6)

Vt+1 argmin
V

kA�Ut+1Vk
2
F +R(V) , (7)

of simpler-to-solve sub-problems, until convergence. Now, each sub-problem is again a sum of
two f(X) + R(X) functions, where f is the loss k · k2F , and R(X) is the regularizer. This allows
us to follow a proximal gradient approach, i.e., we use Proximal Alternating Linear Minimization
(PALM) [7, 33]. In a nutshell, we minimize a sub-problem by following the gradient rf of f , to
then use the proximal operator for R to nudge its outcome towards a Boolean solution. That is, for
the gradients rUf = UVV>

�AV> and rVf = U>UV �U>A, we compute the step

proxR(X � ⌘rf) , (8)

where ⌘ represents the step size, which we compute in terms of Lipschitz constant, rather than relying
on a costly line-search [7]. To further improve the convergence properties, we make use of an inertial
term that linearly combines Xt with Xt�1 before applying Eq. (8) (see [33] for a detailed description).
We now derive the proximal operator for the ELB regularizer, before discussing how we ensure that
the factor matrices are Boolean, and summarizing our approach as an algorithm.

2.1 Proximal Mapping

To solve the sub-problem

argmin
X

`�(X) for `�(X) = f(X) +R(X) (9)

from Eq. (7) for X 2 {U,V}, we need a proximal operator [32] that projects values towards a
regularized point. Formalized in Appendix A, in a nutshell, this operator is the solution to

proxR(X) = argmin
Y

1

2
kX � Y k22 +R(X) . (10)

3

�1 0 1 2

0

0.2

0.4

0.6

0.8

1

x

R
(x

)

Regularizer

Bowl
PRIMP

ELB

Algorithm 1: ELBMF

Input: Matrix A 2 {0, 1}n⇥m, rank k 2 N
Output: Factors U 2 {0, 1}n⇥k, V 2 {0, 1}k⇥m

initialize U and V uniformly at random
for t = 1, 2, . . . until convergence do

U arg reduceU `�t(A,U,V)
V arg reduceV `�t(A,U,V)

end
return U,V

Figure 1: On the left, we show the three regularizers: Bowl, PRIMP, and ELB, for � = = 0.5, and
see that only our ELB regularizer penalizes non-Boolean values well. On the right, we show our
method ELBMF as pseudocode.

As Eq. (10) is coordinate-wise solvable, we can reduce this equation to a scalar proximal operator

prox�(x) = argmin
y2R

1

2
(x� y)2 +R(y) . (11)

Although this scalar function may seem simple, due to R, it is non-convex, which—in general—rules
out the existence of unique minima. We can, however, exploit the W-shape of R. That is, from
the perspective of a fixed Xij , the regularizer is locally convex after a case distinction. Starting
with the case of Xij = x, x 1

2 , we can simplify Eq. (11) to 1
2 (x� y)2 + �0/2y2 + |y|, letting

�0 = 2�. Setting its derivative to 0, we get to y = x � sign(y). Asserting that a least-squares
solution will always be of the same sign, we substitute the sign of x with sign(y). Repeating these
steps analogously for x > 1/2, we obtain our proximal operator:

Definition 1 (Proximal Operator) Given regularization coefficients and �, our proximal operator
for matrix X is proxR(X) = [prox�(Xij)]ij , where prox� is the scalar proximal operator

prox�(x) ⌘ (1 + �)�1

⇢
x� sign(x) if x 1

2

x� sign(x� 1) + � otherwise .
(12)

Although not strictly necessary, to improve the empirical convergence rate, we would like to constrain
our factor matrices to be non-negative. As our proximal operator does not account for this, we impose
non-negativity by using the alternating projection procedure to combine the non-negativity proximal
operator [32] with Eq. (12) into max{0, prox�(x)}.

2.2 Ensuring Boolean Factors

Our proximal operator only nudges the factor matrices towards becoming Boolean. We, however,
want to ensure that our results are Boolean. To this end, the state-of-the-art method PRIMP relies
heavily on post-processing, performing a very expensive joint two-dimensional grid search to guess
the ‘best’ pair of rounding thresholds, which are then used to produce Boolean matrices. Although
this tends to work in practice, it is an inefficient post-hoc procedure—and thus, it would be highly
desirable to have Boolean factors already upon convergence. To achieve this without rounding or
clamping, we revisit our regularizer, which binarizes more strongly if we regularize more aggressively.
Consequently, if we regularize too aggressively, we converge to a suboptimal solution, and if we
regularize too mildly, we do not binarize our solutions. To prevent subpar solutions and still binarize
our output, we start with a weak regularization and gradually increase its strength.

Considering Eq. (12), we see that a higher regularization strength increases the distance over which our
proximal operator projects. Thus, if we set the l1-distance controlling too high, we will immediately
leap to a Boolean factor matrix, which will terminate the algorithm and yield a suboptimal solution.

4

Regulating the l2-distance controlling � is a less delicate matter. Hence, we gradually increase � to
prevent a subpar solution and achieve a Boolean outcome, using a regularization rate

�t = � · ⌫t for ⌫t � 0 8t � 0 (13)
that gradually increases the proximal distance at a user-defined rate. In case ELBMF has stopped
without convergence, we bridge the remaining integrality gap by projecting the outcome onto its
closed Boolean counterpart, using our proximal operator (see Fig. 2).

We summarize the considerations laid out above as ELBMF in Alg. 1. The computational complexity of
ELBMF is bounded by the complexity of computing the gradient, which is identical to the complexity
of matrix multiplication. Therefore, for all practical purposes, ELBMF is sub-cubic O

�
n2.807

�
using

Strassen’s algorithm.

3 Related Work

Matrix factorization is a well-established family of methods, whose members, such as SVD, PCA, or
NMF, are used everywhere in machine learning. Almost all matrix factorization methods operate
on real-valued matrices, however, while BMF operates under Boolean algebra. Boolean Matrix
Factorization originated in the combinatorics community [27] and was later introduced to the data
mining community [24], where many cover-based BMF algorithms were developed [6, 5, 24, 26].
In recent years, BMF has gained traction in the machine learning community, which tends to tackle
the problem differently. Here, relaxation-based approaches that optimize for a relaxed but regular-
ized BMF [15, 14, 42] are related to our method, but they differ especially in their regularization.
Hess et al. [15] introduce a regularizer that is only partially differentiable, and they rely heavily on
post-processing to force a Boolean solution, and Zhang et al. [42] regularize only weakly between
0 and 1. In contrast, our regularizer penalizes well across the full spectrum and yields a Boolean
outcome upon convergence. Building on a thresholding-based BMF formulation, Araujo et al. [3]
also consider relaxations to benefit from gradient-based optimization. Other recent approaches build
on probabilistic inference. Rukat et al. [37, 35, 36], for example, combine Bayesian Modeling and
sampling into their logical factor machine. A similar direction is taken by Ravanbakhsh et al. [34],
who use graphical models and message passing, and Liang et al. [23], who combine MAP-inference
and sampling. A different, geometry-based approach lies in locating dense submatrices by ordering
the data to exploit the consecutive-ones property [40, 38]. Since BMF is essentially solving a bipartite
graph partitioning problem, it is also closely related to Bi-Clustering and Co-Clustering [28, 17].
Neumann and Miettinen [29] use this relationship to efficiently solve BMF by means of a streaming
algorithm. Although there are many different approaches to BMF, its biggest challenge to date
remains scalability [25].

4 Experiments

We implement ELBMF in the Julia language and run experiments on 16 Cores of an AMD EPYC
7702 and a single NVIDIA A100 GPU, reporting wall-clock time. We provide the source code,
datasets, synthetic dataset generator, and other information needed for reproducibility.1 We compare
ELBMF against six methods: four dedicated BMF methods (ASSO [24], GRECOND [6], ORM [35],
and PRIMP [15]), one streaming Bi-Clustering algorithm SOFA [29], one elastic-net-regularized NMF
method leveraging proximal gradient descent (NMF [31, 21, 22]), and one interpretable Boolean
autoencoder (BINAPS [9]). Since NMF outputs non-negative factor matrices, rather Boolean matrices,
we cannot compare against NMF directly, so we clamp and round its solutions to the nearest Boolean
outcome. To fairly compare against BINAPS, we task it with autoencoding the target matrix as a
reconstruction, given the matrix ranks from our experiments as the number of latent dimensions. We
perform three sets of experiments. First, we ascertain that ELBMF works reliably on synthetic data.
Second, we verify that it generally performs well on real-world data. And third, we illustrate that its
outputs are semantically meaningful through an exploratory analysis of a biomedical dataset.

4.1 Performance of ELBMF on Synthetic Data

In the following experiments, we ask four questions: (1) How does ELBMF converge?; (2) How
well does ELBMF recover the information in the target matrix?; (3) How consistently does ELBMF

1 Appendix C; DOI: 10.5281/zenodo.7187021

5

https://doi.org/10.5281/zenodo.7187021

0 500 1000
0

0.1

0.2

0.3

0.4

0.5

Iteration t

B
oo

le
an

G
ap

Rate
Constant

0 500 1000
0.0

0.1

0.2

Iteration t

Lo
ss

G
ap

has converged

keeps on changing

0 500 1000
0

5,000

10,000

15,000

20,000

Iteration t

Fl
ip

pe
d

B
its

Figure 2: Our method converges quickly under a regularization rate. We report the progression over
time of the Boolean gap, loss gap, and the Hamming process, for 1 000 iterations of ELBMF on
synthetic 400⇥ 300 matrices with 10% noise and 5 random tiles covering between 50 and 100 rows
or columns, under a constant regularization of �t = 1 or a regularization rate of �t = 1.05t.

reconstruct low- or high-density target matrices?; and (4) Does ELBMF estimate the underlying
Boolean matrix rank correctly? To answer these questions, we generate synthetic data with known
ground truth as follows. Starting with an all-zeros matrix, we randomly create rectangular, non-
overlapping, consecutive areas of ones called tiles, each spanning a randomly chosen number of
consecutive rows and columns, thus inducing matrices with varying densities. We then add noise by
setting each cell to 1, uniformly at random, with varying noise probabilities.

How does ELBMF converge? To study how our method converges to a Boolean solution, we
quantify relevant properties of the sequence of intermediate solutions (cf. Eq. (7)). First, to understand
how quickly and stably ELBMF converges to a Boolean solution, we quantify the Boolean gap,

X

X2{Ut,Vt}

|X|
�1

X

x2X

min{|x|, |x� 1|} .

Second, to understand when we can safely round intermediate almost-Boolean solutions without
losing information, we calculate, for the reconstruction B from rounded intermediate factors, the
cumulative Hamming process as the sum of fraction of bits that flip from iteration t to iteration t+ 1,

|A|
�1
kBt � Bt+1k1 ,

and the loss gap as the difference between the relaxed loss and the loss from the rounded B.

As shown in Fig. 2, we achieve an almost-Boolean solution without any rounding after around 250
epochs, continuing until we reach a Boolean outcome. This is also the point at which the rounded
intermediate solution and its relaxation are almost identical, as illustrated by the loss gap. Considering
the Hamming process on the right, we observe that ELBMF goes through an erratic bit-flipping-phase
in the beginning, followed by only minor changes in each iteration until iteration t = 100. Afterwards,
ELBMF has settled on a solution—under our regularization rate. When using constant regularization
instead, we continue to observe bit flips until the end of the experiment. Under constant regularization,
the Boolean gap hardly decreases over time. Far from Boolean, the constant regularization thus also
never closes the loss gap, which is unsurprising, given that its factors are less regularized. In other
words, our regularization works well, and it allows us to safely binarize almost-converged factors that
are ✏-far from being Boolean by means of, e.g., our proximal operator.

How well does ELBMF recover the information in the target matrix? Having ensured that
our method converges stably and quickly, we would like to assess whether it also converges to a
high-quality factorization. To this end, we generate synthetic 40⇥ 30 matrices containing 5 random
tiles each spanning 5 to 10 rows and columns, under additive noise levels between 0% (no noise)
and 50%. We then compute the fraction of ones in target A that is covered by the reconstruction
B = U �V, i.e., the recall (higher is better)

kAk�1
1 kA� Bk1 . (14)

To ensure that we fit the signal in the data, we additionally report the recall regarding the generating,
noise-free ground-truth tiles A⇤, denoted as recall⇤. Finally, to rate the overall reconstruction quality

6

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

Noise

Si
m

ila
rit

y

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

Noise

R
ec

al
l

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

Noise

R
ec

al
l⇤

ASSO

GRECOND

ORM
SOFA

BINAPS

NMF

PRIMP

ELBMF

Figure 3: Overall, ELBMF reconstructs the noisy synthetic data well and recovers the ground-truth
tiles. On synthetic data for additive noise levels increasing from 0% to 50%, we show mean as line
and standard deviation as shade of similarity, recall w.r.t. the target matrix, and recall⇤ w.r.t. the
noise-free ground-truth tiles, for ASSO, GRECOND, ORM, SOFA, BINAPS, NMF, PRIMP, and ELBMF.

0 0.2 0.4 0.6

0

0.2

0.4

0.6

0.8

1

Density

Si
m

ila
rit

y

0 0.2 0.4 0.6

0

0.2

0.4

0.6

0.8

1

Density

R
ec

al
l

0 0.2 0.4 0.6

0

0.2

0.4

0.6

0.8

1

Density
R

el
at

iv
e

Lo
ss

ASSO

GRECOND

ORM
SOFA

BINAPS

NMF

PRIMP

ELBMF

Figure 4: ELBMF reconstructs noisy synthetic high-density and low-density matrices consistently
well. On synthetic data with fixed additive noise, and increasing density, we show mean as line and
standard deviation as shade of similarity, recall, and relative loss, for BINAPS, ASSO, GRECOND,
ORM, SOFA, BINAPS, NMF, PRIMP, and ELBMF.

including zeros, we compute the Hamming similarity (higher is better) between the target matrix and
its reconstruction

|A|
�1
kA� Bk1 .

We run each method on our synthetic datasets, targeting a matrix rank of 5. To account for random
fluctuations, we average over 10 randomly drawn sets of 5 ground-truth tiles per 10% increment in
noise probability. In Fig. 3, we show similarity, recall, and recall⇤. We observe that in the noiseless
case (0%), all methods except BINAPS recover the 5 ground-truth tiles with high accuracy, but
only ASSO and ELBMF do so with perfect recalls. Starting with as little as 10% noise, both recalls
of ASSO, GRECOND, SOFA, NMF, and BINAPS deteriorate quickly, while the similarity and both
recalls of PRIMP and ELBMF remain high. In fact, ELBMF and PRIMP perform similarly across the
board—which is highly encouraging, as unlike PRIMP, ELBMF does not require post-processing.
For ASSO and GRECOND, recall and similarity drop considerably, but they exhibit a slightly higher
recall⇤. This means that these methods are robust against noise, but they fail to recover the remaining
information. Starting low, ORM’s recalls increase jointly with the noise level, suggesting that clean
data is problematic for ORM. Reporting the standard deviations as the shaded region, we see little
variance across all similarities—except for ASSO and NMF in the highest noise regime. The deviation
of both recalls is, however, inconsistent for most methods, except for BINAPS, PRIMP, and ELBMF.
Overall, the performance characteristics of ELBMF are among the most reliable.

How robust is ELBMF regarding varying matrix densities? To understand whether ELBMF
performs consistently well on low- or high-density matrices, we generate synthetic matrices as before,
this time using fixed noise of 0.2, and varying the width and height of the ground-truth squared tiles
from 32 to 122, resulting in densities between 0.0375 to 0.6, before noise.

In Fig. 4, we show the similarity, recall, and loss of BINAPS, ASSO, GRECOND, ORM, SOFA,
NMF, PRIMP, and ELBMF. We can see that the increasing density affects the performance of all

7

1 10 20 30

9.75

9.8

9.85

9.9

9.95

Rank k

A
IC

1 10 20 30

7.6 · 104
7.8 · 104
8 · 104

8.2 · 104
8.4 · 104
8.6 · 104

Rank k

M
D

L

1 10 20 30

9.9

10

10.1

10.2

10.3

10.4

Rank k

B
ai

&
N

g

Figure 5: Using AIC, MDL, or Bai & Ng’s first information criteria, ELBMF correctly detects the
simulated 400⇥ 300 matrix of rank 10 to which we applied 10% additive noise.

methods, however, it does not affect the performance of all methods equally. All methods—except
ORM—improve in similarity, recall, and loss. With increasing density, ORM gets worse at first,
before its loss shrinks significantly, such that it finishes outperforming SOFA and BINAPS. From low
to high density, ELBMF is the best-performing method across the board in similarity, recall, and loss.

Does ELBMF estimate the underlying Boolean matrix rank correctly? When a target rank is
known, we can immediately apply ELBMF to factorize the data. In the real world, however, the target
rank might be unknown. In this case, we need to estimate an appropriate choice from the data, and
we use synthetic data to ensure that ELBMF does so correctly.

Since a higher matrix rank usually also means a better fit, selecting the best rank according to recall,
loss, or similarity leads to overfitting—unless we properly account for the growth in model complexity.
There are many model selection criteria that penalize complex models, such as AIC [1], Bai & Ng’s
criteria [4, 2], Nuclear-norm regularizing [20, 12], the information-theoretic Minimal Description
Length principle (MDL) [11], or (Decomposed) Normalized Maximum Likelihood [19, 41]. Follow-
ing common practice, and motivated by its practical performance in preliminary experiments, we
choose MDL. That is, we select the minimizer of the sum of the log binomial l(X) = log

� |X|
kXk1

�
of

the error matrix and the rows and columns of our factorization (assumed to be i.i.d.) [26]
l(A� [U �V]) +

P
i2[k] l(U

>
i) + l(Vi) + k log(n ·m) .

To validate whether ELBMF recovers the correct rank, we synthetically generate a 400⇥ 300 matrix
of ground-truth rank 10 with 10% additive noise. In Fig. 5, we show AIC, MDL, and Bai & Ng’s first
criterion for each rank up to 30, finding that our method precisely discovers the right rank.

4.2 Performance of ELBMF on Real-World Data

Having ascertained that ELBMF works well on synthetic data, we turn to its performance in the real
world. Here, we use nine publicly available datasets2 from different domains. To cover the biomedical
domain, we extract the network containing empirical evidence of protein-protein interactions in Homo
sapiens from the STRING database. From the GRAND repository, we take the gene regulatory networks
sampled from Glioblastoma (GBM) and Lower Grade Glioma (LGG) brain cancer tissues, as well
as from non-cancerous Cerebellum tissue. The TCGA dataset contains binarized gene expressions
from cancer patients, and we further obtain the single nucleotide polymorphism (SNP) mutation data
from the 1k Genomes project, following processing steps from the authors of BINAPS [9]. In the
entertainment domain, we use the user-movie datasets Movielens and Netflix, binarizing the original
5-star-scale ratings by setting only reviews with more than 3.5 stars to 1. Finally, as data from the
innovation domain, we derive a directed citation network between patent groups from patent citation
and classification data provided by PatentsView. For each dataset with a given number of groups,
such as cancer types or movie genres, we set the matrix rank k to 33 (TCGA), 28 (Genomes), 136
(Patents), 20 (Movielens), and 20 (Netflix). When the number of subgroups is unknown, we estimate
the rank that minimizes MDL using ELBMF, resulting in 100 (GBM), 32 (LGG), 100 (String), and
450 (Cerebellum).

2
GRAND.NETWORKMEDICINE.ORG STRING-DB.ORG CANCER.GOV/TCGA INTERNATIONALGENOME.ORG PATENTSVIEW.ORG

GROUPLENS.ORG/DATASETS/MOVIELENS KAGGLE.COM/DATASETS/NETFLIX-INC/NETFLIX-PRIZE-DATA

8

https://grand.networkmedicine.org
https://string-db.org
https://cancer.gov/tcga
https://www.internationalgenome.org/
https://patentsview.org/download/data-download-tables
https://grouplens.org/datasets/movielens/
https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data

0 0.2 0.4 0.6 0.8 1

Genomes
TCGA
GBM
LGG

Cerebellum
String

Patents
Movielens

Netflix

(a) Relative Loss

0 0.2 0.4 0.6 0.8 1

(b) Similarity

0 0.2 0.4 0.6 0.8 1

(c) Recall
100 101 102 103 104 105

(d) Time [s]

ASSO

GRECOND

ORM
SOFA

BINAPS

NMF

PRIMP

ELBMF

Figure 6: Our method factorizes real-world data with high similarity and recall, as well as low relative
loss and runtime. We report relative loss, similarity, recall, and runtime of 9 real-world matrices and
their reconstructions from ASSO, GRECOND, ORM, SOFA, BINAPS, NMF, PRIMP, and ELBMF.

As we can achieve a high similarity with an all-zeros reconstruction (in the case of sparse data), or a
perfect recall with an all-ones reconstruction, we also report the relative loss (lower is better),

kAk1kA�U �Vk1 ,

between the target matrices and their reconstructions.

We show relative loss, similarity, recall, and runtime of ASSO, GRECOND, SOFA, ORM, BINAPS,
NMF, PRIMP, and ELBMF, applied to all real-world datasets, targeting a given matrix rank, in
Fig. 6. The cover-based GRECOND and ASSO show comparable loss, similarity, and recall. Both
perform better on smaller matrices (LGG, GBM, or Cerebellum) and struggle with complex matrices
(e.g., TCGA, Genomes). On the complex matrices (e.g., on TCGA, String, or Movielens), although
always outperformed by ELBMF, we see that the rounded NMF reconstructions are surprisingly
good, occasionally surpassing dedicated BMF methods, such as ASSO, GRECOND, ORM, and
SOFA. Across the board, GRECOND, ASSO, ORM, SOFA, BINAPS, and NMF almost always result
in considerably higher loss than ELBMF. Compared to the close competitor PRIMP, our method
ELBMF always results in lower reconstruction loss. We observe the largest gap between the two on
the Cerebellum dataset, where PRIMP’s grid search procedure fails to find suitable thresholds. This is
an impressive result because unlike PRIMP, ELBMF does not necessitate heavy post-processing.

In Fig. 6b, we see that all methods except BINAPS result in a high similarity, which implies they are
sparsity-inducing. As BINAPS overfits and densely reconstructs sparse inputs, it surpasses sparsity-
inducing methods in recall. Considering non-overfitting methods, however, ELBMF is among the
best performing in terms or recall, often outperforming PRIMP, while under significantly stronger
regularization. When PRIMP has a higher recall (e.g., Genomes), this often comes with a higher loss
than ELBMF. We see in Fig. 6d (log scale) that—except for few cases—ASSO, GRECOND, ORM,
SOFA, and PRIMP are slower than ELBMF. Although NMF is less constrained than ELBMF, both are
almost on par when it comes to runtime. Degraded by post-processing, our closed competitor PRIMP
is almost always much slower than ELBMF and struggles with Netflix. Only BINAPS and ELBMF
finished Netflix, however, only ELBMF did so at a reasonable loss, considering the given target rank.

4.3 Exploratory Analysis of Gene Expression Data with ELBMF

Knowing that ELBMF performs well quantitatively, we ask whether its outputs are also interpretable.
To this end, we take a closer look at the TCGA data, which contains the expression levels of 20 530
genes from 10 459 patients, who are labeled with 33 cancer types. Since we are interested in retaining
high gene expression levels only, we set expression levels to one if their z-scores fall into the top 5%
quantile, and to zero otherwise [23]. We run ELBMF on this dataset, targeting a rank of 33.

To learn whether our method groups patients meaningfully, we visualize the target matrix and its
reconstruction. As the target matrix is high-dimensional, we embed both the target matrix and the
reconstruction into a two-dimensional space using t-SNE [39] as illustrated in Fig. 7, where each
color corresponds to one cancer type. In Fig. 7a, we show that when embedding the target matrix
directly, the cancer types are highly overlapping and hard to distinguish without the color coding. In
contrast, when embedding our reconstruction, depicted in Fig. 7b, we see a clean segmentation into
clusters that predominantly contain a single cancer type.

9

�5 0 5

�5

0

5

t-SNE 1

t-S
N

E
2

(a) TCGA

�5 0 5

�5

0

5

t-SNE 1

t-S
N

E
2

(b) Reconstructed TCGA

1 9 17 25 33

1

9

17

25

33

Index of Estimated Component

In
de

x
of

C
an

ce
rT

yp
e

0.0

0.2

0.4

0.6

0.8

1.0
NMI

(c) Normalized Mutual Information

Figure 7: ELBMF discovers the hidden structure in gene expression data. We show the two-
dimensional t-SNE embedding of the TCGA dataset (a) and the embedding of its reconstruction
from ELBMF (b), where each point corresponds to one of the 10 459 patients, colored by cancer type.
While the cancer types are hard to differentiate in the embedding of the original dataset (a), they are
separated into easily distinguishable clusters in the embedding of our reconstruction (b). In (c), we
show the normalized mutual information between estimated groups and cancer types, and observe
that there is an almost 1-to-1 correspondence between our estimated groups and the cancer types.

To better understand these results, we quantify the association between our 33 estimated components
and the ground-truth cancer types by computing the normalized mutual information matrix. This
matrix is noticeably sparse (Fig. 7c), leading to a clean segmentation. Upon closer inspection with
ENRICHR [8], the associations we discover turn out to be biologically meaningful. For example, we
find that ELBMF associates a set of 356 genes to patients with thyroid carcinoma. This component
is associated with thyroid hormone generation and thyroid gland development, and statistically
significantly so—even under a strict False Discovery Control, with p-values as low as 2.574⇥ 10�8

and 6.530⇥ 10�6.

5 Conclusion

We introduced ELBMF to efficiently factorize Boolean matrices using an elegant and simple algorithm
that, unlike its closest competitors, does not rely on heavy post-processing. ELBMF considers a novel
relaxed BMF problem, which allows intermediate solutions to be real-valued. It solves this problem by
leveraging an efficiently computable proximal operator, derived from the innovative ELB regularizer,
and using a regularization rate to obtain Boolean factors upon convergence. Experimentally, we have
shown that ELBMF works well in practice. It operates reliably on synthetic data, outperforms the
discrete state of the art, is at least as good as the best relaxations on real data, and yields interpretable
results even in difficult domains—without relying on post-processing.

Limitations Although ELBMF works overall, it has two bottlenecks. First, by randomly initializing
factors, we start with highly dense matrices, thus prohibiting efficient sparse matrix operations. This
is not ideal for sparse datasets that are too large to fit into memory, and future research on sparse
initialization of Boolean factors will benefit not only ELBMF but also many other methods. Second,
the larger the datasets, the higher the cost of computing gradients, and future work might adapt
stochastic gradient methods for ELBMF to mitigate this problem.

Broader Impact ELBMF is a method for factorizing Boolean matrices, which permits interpretable,
rather than black-box data analysis. As such, it can help make explicit any biases that may be present
in the data. Just like any other method for interpretable data analysis, the insights ELBMF yields can
be used for good purposes (e.g., insight into cancer-causing mutations) or for bad purposes, and the
ultimate quality of the outcome also depends on the behavior of the user. In our experiments, we
focus on beneficial applications, and only consider anonymized open data.

10

References
[1] H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic

Control, 19(6):716–723, 12 1974.

[2] Lucia Alessi, Matteo Barigozzi, and Marco Capasso. Improved penalization for determining
the number of factors in approximate factor models. Statistics & Probability Letters, 80(23-
24):1806–1813, 2010.

[3] Miguel Araujo, Pedro Manuel Pinto Ribeiro, and Christos Faloutsos. Faststep: Scalable boolean
matrix decomposition. In Advances in Knowledge Discovery and Data Mining - 20th Pacific-
Asia Conference, PAKDD 2016, Auckland, New Zealand, April 19-22, 2016, Proceedings, Part
I, volume 9651 of Lecture Notes in Computer Science, pages 461–473. Springer, 2016.

[4] Jushan Bai and Serena Ng. Determining the number of factors in approximate factor models.
Econometrica, 70(1):191–221, 2002.

[5] Radim Belohlávek and Martin Trnecka. A new algorithm for boolean matrix factorization which
admits overcovering. Discret. Appl. Math., 249:36–52, 2018.

[6] Radim Belohlávek and Vilém Vychodil. Discovery of optimal factors in binary data via a novel
method of matrix decomposition. J. Comput. Syst. Sci., 76(1):3–20, 2010.

[7] Jérôme Bolte, Shoham Sabach, and Marc Teboulle. Proximal alternating linearized minimization
for nonconvex and nonsmooth problems. Math. Program., 146(1-2):459–494, 2014.

[8] Edward Y. Chen, Christopher M. Tan, Yan Kou, Qiaonan Duan, Zichen Wang, Gabriela Vaz
Meirelles, Neil R. Clark, and Avi Ma’ayan. Enrichr: interactive and collaborative HTML5 gene
list enrichment analysis tool. BMC Bioinform., 14:128, 2013.

[9] Jonas Fischer and Jilles Vreeken. Differentiable pattern set mining. In KDD ’21: The 27th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore,
August 14-18, 2021, pages 383–392. ACM, 2021.

[10] Gene H. Golub and Charles F. Van Loan. Matrix Computations, Third Edition. Johns Hopkins
University Press, 1996.

[11] Peter D. Grünwald. The Minimum Description Length Principle. The MIT Press, 2007.

[12] Suriya Gunasekar, Blake E. Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati
Srebro. Implicit regularization in matrix factorization. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages 6151–6159, 2017.

[13] Ali Haddad, Foroogh Shamsi, Li Zhu, and Laleh Najafizadeh. Identifying dynamics of brain
function via boolean matrix factorization. In 52nd Asilomar Conference on Signals, Systems,
and Computers, ACSSC 2018, Pacific Grove, CA, USA, October 28-31, 2018, pages 661–665.
IEEE, 2018.

[14] Sibylle Hess and Katharina Morik. C-SALT: mining class-specific alterations in boolean
matrix factorization. In Machine Learning and Knowledge Discovery in Databases - European
Conference, ECML PKDD 2017, Skopje, Macedonia, September 18-22 , 2017, Proceedings,
Part I, volume 10534 of Lecture Notes in Computer Science, pages 547–563. Springer, 2017.

[15] Sibylle Hess, Katharina Morik, and Nico Piatkowski. The PRIMPING routine - tiling through
proximal alternating linearized minimization. Data Min. Knowl. Discov., 31(4):1090–1131,
2017.

[16] Sibylle Hess, Nico Piatkowski, and Katharina Morik. The trustworthy pal: Controlling the false
discovery rate in boolean matrix factorization. In Proceedings of the 2018 SIAM International
Conference on Data Mining, SDM 2018, May 3-5, 2018, San Diego Marriott Mission Valley,
San Diego, CA, USA, pages 405–413. SIAM, 2018.

11

[17] Sibylle Hess, Gianvito Pio, Michiel E. Hochstenbach, and Michelangelo Ceci. BROCCOLI:
overlapping and outlier-robust biclustering through proximal stochastic gradient descent. Data
Min. Knowl. Discov., 35(6):2542–2576, 2021.

[18] Dmitry I. Ignatov, Elena Nenova, Natalia Konstantinova, and Andrey V. Konstantinov. Boolean
matrix factorisation for collaborative filtering: An fca-based approach. In Artificial Intelligence:
Methodology, Systems, and Applications - 16th International Conference, AIMSA 2014, Varna,
Bulgaria, September 11-13, 2014. Proceedings, volume 8722 of Lecture Notes in Computer
Science, pages 47–58. Springer, 2014.

[19] Yu Ito, Shinichi Oeda, and Kenji Yamanishi. Rank selection for non-negative matrix factorization
with normalized maximum likelihood coding. In Proceedings of the 2016 SIAM International
Conference on Data Mining, Miami, Florida, USA, May 5-7, 2016, pages 720–728. SIAM,
2016.

[20] Martin Jaggi and Marek Sulovský. A simple algorithm for nuclear norm regularized problems.
In Proceedings of the 27th International Conference on Machine Learning (ICML-10), June
21-24, 2010, Haifa, Israel, pages 471–478. Omnipress, 2010.

[21] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755):788–791, October 1999. Number: 6755 Publisher: Nature
Publishing Group.

[22] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix factorization.
In Advances in Neural Information Processing Systems 13, Papers from Neural Information
Processing Systems (NIPS) 2000, Denver, CO, USA, pages 556–562. MIT Press, 2000.

[23] Lifan Liang, Kunju Zhu, and Songjian Lu. BEM: mining coregulation patterns in transcriptomics
via boolean matrix factorization. Bioinform., 36(13):4030–4037, 2020.

[24] Pauli Miettinen, Taneli Mielikäinen, Aristides Gionis, Gautam Das, and Heikki Mannila. The
discrete basis problem. IEEE Trans. Knowl. Data Eng., 20(10):1348–1362, 2008.

[25] Pauli Miettinen and Stefan Neumann. Recent developments in boolean matrix factorization.
In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,
IJCAI 2020, pages 4922–4928. ijcai.org, 2020.

[26] Pauli Miettinen and Jilles Vreeken. MDL4BMF: minimum description length for boolean
matrix factorization. ACM Trans. Knowl. Discov. Data, 8(4):18:1–18:31, 2014.

[27] Sylvia D Monson, Norman J Pullman, and Rolf Rees. A survey of clique and biclique coverings
and factorizations of (0, 1)-matrices. Bull. Inst. Combin. Appl, 14:17–86, 1995.

[28] Stefan Neumann. Bipartite stochastic block models with tiny clusters. In Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 3871–3881, 2018.

[29] Stefan Neumann and Pauli Miettinen. Biclustering and boolean matrix factorization in data
streams. Proc. VLDB Endow., 13(10):1709–1722, 2020.

[30] James Orlin. Contentment in graph theory: Covering graphs with cliques. Indagationes
Mathematicae (Proceedings), 80(5):406–424, 1977.

[31] Pentti Paatero and Unto Tapper. Positive matrix factorization: A non-negative factor model with
optimal utilization of error estimates of data values. Environmetrics, 5(2):111–126, 1994.

[32] Neal Parikh and Stephen P. Boyd. Proximal algorithms. Found. Trends Optim., 1(3):127–239,
2014.

[33] Thomas Pock and Shoham Sabach. Inertial proximal alternating linearized minimization (ipalm)
for nonconvex and nonsmooth problems. SIAM J. Imaging Sci., 9(4):1756–1787, 2016.

12

[34] Siamak Ravanbakhsh, Barnabás Póczos, and Russell Greiner. Boolean matrix factorization and
noisy completion via message passing. In Proceedings of the 33nd International Conference
on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of
JMLR Workshop and Conference Proceedings, pages 945–954. JMLR.org, 2016.

[35] Tammo Rukat, Christopher C. Holmes, Michalis K. Titsias, and Christopher Yau. Bayesian
boolean matrix factorisation. In Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of
Machine Learning Research, pages 2969–2978. PMLR, 2017.

[36] Tammo Rukat, Christopher C. Holmes, and Christopher Yau. Probabilistic boolean tensor de-
composition. In Proceedings of the 35th International Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of
Machine Learning Research, pages 4410–4419. PMLR, 2018.

[37] Tammo Rukat, Dustin Lange, and Cedric Archambeau. An interpretable latent variable model
for attribute applicability in the amazon catalogue. In NeurIPS 2017, 2017.

[38] Nikolaj Tatti and Pauli Miettinen. Boolean matrix factorization meets consecutive ones property.
In Proceedings of the 2019 SIAM International Conference on Data Mining, SDM 2019, Calgary,
Alberta, Canada, May 2-4, 2019, pages 729–737. SIAM, 2019.

[39] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[40] Changlin Wan, Wennan Chang, Tong Zhao, Mengya Li, Sha Cao, and Chi Zhang. Fast and
efficient boolean matrix factorization by geometric segmentation. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, New York, NY, USA, February 7-12, 2020,
pages 6086–6093. AAAI Press, 2020.

[41] Tianyi Wu, Shinya Sugawara, and Kenji Yamanishi. Decomposed normalized maximum
likelihood codelength criterion for selecting hierarchical latent variable models. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Halifax, NS, Canada, August 13 - 17, 2017, pages 1165–1174. ACM, 2017.

[42] Zhongyuan Zhang, Tao Li, Chris H. Q. Ding, and Xiang -Sun Zhang. Binary matrix factorization
with applications. In Proceedings of the 7th IEEE International Conference on Data Mining
(ICDM 2007), October 28-31, 2007, Omaha, Nebraska, USA, pages 391–400. IEEE Computer
Society, 2007.

[43] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320, 4 2005.

13

	Introduction
	Theory
	Proximal Mapping
	Ensuring Boolean Factors

	Related Work
	Experiments
	Performance of Elbmf on Synthetic Data
	Performance of Elbmf on Real-World Data
	Exploratory Analysis of Gene Expression Data with Elbmf

	Conclusion
	Derivation of the Proximal Operator
	Extended pseudocode for Elbmf
	Reproducibility
	Additional Results on the Performance of Elbmf on Synthetic Data
	Additional Results on the Performance of Elbmf on Synthetic Data with Varying Densities

