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Abstract

The phenomenon that stochastic gradient descent (SGD) favors flat minima has
played a critical role in understanding the implicit regularization of SGD. In
this paper, we provide an explanation of this striking phenomenon by relating
the particular noise structure of SGD to its linear stability (Wu et al., 2018).
Specifically, we consider training over-parameterized models with square loss.
We prove that if a global minimum θ∗ is linearly stable for SGD, then it must
satisfy ∥H(θ∗)∥F ⩽ O(

√
B/η), where ∥H(θ∗)∥F , B, η denote the Frobenius

norm of Hessian at θ∗, batch size, and learning rate, respectively. Otherwise,
SGD will escape from that minimum exponentially fast. Hence, for minima
accessible to SGD, the sharpness—as measured by the Frobenius norm of the
Hessian—is bounded independently of the model size and sample size. The key
to obtaining these results is exploiting the particular structure of SGD noise: The
noise concentrates in sharp directions of local landscape and the magnitude is
proportional to loss value. This alignment property of SGD noise provably holds for
linear networks and random feature models (RFMs), and is empirically verified for
nonlinear networks. Moreover, the validity and practical relevance of our theoretical
findings are also justified by extensive experiments on CIFAR-10 dataset.

1 Introduction
Modern machine learning (ML) models are often operated with far more unknown parameters than
training examples, a regime referred to as over-parameterization. In this regime, there are many
global minima, all of which have zero training loss but their test performance can be significantly
different [47]. Fortunately, it is often observed that SGD converges to those generalizable ones, even
without needing any explicit regularizations [49]. This suggests there must exist certain “implicit
regularization” mechanism at work [32, 14, 47, 6].

More mysteriously, SGD solutions often generalize better than gradient descent (GD) solutions
[21, 38]. Therefore, the SGD noise must play a critical role in implicit regularization. The most
popular explanation is that SGD favors flatter minima [21] and flatter minima generalize better
[16]. This flat-minima principle has been extensively and successfully adopted in practice to tune
the hyperparameters of SGD [44, 21] and to design new optimizers [17, 11, 43] for improving
generalization. Therefore, understanding how SGD noise biases SGD towards flatter minima is of
paramount importance, which is the main focus of this paper.

The works [44, 10, 48] show that SGD noise is highly anisotropic; [30, 41] find the magnitude of
SGD noise to be loss dependent. Both structures are shown to be critical for SGD picking flat minima.
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However, these works all make unrealistic (even wrong) over-simplifications of SGD noise (see the
related work section for more details) in their analysis. In addition, instead of studying SGD, they all
consider the continuous-time stochastic differential equation (SDE), which is a good modeling of
SGD only in finite time and small learning rate (LR) regime [25]. It is generally unclear how this
SDE modeling is relevant for understanding SGD with a large LR—a regime preferred in practice.
Consequently, these works only provide intuitive and empirical analyses, lacking a quantitative
characterization of when and how SGD favors flat minima.

Another line of works [46, 29] relate the selection bias of SGD to the dynamical stability. In over-
parameterized case, all global minima are fixed points of SGD but their dynamical stabilities can be
very different. At unstable minima, a small perturbation will drive SGD to leave away, whereas, for
stable minima, SGD can stay around and even converge back after initial perturbations. Thus SGD
prefers stable minima over unstable ones. Specifically, [46, 29] analyze the linear stability [1] of
SGD, showing that a linearly stable minimum must be flat and uniform. Different from SDE-based
analysis, this stability-based analysis is relevant for large-LR SGD and is even empirically accurate
in predicting the properties of minima selected by SGD [46, 20, 8].

In this work, we follow the linear stability analysis in [46, 29] but take the particular structure of
SGD noise into consideration. We establish a direct connection between linear stability and flatness,
which allows us to obtain a quantitative characterization of how the learning rate and batch size affect
the flatness of minima accessible to SGD. In contrast, [46, 29] have to introduce another quantity:
the non-uniformity together with flatness to characterize linear stability because of neglecting the
noise structure.

Setup Let {(xi, yi)}ni=1 with xi ∈ Rd, yi ∈ RK be the training set and f(·; θ) with θ ∈ Rp be our
model. The model size is defined to be the number of parameters p and in this paper. For simplicity,
we will always assume K = 1 and the extension to the case of K > 1 is straightforward. Let
Li(θ) =

1
2 |f(xi; θ) − yi|2 be the fitting error at the i-th sample and L(θ) = 1

n

∑n
i=1 Li(θ) be the

empirical risk. We shall focus on the over-parameterized case in the sense that infθ L(θ) = 0. To
minimize L(·), we consider the mini-batch SGD:

θt+1 = θt −
η

B

∑

i∈It

∇Li(θt), (1)

where η and B are the learning rate and batch size, respectively. This SGD can be rewritten as
θt+1 = θt−η(∇L(θt)+ξt), where ξt is the noise, satisfying E[ξt] = 0 and E[ξtξTt ] = Σ(θt)/B. Here
the noise covariance Σ(θ) = 1

n

∑n
i=1 ∇Li(θ)∇Li(θ)

T − ∇L(θ)L(θ)T . To characterize the local
geometry of loss landscape, we consider the Fisher matrix: G(θ) = 1

n

∑n
i=1 ∇f(xi; θ)∇f(xi; θ)

T

and the Hessian matrix: H(θ) = G(θ) + 1
n

∑n
i=1(f(xi; θ)− yi)∇2f(xi; θ). When the loss value is

small, H(θ) ≈ G(θ) and in particular, if θ∗ is an global minimum, H(θ∗) = G(θ∗).

Notations. For a vector a, let ∥a∥ =
√
aTa and ∥a∥W =

√
aTWa. For a matrix A, denote by

{λj(A)} the eigenvalue of A in a decreasing order. For other notations, we refer to Appendix C.

Our main contributions are summarized as follows.
• We first show that for many ML models, the SGD noise is geometry aware: 1) the noise

magnitude is proportional to the loss value; 2) the noise covariance aligns well with the
Fisher matrix. Specifically, to quantify the alignment strength, we define a loss-scaled
alignment factor µ(θ), which is proved to be bounded from below, i.e., there exists a size-
independent positive constant µ0 such that µ(θ) ⩾ µ0, for linear networks (Proposition
2.3) and RFMs (Proposition 2.5), and is also empirically justified for nonlinear networks.
Moreover, we identify that it is the uniformity of model gradient norms {∥∇f(xi; θ)∥G(θ)}i
that accounts for this alignment property of SGD noise.

• We then provide a thorough analysis of the linear stability of SGD by exploiting the alignment
property of noise. We prove in Theorem 3.3 that if a global minimum θ∗ is linearly stable,
then ∥H(θ∗)∥F ⩽ η−1

√
B/µ0. Here the constant µ0 quantifies the alignment strength of

SGD noise. Hence, for minima accessible to SGD, the Hessian’s Frobenius norm—the
flatness perceived by SGD—is bounded independently of the model size and sample size.
Moreover, if a minimum is too sharp, violating the preceding stability condition, SGD
will escape from it exponentially fast (Theorem 3.5). Together, we obtain a quantitative
characterization of when and how much SGD dislikes sharp minima.
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• Our theoretical findings are also corroborated with well-designed experiments on a variety
of models including linear networks, RFMs, convolutional networks, and fully-connected
networks. In particular, the practical relevance is demonstrated in Section 4 by extensive
experiments on classifying full CIFAR-10 dataset with VGG nets and ResNets.

1.1 Related work
Noise structures. [52, 19, 27] consider the Hessian-based approximation: Σ(θ) ≈ σ2H(θ), where
σ is a small constant. [53] proposes an improved version: Σ(θ) ≈ 2L(θ)H(θ). But these approxima-
tions in general cannot be accurate since Hessian is not semi-positive definite (SPD) in non-convex
region. More recently, [30] and [41] study SGD by assuming Σ(θ) = 2L(θ)H(θ∗), where θ∗ is a
minimum of interest, and Σ(θ) = σ2L(θ)Ip, respectively. These assumptions completely ignore the
state-dependence of noise direction. In contrast, we assume Σ(θ) = 2L(θ)C(θ) with C(θ) having
a nontrivial alignment with the Fisher matrix G(θ), which does not impose any explicit structural
assumption on C(θ). As a result, our assumption is much weaker and can be rigorously justified
for popular ML models both theoretically and empirically. More importantly, we show that this
weak alignment property is sufficient for analyzing the linear stability of SGD. We anticipate that our
alignment assumption can be also adopted to analyze other properties of SGD.

Escape from sharp minima. The escape behavior of SGD was first studied in [52, 46], as an
indicator of how much SGD dislikes sharp minima. One of the most mysterious observation is that the
escape happens in an unreasonably efficient way. However, the theoretical analysis there assumes the
noise to be state-independent, and consequently, the derived escape time depends polynomially on the
loss barrier. Later [48, 30] attempt to study this issue using the classical diffusion-based framework
[12] (Itô-SDE), which cannot explain the unreasonable escape efficiency at all since the resulting
escape rates depend on the loss barrier exponentially. See also [30] for an improved analysis. [37, 51]
argues that the SGD noise is heavy-tailed and thus SGD should be modeled as Lévy-SDE instead of
Itô-SDE. Moreover, it is shown that the heavy-tailedness can ensure the escape rate depends on the
basin volume instead of the loss barrier. Unfortunately, the volume in high dimensions always scales
with the dimension exponentially and consequently, this does not explain the escape efficiency in high
dimensions. Moreover, whether SGD noise is really heavy-tailed and whether the heavy-tailedness is
really important for generalization are still debatable for neural networks [40, 26]. In contrast, we
show that the unreasonable escape efficiency comes from the particular geometry-aware structure of
SGD noise, regardless of whether the noise is heavy- or light-tailed.

Flatness metrics In the literature, a variety of flatness metrics have been adopted, such as the largest
eigenvalue of Hessian [21], the trace of Hessian [9, 6], the basin volume [51], and the ones scaled by
parameter norms [28, 39] in order to achieve the scaling-invariance for ReLU nets. These metrics are
proposed for either computation easiness or bounding generalization gaps. It is unclear if they are
perceivable to SGD, let alone how the boundedness of them depends on the batch size, learning rate,
as well as the model size and sample size. We show that for SGD solutions, the Frobenius norm of
Hessian—a flatness perceived by SGD through the linear stability—is bounded by a size-independent
quantity. Note that a similar stability argument also applies to GD but only yielding the boundedness
of the largest eigenvalue of Hessian [46, 31].

Lastly, we particularly mention the work [33], which provides a fine-grained analysis of the implicit
bias of training two-layer diagonal linear networks. This work is related to ours since we both
consider the magnitude and direction structure of SGD noise simultaneously. However, the analysis
in [33] is limited to the specific toy model but ours is relevant for general models.

2 The alignment property of SGD noise

Since ∇Li(θ) = (f(xi; θ)− yi)∇f(xi; θ), we have the following intuitive approximation [30]:

Σ(θ) =
2

n

n∑

i=1

Li(θ)∇f(xi; θ)∇f(xi; θ)
T −∇L(θ)∇L(θ)T

(i)≈ 2

n

n∑

i=1

Li(θ)∇f(xi; θ)∇f(xi; θ)
T

(ii)≈ 2
( 1
n

n∑

i=1

Li(θ)
) 1
n

n∑

i=1

∇f(xi; θ)∇f(xi; θ)
T = 2L(θ)G(θ), (2)
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where (i) assumes that the full-batch gradient ∇L(θ) to be negligible compared with the sample
gradients {∇Li(θ)}; (ii) assumes that {∇f(xi; θ)}i and {Li(θ)}i are nearly decoupled. This
approximation cannot be true in general but tells us that 1) The noise magnitude is proportional to the
loss value; 2) the noise covariance aligns with the Fisher matrix.

Motivated by (2), we define α(θ) = Tr(G(θ)Σ(θ))
∥G(θ)∥F ∥Σ(θ)∥F

, β(θ) = ∥Σ(θ)∥F

2L(θ)∥G(θ)∥F
. Here α(θ) quantifies

the similarity between Σ(θ) and G(θ), characterizing how much the noise concentrates in sharp
directions of local landscape. β(θ) characterizes the relative non-degeneracy of noise (with respect to
the loss value). Then we define the loss-scaled alignment factor:

µ(θ) = α(θ)β(θ) =
Tr(Σ(θ)G(θ))

2L(θ)∥G(θ)∥2F
, (3)

which characterizes the direction and magnitude alignment simultaneously. Intuitively speaking,
if µ(θ) is bounded below, SGD noise is non-degenerate in sharp directions of local landscape. In
particular, α(θ) = β(θ) = µ(θ) = 1 if the approximation (2) holds.

We say the noise satisfies the µ-alignment if µ(θ) > 0. Compared with the decoupling approximation
(2), the µ-alignment is a much weaker condition. Note that this specific weak quantification of
alignment is inspired for analyzing the linear stability of SGD, which is the focus of this paper.
Specifically, Theorem 3.3 shows that µ(θ) along with the Frobenius norm of Hessian determines the
linear stability of SGD. One may define other metrics to quantify alignment strength for studying
other properties of SGD, but this is beyond the scope of this paper.

A relaxed alignment. Let Σ1(θ) = 1
n

∑n
i=1 ∇Li(θ)∇Li(θ)

T ,Σ2(θ) = ∇L(θ)∇L(θ)T . Then
Σ(θ) = Σ1(θ) − Σ2(θ). It is often believed that the full-batch gradient ∇L is relatively small
compared to the sample gradients {∇Li}i. As a result, the influence of Σ2(θ) should be negligible
compared to Σ1(θ). To disentangle the influences of them, we define

µ1(θ) =
Tr(Σ1(θ)G(θ))

2L(θ)∥G(θ)∥2F
, µ2(θ) =

Tr(Σ2(θ)G(θ))

2L(θ)∥G(θ)∥2F
.

Then µ(θ) = µ1(θ)− µ2(θ). Our linear stability analysis in Section 3 show that µ1(θ) ⩾ µ1 > 0, a
condition we refer to as µ1-alignment, is sufficient to ensure that SGD only selects flat minima.

2.1 Why does the alignment property hold?

Definition 2.1 (Norm uniformity of model gradients). Let gi(θ) = ∇f(xi; θ), χi(θ) :=

∥gi(θ)∥2G(θ) = gTi (θ)G(θ)gi(θ), χ̄(θ) = 1
n

∑n
i=1 χi(θ). Define γ(θ) := mini∈[n]

χi(θ)
χ̄(θ) .

The quantity γ(θ) measures the uniformity of model gradient norms and this property can guarantee
the µ1-alignment as stated below.

Lemma 2.2. µ1(θ) ⩾ γ(θ)

Proof. Noticing χ̄(θ) = 1
n

∑n
i=1 gi(θ)

TG(θ)gi(θ) = Tr
(
G(θ) 1n

∑n
i=1 gi(θ))gi(θ)

T
)
= ∥G(θ)∥2F ,

we have

Tr(Σ1(θ)G(θ)) =
2

n

n∑

i=1

Li(θ) Tr(gi(θ)gi(θ)
TG(θ))

=
2

n

n∑

i=1

Li(θ)χi ⩾
2

n

n∑

i=1

Li(θ)γχ̄ = 2γL(θ)∥G(θ)∥2F

Thus µ1(θ) = Tr(Σ1(θ)G(θ))/(2L(θ)∥G(θ)∥2F ) ⩾ γ(θ).

The above proof suggests that the “decoupling” approximation in (2) holds in a weak sense if
{∥∇f(xi; θ)∥G(θ)}i are uniform. One can apply a similar argument by assuming the uniformity of
the fitting errors {Li(θ)}, which, unfortunately, we find never hold in practice. In contrast, we will
show that the norm uniformity of model gradients provably holds for linear networks and RFMs, and
can be empirically justified for nonlinear networks.
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Over-parameterized linear models. Consider an over-parameterized linear model (OLM):
f(x; θ) = F (θ)Tx, where F : Ω 7→ Rd denotes a general re-parameterization function. Note
that f(·; θ) only represents linear functions but the corresponding landscape can be highly non-
convex. Typical examples include the linear network: F (θ) = W1W2 · · ·WL and the diagonal linear
network: F (θ) = (α2

1 − β2
1 , . . . , α

2
d − β2

d)
T . Both have attracted a lot of attention in analyzing

the implicit bias of GD and SGD [3, 42, 33, 13, 4]. The following proposition provides a precise
characterization of the noise covariance for OLM models, whose proof is deferred to Appendix D.

Proposition 2.3. Denote by N (0, S) the Gaussian distribution with mean zero and covariance
matrix S. Suppose f(·; θ) is a general OLM and x ∼ N (0, S). Consider the online SGD setting, i.e.,
n = ∞. Then, Σ(θ) = ∇L(θ)∇L(θ)T + 2L(θ)G(θ) and µ1(θ) ⩾ µ(θ) ⩾ 1

This proposition shows that the alignment property holds in the entire parameter space and moreover,
the alignment strength is independent of model size. Here the alignment is only proved for the
infinite-sample case. Similar results should hold for finite-sample cases by concentration inequalities
as long as n is relatively large, but this straightforward extension does not bring any new insights. It
is more interesting to consider the low-sample regime (i.e., n < d), where the alignments indeed hold
(at least in typical regions explored by SGD) as demonstrated empirically in Figure 1. In addition,
the above proposition provides a closed-form expression of the noise covariance, which might be
useful for analyzing other properties of SGD beyond the linear stability. A comprehensive analysis of
these issues is left to future work.

Feature-based models. Consider a feature-based model f(x; θ) =
∑m

j=1 θjφj(x) = ⟨θ,Φ(x)⟩.
In this case, the model gradients: gi = gi(θ) = Φ(xi) and the Hessian and Fisher matrix: G =
H = 1

n

∑n
i=1 gig

T
i all are constant. But the noise covariance Σ(θ) is still state-dependent. The norm

uniformity of model gradients also becomes constant: γ = mini χi/(
1
n

∑n
i=1 χi) with χi = ∥gi∥2G.

Lemma 2.4. µ1(θ) ⩾ γ, µ2(θ) ⩽ τ(G) := λ2
1(G)/

∑
j λ

2
j (G), and µ(θ) ⩾ γ − τ(G).

The above lemma suggests that the µ2(θ) term is negligible as long as the Fisher matrix is not nearly
rank-1. By bounding the γ and τ(G), we can prove the µ1- and µ-alignment for random ReLU
feature models as stated in the following proposition. The proof is presented in Appendix F, where
similar results for general RFMs are provided (see Proposition F.7).

Proposition 2.5. If φj(x) = ReLU(wT
j x) with wj

iid∼ Unif(
√
dSd−1) and x ∼ Unif(Sd−1). Then,

for any δ ∈ (0, 1), if m ⩾ n ≳ d5 log(1/δ), then w.p. at least 1− δ, µ1(θ) ⩾ 1 and µ(θ) ≳ d−1.

Although feature-based models are linear, their analysis is still applicable to understand nonlinear
models, as long as the nonlinear model locally behaves like the linearized one: flin(x; θ) := f(x; θ∗)+
⟨θ − θ∗,∇f(x; θ∗)⟩ with ∇f(x; θ∗) learned from data. Hence, Proposition 2.5 can explain why the
alignment property holds in a local region around global minima. Note that this is sufficient for
characterizing the linear stability of SGD, which is a local property in nature.

2.2 Empirical validations

Figure 1a reports the values of α(θt), β(θt), µ(θt) during the SGD training of four types of models,
including the linear networks and RFMs analyzed above, and fully-connected networks (FCN) and
convolutional neural networks (CNN). First, one can see that α(θt)’s are quite close to 1 during
the entire training, suggesting the strong concentration of SGD noise in sharp directions of local
landscape. Second, β(θt)’s keep bounded below, implying the noise magnitudes are sufficiently large
with respect to the training loss. As a result, µ(θt)’s are significantly positive for all models examined.
In particular, for the linear networks, the alignment holds in the low-sample regime, where n < d.

The size independence. Figure 1b further examines how the extent of over-parameterization affects
the alignment strength. One can see clearly that for linear networks and RFMs, µ(θ)’s are independent
of the model size, which confirms our theoretical findings proved above. In addition, we also observe
that for nonlinear networks, the alignment strength is also (nearly) independent of the model size.
For instance, for CNN, the value of µ(θ) only decreases from around 1.05 to 1.0 as the model size is
increased by more than two orders of magnitude.
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Figure 1: The alignment property of SGD noise. Four types of models, including the RFM, linear network,
fully-connected network (FCN), and convolutional neural network (CNN), are examined. We refer to Appendix
A for the experimental setup. Note that the linear network is trained in a low-sample regime (n = 100, d = 50).
(a) The alignment factors during training. (b) How the alignment strength of convergent solution changes with
the over-parameterization. The error bar corresponds to the standard deviation over 5 runs.

The norm uniformity of model gradients. Figure 2 shows the norm uniformity of model gradients,
where we report the values of γ(θ) in the entire SGD trajectory. On can see that γ(θ) is indeed
bounded below, implying that the SGD noise satisfies the µ1-alignment according to Lemma 2.2.
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Figure 2: The norm uniformity of model gradients. The values of γ(θt) in the entire SGD trajectory are
reported. It is shown that the norms of model gradient norms are uniform during the entire training process.
Note that in experiments, we only show that the alignment property is satisfied in typical regions
explored by SGD, including the random initialization and the convergent region. In contrast, for
OLMs and RFMs, we in fact prove the alignment property for the entire parameter space.

3 The linear stability analysis
Let θ∗ be a global minimum of L(·). When θt is close to θ∗, the local dynamical behavior of SGD
can be characterized by linearizing the dynamics around θ∗:

θ̃t+1 = θ̃t −
η

B

∑

i∈It

∇2Li(θ
∗)(θ̃t − θ∗), (4)

where ∇2Li(θ
∗) = ∇f(xi; θ

∗)∇f(xi; θ
∗)T . This corresponds to the local quadratic approximation

of the loss L(·) or the local linearization of the model around θ∗:

flin(x; θ) = f(x; θ∗) + ⟨θ − θ∗,∇f(x; θ∗)⟩. (5)

Specifically, (4) is exactly the SGD of training the linearized model (5).
Definition 3.1 (Linear stability). A global minimum θ∗ is said to be linearly stable if there exists a
C > 0 such that it holds for the linearized dynamics (4) that E[L(θ̃t)] ⩽ C E[L(θ̃0)],∀t ⩾ 0.

It is well-known in dynamical system that the local behavior of the original nonlinear dynamics
can be characterized by the linearized one if the local quadratic approximation is non-degenerate.
However, in over-parameterized case, the local quadratic approximation is degenerate in flat directions.
Consequently, one may be concerned about the relevance of local quadratic approximation and the
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resulting linear stability analysis. Fortunately, the stability in Definition 3.1 is particularly measured
with the change of loss value. Thus the instability mostly comes from noise perturbations in sharp
directions and the alignment property guarantees that noise mostly concentrates in sharp directions.
Consequently, the flat directions contribute little to the instability. In sharp directions, the local
quadratic approximation is always valid, thereby explaining the relevance of linear stability analysis.
The rigorous formulation of this intuition is left to future work and we instead resort to numerical
experiments to demonstrate the validity in this paper.

For simplicity, we will use θt to denote θ̃t; let θ∗ = 0 and gi = ∇f(xi; θ
∗). For the linearized model

flin(·; θ), we have L(θ) = 1
2n

∑n
i=1 |θT gi|2 = 1

2θ
THθ,G = H = 1

n

∑n
i=1 gig

T
i , where we omit

the dependence on θ∗ for simplicity. Note that the Fisher and Hessian matrix are constant but the
noise covariance Σ(θ) = 1

n

∑n
i=1 |gTi θ|2gigTi −HθθTH is still state-dependent.

Before considering the specific linearized SGD (4), we first have a general result.
Lemma 3.2. Consider a general SGD: θt+1 = θt − η(∇L(θt) + ξt) for the linearized model (5),
where (ξt)t⩾1 are any noises satisfying E[ξt] = 0,E[ξtξTt ] = S(θt). Then we have

E[L(θt+1)] = E[r(θt)L(θt) + η2v(θt)], (6)

where ν(θ) = Tr(HS(θ))/2 and r(θ) ⩾ 0. Moreover, if η ⩽ 2/λ1(H), then r(θ) ⩽ 1.

Proof. Using the fact E[ξt] = 0 and E[ξtξTt ] = S(θt), we have

E[L(θt+1)] = E[
1

2
(θt − η∇L(θt) + ηξt)

TH(θt − η∇L(θt) + ηξt)]

= E[L(θt)− η∇L(θ)THθt +
η2

2
∇L(θt)

TH∇L(θt)] +
η2

2
E[Tr(HS(θt))]

= E[r(θt)L(θt) + η2ν(θt)],

(7)

where r(θ) = 1 − 2η θTH2θ
θTHθ

+ η2 θTH3θ
θTHθ

since ∇L(θ) = Hθ. By Lemma G.2, r(θ) ⩾ 0 and if
η ⩽ 2/λ1(H), then r(θ) ⩽ 1.

The two terms r(θt)L(θt) and η2v(θt) denote the contributions from the full-batch gradient ∇L(θt)
and the noise ξt, respectively. The stability is affected by both terms simultaneously. It is well-known
that if θ∗ is linearly stable for GD, then λ1(H(θ∗)) ⩽ 2/η (see, e.g., [46, 31]). This also holds for
SGD but SGD imposes a stricter condition because of the extra η2ν(θt) term. Specifically,

E[L(θt+1)] = E[r(θt)L(θt) + η2ν(θt)] ⩾ η2 E[ν(θt)] = 0.5η2 Tr(HS(θ)). (8)

Therefore, the more S(θ) aligns with H , the more unstable that minimum is. Specifically, let
S(θ) = 2σ2L(θ)C(θ). Then, E[L(θt+1)] ⩾ η2σ2 E[L(θt) Tr(HC(θt))]. Thus to ensure a stable
convergence, we should roughly have Tr(HC(θ)) ⩽ 1

σ2η2 . We next show that this can lead to a
flatness control by utilizing the alignment between C(θ) and H .

3.1 The linear stability imposes size-independent flatness constraints
For the mini-batch SGD, the following theorem characterizes how the batch size and learning rate
affect the flatness—as measured by the Frobenius norm of Hessian—of minima accessible to SGD.
Theorem 3.3. Let θ∗ be a global minimum that is linearly stable. Denote by µ(θ) the alignment

factors for the linearized SGD (4) and model (5). If µ(θ) ⩾ µ0, then ∥H(θ∗)∥F ⩽ 1
η

√
B
µ0
.

Proof. By (8) and the definition of µ(θ), we have

E[L(θt+1)] ⩾
η2

2B
E[Tr(HΣ(θt))] ⩾

η2∥H∥2F
B

E[µ(θt)L(θt)] ⩾
µ0η

2∥H∥2F
B

E[L(θt)]. (9)

To ensure the stability, we must have µ0η
2∥H∥2F /B ⩽ 1, leading to ∥H∥F ⩽

√
B/µ0/η.

We have shown in Section 2 that µ0 is (nearly) size-independent, and thus the obtained upper bound of
flatness is also (nearly) size-independent. As a comparison, for GD, the linear stability can only ensure
λmax(H(θ∗)) ⩽ 2/η. This gives a bound of the Hessian’s Frobenius norm: ∥H(θ∗)∥F ⩽ 2

√
p/η,
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depending on the model size explicitly. The comparison of two bounds partially explains why SGD
tends to select flatter minima than GD.

We show below that the µ-alignment can be further relaxed to the µ1-alignment. The proof is similar
to the one of Theorem 3.3 and deferred to Appendix G.
Proposition 3.4. Under the setting of Theorem 3.3, if the noise of linearized SGD satisfies µ1(θ) ⩾ µ1,

then ∥H(θ∗)∥F ⩽ min

(
B√

(B−1)µ1

, 2B
µ1

)
1
η .

When B ≫ 1, the bound becomes B/(η
√

(B − 1)µ1) ≈
√
B/µ1/η , which is the same as the case

of µ-alignment. Thus the influence of ∇L is indeed negligible compared with {∇Li}i.
Note that the linear stability is local in nature and hence our analysis essentially only needs the
µ1-alignment to hold locally around minima of interest. Experiments in Figure 2 shows that γ(θ∗) is
always bounded below, i.e., the norm uniformity of model gradients is satisfied. Combining with
Proposition F.7, we can conclude that the alignment property assumed in Proposition 3.4 holds.

Tightness of our analysis. In the analysis above, we only inspect the instability caused by the noise,
with the full-batch gradient completely ignored. Therefore, we anticipate that our bound is tighter
in small-batch regime, where the noise term dominates the full-batch term. We will see that our
numerical experiments indeed confirm this tightness in small-batch regime. However, for obtaining
the tightest bound, one may need to consider both components simultaneously; this is much more
complicated and left to future work.

Numerical validations. Figure 3a numerically shows how the Frobenius norm of Hessian (not
only the upper bound) changes with extent of over-parameterization, where the trace of Hessian is
also plotted for comparison. One can see that the Frobenius norm indeed keeps almost unchanged as
increasing the model size but the Hessian trace increases significantly. Figure 3b further shows the
ratio between the Frobenius norm and our upper bound in the training process and two batch sizes
are examined. We have two observations. First, the correctness of our bound holds for the entire
SGD trajectory, suggesting that the linear stability analysis is relevant for the entire training process.
Second, as expected, the theoretical bound is indeed tighter for the case with a smaller batch size.
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Figure 3: (a) The Frobenius norm and trace of Hessian vs. model size. The error bar corresponds to the standard
deviation estimated over 5 runs. (b) The ratio between the Frobenius norm and our upper bound in the training
process. Here B = 5 and B = 40 are examined. For more experiment details, we refer to Appendix A.

3.2 SGD escapes from sharp minima exponentially fast

The following theorem shows that the pure noise-driven escape from a sharp minimum is exponentially
fast, whose proof follows trivially from (9).

Theorem 3.5. Under the setting of Theorem 3.3, if ∥H(θ∗)∥F > 1
η

√
B
µ0

, then the linearized SGD

satisfies E[L(θt)] ⩾ γt
0 E[L(θ0)] with γ0 = η2µ0

B ∥H(θ∗)∥2F > 1.

Hence, linearized SGD takes roughly logγ0
(1/ε) steps to escape from a O(ε)-loss region to a O(1)-

loss region. The escape time depends on the loss barrier only logarithmically and is independent of
the parameter space dimension. Due to the local closeness between linearized SGD and the original
SGD, this partially explains the unreasonable escape efficiency of SGD for training big models. In
contrast, the escape rates of existing works [48, 52, 51, 30] are either exponentially slow with respect
to the loss barrier or suffer from the curse of dimensionality.

8



Figure 4 shows the trajectories of SGD escaping from sharp minima. It is demonstrated that the escape
is indeed exponentially fast and specifically, 10 steps are enough for SGD escaping to a high-loss
region for all the models examined. In addition, we observe that the escape is still exponentially fast
in the high-loss region, although our analysis only applies to a local region. How can we explain this
nonlocal escape behavior? We leave the study of this interesting phenomenon to future work.
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Figure 4: The exponentially fast escape from sharp minima. The blue curves are 200 trajectories of SGD;
the red curve corresponds to the average. The sharp minimum is found by GD. When GD nearly converge, we
switch to SGD with the same learning rate. This choice ensures that the minimum is stable for GD, and thus the
escape is purely driven by SGD noise. For more experimental details, we refer to Appendix A.

3.3 The importance of the noise structure
The magnitude structure. Theorem 3.5 together with its proof suggests that the loss dependence
of noise magnitude is critical for obtaining the exponentially fast escape. The intuition is as follows.
When θt is perturbed by noise to θt+1 where L(θt+1) > L(θt), the noise magnitude becomes larger
there and thus θt+1 is easier to be perturbed to a larger-loss region. This positive feedback drives
SGD to leave exponentially fast. On the contrary, the following lemma shows that if the noise is
uniformly bounded, the noise-driven escape is at most linear in time.
Lemma 3.6. Under the setting of Lemma 3.2, assume η ⩽ 2/λ1(H) and E[HS(θ)] ⩽ 2σ2. Then
E[L(θt)− L(θ0)] ⩽ η2σ2t.

We set η ⩽ 2/λ1(H) to avoid the exponential escape caused by the full-batch component.

Proof. By Lemma G.2, when η ⩽ 2/λ1(H), r(θ) ⩽ 1. Thus Lemma 3.2 implies E[L(θt+1)] ⩽
E[L(θt)] + η2σ2, which implies E[L(θt)] ⩽ E[L(θ0)] + η2σ2t.

The direction structure. We now turn to consider the impact of direction structure. Consider
general SGDs: θt+1 = θt − η(∇L(θt) + ξt) with E[ξtξt] = S(θt)/B for the linearized model (5).
We compare two type of (unrealistic) noises:

• Geometry-aware noise: S1(θ) = 2L(θ)H .
• Isotropic noise: S2(θ) = 2σ2L(θ)Ip with σ2 = Tr(H)/p. Here, the value of σ2 is chosen

to ensure two types of noises have the same total variance for a fair comparison [52].

Note that p denotes the model size. Analogous to Theorem 3.3, for the second isotropic SGD,

E[L(θt+1)] ⩾
η2

2B
Tr(HS(θ)) ⩾ E[L(θt)]

σ2η2

B
Tr(H) = E[L(θt)]

η2

pB
Tr(H)2.

Hence, the instability decreases with the parameter-space dimension and the resulting flatness
constraint is Tr(H(θ∗)) ⩽

√
pB/η, depending on the model size explicitly. In contrast, for the fist

noise, Theorem 3.3 implies ∥H(θ∗)∥F ⩽
√
B/η, independent of the model size. This difference can

be intuitively explained as follows. The isotropic noise wastes most energy in perturbing SGD along
flat directions, which barely affects the instability. In contrast, the geometry-aware noise focuses
most energy on perturbing SGD along sharp directions, causing much more instability.

4 Larger-scale experiments
We have provided small-scale experiments to justify the validity of our theoretical findings for
a variety of ML models. Here we turn to demonstrate the practical relevance by consider the
classification of the CIFAR-10 dataset [22] with VGG nets [36] and ResNets [15]. In training, all
explicit regularizations are removed to keep consistent with our theoretical analysis. More details of
the experimental setup can be found in Appendix A.
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The alignment property and escaping behavior. Figure 5a reports the alignment strength of
SGD noise during training for VGG-19 and ResNet-110. One can see that the alignment factors are
significantly positive and similar results are also observed for a variety of VGG nets and ResNets
of different depths and can be found in Figure 8 of Appendix B. On can see that the alignment
strength is nearly independent of the model size. Figure 5b shows the behavior of escaping from
sharp minima for VGG-19 and ResNet-110. One can still observe that the escape is exponentially fast
and similar observation for other ResNets and VGG nets can be found in Figure 9 in the appendix.
These observations suggest that our theoretical findings also hold for this practical setting.
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Figure 5: (a) The alignment factors and the escaping behavior for VGG-19. Similar results are also observed
for all examined ResNets and VGG nets, which can be found in Appendix B.2. (b) The actual flatness of SGD
solution and the corresponding theoretical upper bound (Theorem 3.3). (c) The upper bound becomes tighter as
decreasing the batch size.

The flatness and upper bound. Figure 6a reports the flatness of convergent solution and the
corresponding upper bound predicted by our theory for ResNets and VGG nets. It is again observed
that the flatness is nearly independent of the model size. A surprising observation in Figure 6a is
that our upper bounds are rather tight, see, e.g., VGG-16 and VGG-19. This tightness suggests that
SGD runs (nearly) at the edge of stability [46, 8]. Moreover, as expected, Figure 6b shows that the
our bound becomes tighter as decreasing batch size. This is consistent with what we observe in
small-scale experiment in Figure 3b.
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Figure 6: (a) The flatness and upper bound for various ResNets and VGG nets. (b) How the tightness of upper
bound changes with decreasing batch size.

5 Conclusion
We provide a stability-based explanation of why SGD selects flat minima. Our current understanding
is as follows. 1) For popular ML models, the SGD noise aligns very well with local landscape. 2)
This alignment property ensures that the flatness of stable minima must be size-independent. This
understanding is made rigorous and quantitative by introducing a loss-scaled alignment factor to
characterize the alignment strength and analyze the linear stability. Obviously, many questions
remains open. For example, can we understand what roles the stability plays in the whole dynamic
process of SGD instead of only around global minima? Can we establish the connection between
the Hessian’s Frobenius norm and generalization? Can we provide a fine-grained characterization of
the noise structure and how the structure is related to implicit regularization of SGD? We leave the
discussion of these important questions to future work.
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(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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