
Generative Status Estimation and Information
Decoupling for Image Rain Removal

– Supplementary Material –

Di Lin1,†, Xin Wang2,†, Jia Shen1, Renjie Zhang2, Ruonan Liu1, Miaohui Wang3,
Wuyuan Xie3, Qing Guo4 and Ping Li2,*

1Tianjin University, China
2The Hong Kong Polytechnic University, Hong Kong

3Shenzhen University, China
4Center for Frontier AI Research, A*STAR, Singapore

p.li@polyu.edu.hk

1 Experimental Details

We construct SEIDNet based on PyTorch1. There are 26 convolutional layers for extracting the
visual feature map from the rainy image. The feature masking contains two convolutional layers.
It computes the rain (or object) feature map. The encoder/condition/decoder branch of CVAE (Vse

or Vid) consists of 16 convolutional layers. There is a pair of batch normalization and ReLU layers
between the adjacent convolutional layers. The size of kernels in each convolutional layer is 3× 3.
Vid generates 3× 3 kernel for deraining each pixel. There are 132 convolutional layers in SEIDNet.

(a) D + D

Discriminative Network Generative Network

(b) G + D

(c) D + G (d) G + G

Status Map R

A

A

Kernel Map K

Object Layer O’Rainy Image I Kernel Map Ku

Rainy Image I Rainy Image IObject Layer O’ Object Layer O’Status Map R Status Map Ru Kernel Map K

A
.

Kernel Map
K

m

Kernel Map
K

n

Status Map
R

m

Status Map
R

n

Kernel Map KuRainy Image I Object Layer O’

. . .

Status Map
R

m

Status Map
R

n

. . .

Kernel Map
K

m

Kernel Map
K

n

Figure 1: Different strategies of using the status estimation and information decoupling.

We use Adam solver to optimize the parameters of SEIDNet. We set the initial learning rate to 5e− 5,
which is decayed linearly. We train the network for 5, 000 epoches on the dataset, where we randomly

1https://pytorch.org/

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

select 10 images for constructing each mini-batch. The spatial resolution of the image is 256× 256.
We use a GeForce RTX 3090 GPUs for training. Given the testing architecture of SEIDNet, we
generate 8 kernel maps, which are aggregated for the deraining on the rainy image.

SE ID Memory Time PSNR SSIM
D D 1.0 0.0515 29.43 0.8809
G D 1.2 0.0643 29.62 0.8849
D G 1.9 0.0704 31.42 0.9172
G G 2.1 0.0832 33.22 0.9327

Table 1: We refer to SE, ID, Memory and Time as the status estimation, information decoupling,
GPU memory (GB) and testing time (second). D and G indicate the discriminative and generative
networks, respectively. The performances are reported on the test set of Rain100H.

Network Memory Time PSNR SSIM
D 0.9 0.0453 29.91 0.8905
G 2.1 0.0832 33.22 0.9327

D+G 2.4 0.0879 33.11 0.9310

Table 2: Network means the discriminative (abbreviated as D) or generative (abbreviated as G)
network that estimates the kernels for rain removal. The performances are reported on the test set of
Rain100H.

2 Ablation Study of SEIDNet

Analysis of Network Components The status estimation and information decoupling of SEIDNet are
the core components for computing the pixel-wise statuses and kernels. These components are based
on the generative CVAEs. To evaluate the generative power for rain removal, we experiment with
using the discriminative convolutional network for the status estimation and information decoupling.
We report the results in Table 1 (also see Table 1 of the main paper). In this supplementary material,
we illustrate the architectures in Figure 1(a–d).

Rainy Image I

Kernel Map K

Kernel Map K

A

Object Layer O’Kernel Map Ku

Rainy Image I

A

Object Layer O’Kernel Map Ku

Rainy Image I Object Layer O’Kernel Map K

(b) G

(c) D + G

(a) D

. . .

Kernel Map
K

m

Kernel Map
K

n

Kernel Map K

...

Discriminative Network Generative Network

Figure 2: Various network combinations.

Various Combinations of Networks In Table 2 (also
see Table 2 of the main paper), we compare different
strategies of using the discriminative and generative
networks for deraining. Similar to the full model of
SEIDNet (see Figure 2(a)), we use 132 convolutional
layers to construct a single discriminative network for
predicting the pixel-wise kernels. The architecture of
the discriminative network is illustrated in Figure 2(b).

We combine the discriminative and generative networks,
by averaging the kernel maps produced by the discrim-
inative and generative networks. The combined net-
works are illustrated in Figure 2(c). The trivial combi-
nation increases the network parameters but degrades
the performances.

Different Ways of Using CVAEs SEIDNet has a pair
of CVAEs that model the factorized distributions of the
status and the kernel (see Figure 3(c)). We compare
SEIDNet with the alternative methods, which use a
CVAE without distribution factorization. We list the
results in Table 3 (also see Table 3 of the main paper).

First, we experiment with the single CVAE that only
takes the visual feature map of the rainy image as the
condition. This method directly generates the kernel
maps (see Figure 3(a)).

Second, we use the single CVAE to generate the status
and kernel maps. Again, this CVAE takes the visual
feature map of the rainy image as the only condition.

2

(a) One CVAE for K

(b) One CVAE for (K, R)(c) Two CVAEs for (K, R)

A
.

Kernel Map
K

m

Kernel Map
K

n

Status Map
R

m

Status Map
R

n

Kernel Map KuRainy Image I Object Layer O’

Rainy Image I

Kernel Map
K

Kernel Map
K

A

Object Layer O’Kernel Map Ku

m

n

. . .

Rainy Image I

Kernel Map
K

Kernel Map
K

A

Object Layer O’Kernel Map Ku

m

n

. . .

Status Map
R

m

Status Map
R

n

Discriminative Network Generative Network

Figure 3: We show the simplified network structure of different ways of using CVAEs.

Method Memory Time PSNR SSIM
One CVAE for K 1.6 0.0703 25.21 0.7929

One CVAE for (K, R) 1.9 0.0774 29.03 0.8963
Two CVAEs for (K, R) 2.1 0.0832 33.22 0.9327

Table 3: We refer to K and R as the kernel and status maps. We use different factorizations of
probability and report the performances on the test set of Rain100H.

The status and kernel maps are generated by the separate decoder branches. The single CVAE only
depends on the training loss of the status map, for implicitly guiding the generation of the kernel map
(see Figure 3(b)).

0.7 0.9 1.3
2.1

3.6

6.5

0.0

2.5

5.0

7.5

1 2 4 8 16 32

0.068 0.070 0.075
0.083

0.099

0.162

0.065

0.105

0.145

0.185

1 2 4 8 16 32

31.457
31.788

32.381

33.217
33.221 33.221

31.45

32.15

32.85

33.55

1 2 4 8 16 32

0.9142
0.9181

0.9242

0.9327
0.9327 0.9327

0.913

0.921

0.929

0.937

1 2 4 8 16 32

(a) GPU Memory (b) Testing Time (c) PSNR (d) SSIM
Figure 4: Sensitivities of GPU memory in GB (a), testing time per image in seconds (b), PSNR (c)
and SSIM (d) to the number of kernels.
Visualization of Status Maps We use the normal distribution to generate an array of latent variable
maps {Zm | m = 1, ..., N}. The decoder of Vse uses feature map F, latent variable maps Zm and
(µf ,σf) to generate the status map {Rm |m = 1, ..., N}. In Figure 6, we compare the visualized
status maps, which are estimated from the testing images.

In each status map, a higher (or lower) value means a higher (or lower) probability of predicting the
pixel as the rain (or object). For visualization, the pixel in blue (or white) has a higher (or lower)
value. In each row of Figure 6, we zoom in some of the regions on the status maps (see the regions in
the red rectangles) that are estimated from the identical image. These regions contain different status
values for capturing the confusing appearance of rain and object.

Visualization of Kernel Maps The decoder of Vid uses F, Rm, Zm and (µm
c ,σm

c) to generate the
kernel map {Km | m = 1, ..., N}. Given various status maps generated by Vse, the decoder of Vid

3

(a) Input (c) Embedded Statuses (d) Kernel Map (e) Embedded Kernels(b) Status Map (f) Final Result

Figure 5: (a) We choose the chosen regions in each input image. (b) We show a status map for each
input image. (c) For each chosen region, we use t-SNE to embed different counterparts of statuses
into the 2D space. Here, each scatter point corresponds to a counterpart of statuses in a chosen region
with the same color. (d) We show a kernel map for each input image. (e) For each chosen region,
we use t-SNE to embed different counterparts of kernels into the 2D space. Here, each scatter point
corresponds to a counterpart of kernels in a chosen region with the same color. (f) The final results
achieved by SEIDNet.

Rainy Image R1 R2 R3 SEIDNet result

Figure 6: Visualization of status maps.

can generate various kernel maps for the same image. In Figure 7, we compare the visualized kernel
maps Km, which are estimated from the testing images.

In each row of Figure 7, the sample regions on the kernel maps (see the red rectangles) are estimated
from the identical image. Note that these regions correspond to different kernels for deraining. As
evidenced in Figure 4 (also see Figure 4 of the main paper), increasing the number of the estimated
kernel maps helps to improve the deraining performance.

4

Rainy Image K1 K2 K3 SEIDNet result

Figure 7: Visualization of kernel maps.

Method Rain100H Rain100L Test100 Test1200 Test2800 Overall
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

PReNet [2] 27.02 0.8655 32.61 0.9513 24.89 0.8564 31.54 0.9136 31.79 0.9151 31.47 0.9130
JORDER [3] 27.43 0.8677 32.42 0.9476 24.29 0.8542 31.44 0.9110 31.72 0.9145 31.39 0.9118
SPANet [4] 26.88 0.8536 31.26 0.9247 23.17 0.7853 29.93 0.8928 30.07 0.9004 29.83 0.8951
RCDNet [5] 30.17 0.8876 35.06 0.9603 23.79 0.8303 31.68 0.9294 32.41 0.9513 32.02 0.9411

CVID [6] 26.25 0.8444 30.53 0.9025 23.23 0.7824 27.88 0.8401 28.50 0.8685 28.19 0.8584
MPR [7] 30.47 0.8926 36.45 0.9669 30.29 0.9139 32.98 0.9397 33.47 0.9587 33.26 0.9510

EfDeRain [8] 30.44 0.8954 35.45 0.9645 27.67 0.8874 31.41 0.9260 32.53 0.9511 32.11 0.9416
SPDNet [9] 30.56 0.8956 35.37 0.9621 24.87 0.8349 31.49 0.9152 32.59 0.9501 32.12 0.9367
SEIDNet 31.18 0.8993 36.83 0.9657 30.29 0.9148 33.16 0.9442 33.93 0.9611 33.62 0.9539

Table 4: We compare SEIDNet with state-of-the-art methods on the test sets of Rain13K. The
performances are reported in terms of PSNR and SSIM.

Analysis on the Correlation between Statuses and Kernels To analyze the correlation between
the status and kernel maps produced by SEIDNet, we employ t-SNE [1] to embed the status and
kernel maps into the 2D space for visual analysis.

As shown in Figure 5(a), we choose the regions from the input images. In the chosen regions of
each input image, the statuses of rains and objects are very similar (see Figure 5(b)). Thus, for the
chosen region of each image, their different counterparts of statuses, which are sampled from the
status space, are embedded closely into the 2D space (see Figure 5(c)). Intuitively, the overlapping of
statuses in the 2D space likely let deraining kernels for the chosen regions be similar, thus leading to
the failure in the deraining on these regions.

Note that the status estimation and information decoupling of SEIDNet are powerful. Though the
statuses of the chosen regions are similar, multiple counterparts of status maps still provide the useful
information, which helps the information decoupling to estimate the reliable kennels for different
regions (see the kernel map in Figure 5(d)). As shown in Figure 5(e), we embed different counterparts
of kernels of each chosen region into the 2D space, where the kernels of different regions are relatively
far from each other. It helps to yield the satisfactory results in Figure 5(f).

5

Image Ground TruthRCDNet MPR SPDNet SEIDNetInput

Figure 8: Visual results on the image deraining task. We zoom in the image regions (see the blue
rectangles) to compare deraining performance of different methods.

Method Snow100K-S Snow100K-M Snow100K-L Overall
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DuRN-S-P [12] 32.27 0.9497 30.92 0.9398 27.21 0.8891 30.12 0.9261
Composition GAN [13] 30.43 0.9612 31.21 0.9431 29.55 0.9021 30.40 0.9335

DesnowNet [14] 32.33 0.9500 30.87 0.9409 27.17 0.8983 30.11 0.9296
DS-GAN [15] 33.43 0.9641 31.88 0.9570 28.07 0.9211 31.11 0.9473

HDCWNet [16] 33.21 0.9623 32.38 0.9541 28.13 0.9253 31.24 0.9472
DDMSNet [17] 34.34 0.9445 32.89 0.9330 28.85 0.8772 32.03 0.9183

RFMPRaLSGAN [18] 33.68 0.9690 30.47 0.9500 29.38 0.9440 31.17 0.9540
RSRNet [19] 31.54 0.9519 30.52 0.9444 26.85 0.9039 29.64 0.9334

SEIDNet 35.01 0.9765 33.45 0.9711 29.84 0.9454 32.77 0.9643

Table 5: We compare SEIDNet with state-of-the-art methods on the test sets of Snow100K. The
performances are reported in terms of PSNR and SSIM.

Method ITS Subset OTS Subset
PSNR SSIM PSNR SSIM

Grid-Net [20] 32.16 0.9836 30.86 0.9820
MSBDN [21] 33.67 0.9850 33.48 0.9820
FFA-Net [22] 36.39 0.9886 33.57 0.9840

AECR-Net [23] 37.17 0.9901 33.84 0.9837
D-Former [24] 40.05 0.9960 34.95 0.9840

SEIDNet 40.62 0.9968 35.72 0.9951

Table 6: We compare SEIDNet with other methods on ITS&OTS. The results are listed in terms of
PSNR and SSIM.

3 Supplementary Results on Rain Removal

In Table 4, we report the performances on the separate test sets (i.e., the test sets of Test100,
Test1200 [10], Test2800 [11], Rain100H, and Rain100L) of Rain13K. We also compare the perfor-
mances of different methods. Each method is trained on the unified training set of Rain13K and tested
on the separate test sets. Again, SEIDNet outperforms other methods, showing a strong generalization
across different datasets.

In Figures 8 and 9, we provide more visual results on the task of rain removal.

6

Image RCDNet MPR SPDNet SEIDNetInput

Figure 9: Visual results on real-world dataset. We zoom in the image regions (see the blue rectangles)
to compare deraining performance of different methods.

4 Extensive Comparison on Different Tasks

Note that SEIDNet can be extended to various image restoration tasks. To evaluate the generalization
of SEIDNet on differen tasks, we experiment with using SEIDNet to address the removal of snow,
haze, and shadow. We report the performances of different methods in Tables 5, 6, 7, and 8 (also see
Tables 7–10 of the main paper). In Figures 14, 15, and 16, we compare the visual results of different
methods on the Snow100K, ITS&OTS, ISTD, and ISTD+ datasets.

Method Shadow Non-Shadow All
Mask-GAN [25] 12.67 6.68 7.41

ARGAN [26] 9.21 6.27 6.63
DSC [27] 9.22 6.39 6.67

RIS-GAN [28] 9.15 6.31 6.62
DADNet [29] 8.65 6.17 6.57
DHAN [30] 8.14 6.04 6.37
CANet [31] 8.86 6.07 6.15

AEFNet [32] 7.77 5.56 5.92
CRFormer [33] 7.32 5.82 6.07

SEIDNet 7.47 5.08 5.47

Table 7: We compare SEIDNet with other methods on the test set of ISTD. The performances are
reported in term of RMSE.

Method Shadow Non-Shadow All
ST-CGAN [34] 13.4 7.7 8.7

DeshadowNet [35] 15.9 6.0 7.6
Mask-GAN [25] 12.4 4.0 5.3
SP+M-Net [36] 9.7 3.0 4.0
PMDNet [37] 9.7 3.0 4.0
AEFNet [32] 6.5 3.8 4.2

CRFormer [33] 5.9 2.9 3.4
SEIDNet 6.4 3.4 3.9

Table 8: We compare SEIDNet with other methods on the test set of ISTD+. The performances are
reported in term of RMSE.

7

5 Limitation

Quality of Kernels from Feature Masking As evidenced in Table 2, the trivial combination
of the discriminative and generative networks increases the network parameters but degrades the
performances. It demonstrates that the inaccurate kernels, which are produced by the discriminative
network, can harm the performance of the generative network. Though SEIDNet independently
generates the kernels for rain removal, it still needs to learn from the kernels that are computed by the
discriminative network (i.e., the feature masking in Figure 10) as a reference during training.

Object Layer O Status Map R

Rainy Image I Feature Map F

Status Map R’

(a) Status Identification (b) Information Decoupling

(d) Feature Masking

CVAE V
se CVAE V

id

Kernel
Map K

Kernel
Map K’

(c) CVAE V
se

Status Map R

Feature Map F

Encoder

Condition

Decoder
Status

Map R’

µ
r
+σ

r
µ

r

σ
r

µ
f

σ
f

C

C

µ
k

σ
k

Kernel Map K

Feature Map F

Encoder

Condition

Decoder
Kernel

Map K’
µ

c

σ
c

C

C

(e) CVAE V
id

Object
Layer O’

Feature
Masking

Subtraction ConvolutionConcatenateC ⊙ Element-wise multiplication

⊙Z µ
k
+σ

k⊙Z

Status Map R

Condition

Encoder

Condition

DecoderOutput
Input
Input

Encoder

Condition
Decoder

Status
Map R

Feature
Map F

Rain Feature
Map F

r

Object Feature
Map F

o

Object Mask
1-R

⊙

⊙

 Kernel
Map K

⊙

⊙

conv

conv

Figure 10: The training architecture of SEIDNet. The architecture has the (a) status estimation and (b)
information decoupling. We use (c) the CVAE for learning the status space, (d) the feature masking
for yielding the rain and object feature maps, and (e) the CVAE for learning the kernel space.

129.7
134.1 136.3

166.2

174.5
182.3

125

145

165

185

12 15 18 21 24 27

7.48
10.83

11.18

23.25

31.12
37.13

7.2

17.3

27.4

37.5

12 15 18 21 24 27

26.41

28.57
29.28

30.52
31.46

33.22

25

28

31

34

12 15 18 21 24 27
0.8546

0.8851
0.8895

0.9024

0.9142

0.9327

0.85

0.88

0.91

0.94

12 15 18 21 24 27

(a) GPU Memory (b) FLOPs (c) PSNR (d) SSIM
Figure 11: Sensitivities of GPU memory in MB (a), FLOPs (b), PSNR (c) and SSIM (d) to the
number of layers.

In this section, we evaluate the impact of the kernels, which are produced by the discriminative
network, on the deraining performance of SEIDNet. This is done by changing the number of layers
of the feature masking. We choose the layer number from the set {12, 15, 18, 21, 24, 27}, where the
feature masking has 27 convolutional layers in the full model. By decreasing the layer number, we
reduce the computational overheads (i.e., GPU memory and floating point of operations (FLOPs)), as
reported in Figure 11(a–b). On the other hand, fewer layers degrade the deraining performances (see
PSNR and SSIM in Figure 11(c-d)). We conjecture that fewer layers weaken the learning capability
of the feature masking. In this case, the feature masking likely produces the problematic kernels,
which are embedded into the kernel space by CVAE. It misleads the construction of the kernel space,
where the problematic kernels are likely sampled for rain removal. We show the visual results of

8

Input 12 Layers 15 Layers 18 Layers 21 Layers 24 Layers 27 Layers Ground Truth

Figure 12: Visual results by changing the number of layers for the feature masking.

using different numbers of layers for the feature masking in Figure 12, where the failure cases are
yielded by using fewer layers for computing the reference kernels.

The limitation of our methods motivates the future investigation of how to use CVAE to learn more
effective kernels, without depending on the extra and sensitive network for computing the reference
kernels.

Errors on Some Bright Objects It should be noted that bright objects are extremely similar to the
appearances of the rain streaks. The examples of the confusing bright objects and rain streaks can be
found in Figure 6: (1) the top-right water region in the first row; (2) the second-left person in white
cloth in the fourth row; (3) the bright regions of the wheels in the last row. There are pixels of these
bright objects misunderstood as rain streaks, as illustrated in the corresponding status maps. Yet, we
use multiple status maps, which provide more differentiable information for separating the bright
objects from the rain streaks. Thus, the final deraining results are reasonable. In future work, we plan
to further improve the deraining results of the bright objects, while relying on fewer status maps for
saving computation.

6 Negative Societal Impacts

Our approach can be broadly applied in many scenarios (e.g., autonomous vehicles and video surveil-
lance). One should be cautious of the problematic results, which may give rise to the infringement of
privacy or economic interest.

7 Analysis of the Average Kernels

We sample multiple kernels, which are averaged for processing each pixel in the image. Here, we
justify the effectiveness of the average kernels in terms of processing the confusing rain streaks and
object textures.

SampledTimes 1 2 4 8 16 32
Diff 0.247 0.346 0.528 1.727 2.934 3

0.247 0.346 0.528

1.727

2.934

3.134

0

1

2

3

4

1 2 4 8 16 32

(a) image patches (b) difference of average kernels

Figure 13: The difference of average kernels of the confusing patch pairs, with different. We change
the number of sampled kernels (1, 2, 4, 8, 16, 32) for computing the average kernel.

We manually select 100 pairs of image patches from Rain100L and Rain1400 (see Figure 13(a)).
Each pair of image patches contain the rain streaks (top row) and the object textures (bottom row),

9

respectively. Each pair of rain and object patches are visually similar. The typical discriminative
networks (i.e., EfDeRain, SPDNet, and MPR) compute similar kernels for the confusing rain and
object, thus yielding unsatisfactory results in these confusing patches. In contrast, we sample more
kernels for each image patch, where the sampled kernels are averaged. We compute the difference
(L1 distance) between the average kernels of each pair of confusing rain and object patches. We
accumulate and average the differences of all pairs. We change the number of sampled kernels
for computing the average kernel. In Figure 13(b), we report the difference of average kernels of
the confusing patch pairs. With more sampled kernels, the average kernels are more specific for
processing the confusing rain and object patches.

8 Code Segment

We release the implementation of SEIDNet via https://github.com/wxxx1025/SEIDNet.

9 Traing and testing pseudo-code of SEIDNet

Algorithm 1: Training pseudo-code of SEIDNet
1: epoch = 1;
2: while epoch ≤ max_epoch do
3: Input rainy image I, object layer O for estimating status map R via Eq. (3);
4: Extract feature map F from given rainy iamge I;

{CVAE Vse}
5: Pass feature map F and status map R to CVAE Vse;
6: Estimate mean value maps and standard deviation maps: [µr,σr]← encoder([F,R]),

[µf ,σf]← condition(F) in Eq. (4);
7: Input F, Z and (µr,σr) to the decoder of Vse to generate R′ via Eq. (4);
8: Calculate status estimation loss Lse via Eq. (5);

{Feature Masking}
9: Estimate kernel maps Kr and Ko from F, R via Eq. (6);

10: Estimate kernel map: K← R�Kr + (1−R)�Ko in Eq. (7);
{CVAE Vid}

11: Pass K, F and R to CVAE Vid;
12: Calculte mean value maps and standard deviation maps[µk,σk]← encoder([K,F,R]),

[µc,σc]← condition([F,R]) in Eq. (8);
13: Generate kernel map from kernel space: K′ ← decoder([F,R,µk + σk � Z]) in Eq. (8);
14: Calculate information decoupling loss Lid via Eq. (9);

{Deraining and overall loss function}
15: Employ K′ and I to estimate object layer O′ via Eq. (10);
16: Calcualte deraining loss Lde via Eq. (10);
17: Calculate overall loss L via Eq. (11);
18: Update network weights;
19: if epoch ≥ lr_decrease_epoch then
20: Adjust learning rate;
21: end if
22: epoch← epoch+ 1;
23: end while

10

https://github.com/wxxx1025/SEIDNet

Algorithm 2: Testing pseudo-code of SEIDNet
1: index = 1
2: while index ≤ len(test_dataset) do
3: Extract feature map F from given rainy iamge I;
4: Pass feature map F to CVAE Vse;
5: Calculate mean value map and standard deviation map: [µf ,σf]← condition(F) in

Eq. (12);
6: while m ≤ N do
7: Generate status map from constructed status space: Rm ← decoder([F, µf + σf � Zm])

in Eq. (12);
8: Pass F, Rm and Zm to CVAE Vid;
9: Calculate mean value map and standard deviation map: µm

c ,σm
c ← condition([F, Rm])

in Eq. (12);
10: Generate kernel map from constructed kernel space:

Km ← decoder([F, Rm, µm
c + σm

c � Zm]) in Eq. (12);
11: m←m+ 1
12: end while
13: Estimate Ku via Eq. (13)
14: O = Ku ~ I
15: index← index+ 1
16: end while

References
[1] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. 9(11), 2008.

[2] Dongwei Ren, Wangmeng Zuo, Qinghua Hu, Pengfei Zhu, and Deyu Meng. Progressive image deraining
networks: A better and simpler baseline. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 3937–3946, 2019.

[3] Wenhan Yang, Robby T Tan, Jiashi Feng, Jiaying Liu, Shuicheng Yan, and Zongming Guo. Joint rain
detection and removal from a single image with contextualized deep networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 42(6):1377–1393, 2019.

[4] Tianyu Wang, Xin Yang, Ke Xu, Shaozhe Chen, Qiang Zhang, and Rynson W.H. Lau. Spatial attentive
single-image deraining with a high quality real rain dataset. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 12270–12279, 2019.

[5] Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng. A model-driven deep neural network for single image
rain removal. In IEEE Conference on Computer Vision and Pattern Recognition, pages 3103–3112, 2020.

[6] Yingjun Du, Jun Xu, Xiantong Zhen, Ming-Ming Cheng, and Ling Shao. Conditional variational image
deraining. IEEE Transactions on Image Processing, 29:6288–6301, 2020.

[7] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan
Yang, and Ling Shao. Multi-stage progressive image restoration. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 14821–14831, 2021.

[8] Qing Guo, Jingyang Sun, Felix Juefei-Xu, Lei Ma, Xiaofei Xie, Wei Feng, Yang Liu, and Jianjun Zhao.
Efficientderain: Learning pixel-wise dilation filtering for high-efficiency single-image deraining. In
Proceedings of the AAAI Conference on Artificial Intelligence, pages 1487–1495, 2021.

[9] Qiaosi Yi, Juncheng Li, Qinyan Dai, Faming Fang, Guixu Zhang, and Tieyong Zeng. Structure-preserving
deraining with residue channel prior guidance. In IEEE International Conference on Computer Vision,
pages 4238–4247, 2021.

[10] He Zhang and Vishal M Patel. Density-aware single image de-raining using a multi-stream dense network.
In IEEE Conference on Computer Vision and Pattern Recognition, pages 695–704, 2018.

[11] Xueyang Fu, Jiabin Huang, Delu Zeng, Huang Yue, and John Paisley. Removing rain from single images
via a deep detail network. In IEEE Conference on Computer Vision and Pattern Recognition, pages
3855–3863, 2017.

11

Image DesnowNet HDCWNet SEIDNetInput Ground Truth

Figure 14: Visual results on the image desnow task. We zoom in the image regions (see the blue
rectangles) to compare desnow performance of different methods.

[12] Xing Liu, Masanori Suganuma, Zhun Sun, and Takayuki Okatani. Dual residual networks leveraging the
potential of paired operations for image restoration. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 7007–7016, 2019.

[13] Zhi Li, Juan Zhang, Zhijun Fang, Bo Huang, Xiaoyan Jiang, Yongbin Gao, and Jenq-Neng Hwang. Single
image snow removal via composition generative adversarial networks. IEEE Access, 7:25016–25025,
2019.

[14] Yun-Fu Liu, Da-Wei Jaw, Shih-Chia Huang, and Jenq-Neng Hwang. Desnownet: Context-aware deep
network for snow removal. IEEE Transactions on Image Processing, 27(6):3064–3073, 2018.

12

Image AECR-Net D-Former SEIDNetInput Ground Truth

Figure 15: Visual results on the image dehaze task. We zoom in the image regions (see the blue
rectangles) to compare dehaze performance of different methods.

Image DADNet AEFNet SEIDNetInput Ground Truth

Figure 16: Visual results on the image deshadow task. We zoom in the image regions (see the blue
rectangles) to compare deshadow performance of different methods.

[15] Da-Wei Jaw, Shih-Chia Huang, and Sy-Yen Kuo. Desnowgan: An efficient single image snow removal
framework using cross-resolution lateral connection and gans. IEEE Transactions on Circuits and Systems
for Video Technology, 31(4):1342–1350, 2020.

[16] Wei-Ting Chen, Hao-Yu Fang, Cheng-Lin Hsieh, Cheng-Che Tsai, I Chen, Jian-Jiun Ding, Sy-Yen Kuo,
et al. All snow removed: Single image desnowing algorithm using hierarchical dual-tree complex wavelet
representation and contradict channel loss. In IEEE International Conference on Computer Vision, pages
4196–4205, 2021.

[17] Kaihao Zhang, Rongqing Li, Yanjiang Yu, Wenhan Luo, and Changsheng Li. Deep dense multi-scale
network for snow removal using semantic and depth priors. IEEE Transactions on Image Processing,

13

30:7419–7431, 2021.

[18] Thaileang Sung and Hyo Jong Lee. Removing snow from a single image using a residual frequency module
and perceptual ralsgan. IEEE Access, 9:152047–152056, 2021.

[19] Hamidreza Fazlali, Shahram Shirani, Michael Bradford, and Thia Kirubarajan. Single image rain/snow
removal using distortion type information. Multimedia Tools and Applications, pages 1–27, 2022.

[20] Xiaohong Liu, Yongrui Ma, Zhihao Shi, and Jun Chen. Griddehazenet: Attention-based multi-scale
network for image dehazing. In IEEE International Conference on Computer Vision, pages 7314–7323,
2019.

[21] Hang Dong, Jinshan Pan, Lei Xiang, Zhe Hu, Xinyi Zhang, Fei Wang, and Ming-Hsuan Yang. Multi-scale
boosted dehazing network with dense feature fusion. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 2157–2167, 2020.

[22] Xu Qin, Zhilin Wang, Yuanchao Bai, Xiaodong Xie, and Huizhu Jia. Ffa-net: Feature fusion attention
network for single image dehazing. In Association for the Advancement of Artificial Intelligence, pages
11908–11915, 2020.

[23] Haiyan Wu, Yanyun Qu, Shaohui Lin, Jian Zhou, Ruizhi Qiao, Zhizhong Zhang, Yuan Xie, and Lizhuang
Ma. Contrastive learning for compact single image dehazing. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 10551–10560, 2021.

[24] Yuda Song, Zhuqing He, Hui Qian, and Xin Du. Vision transformers for single image dehazing. arXiv
preprint arXiv:2204.03883, 2022.

[25] Xiaowei Hu, Yitong Jiang, Chi-Wing Fu, and Pheng-Ann Heng. Mask-shadowgan: Learning to remove
shadows from unpaired data. In IEEE International Conference on Computer Vision, pages 2472–2481,
2019.

[26] Bin Ding, Chengjiang Long, Ling Zhang, and Chunxia Xiao. Argan: Attentive recurrent generative
adversarial network for shadow detection and removal. In IEEE International Conference on Computer
Vision, pages 10213–10222, 2019.

[27] Xiaowei Hu, Chi-Wing Fu, Lei Zhu, Jing Qin, and Pheng-Ann Heng. Direction-aware spatial context fea-
tures for shadow detection and removal. IEEE Transactions on Pattern Analysis and Machine Intelligence,
42(11):2795–2808, 2019.

[28] Ling Zhang, Chengjiang Long, Xiaolong Zhang, and Chunxia Xiao. Ris-gan: Explore residual and
illumination with generative adversarial networks for shadow removal. In Association for the Advancement
of Artificial Intelligence, pages 12829–12836, 2020.

[29] Zhengxia Zou, Sen Lei, Tianyang Shi, Zhenwei Shi, and Jieping Ye. Deep adversarial decomposition: A
unified framework for separating superimposed images. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 12806–12816, 2020.

[30] Xiaodong Cun, Chi-Man Pun, and Cheng Shi. Towards ghost-free shadow removal via dual hierarchical
aggregation network and shadow matting gan. In Association for the Advancement of Artificial Intelligence,
pages 10680–10687, 2020.

[31] Zipei Chen, Chengjiang Long, Ling Zhang, and Chunxia Xiao. Canet: A context-aware network for
shadow removal. In IEEE International Conference on Computer Vision, pages 4743–4752, 2021.

[32] Lan Fu, Changqing Zhou, Qing Guo, Felix Juefei-Xu, Hongkai Yu, Wei Feng, Yang Liu, and Song Wang.
Auto-exposure fusion for single-image shadow removal. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 10571–10580, 2021.

[33] Jin Wan, Hui Yin, Zhenyao Wu, Xinyi Wu, Zhihao Liu, and Song Wang. Crformer: A cross-region
transformer for shadow removal. arXiv preprint arXiv:2207.01600, 2022.

[34] Jifeng Wang, Xiang Li, and Jian Yang. Stacked conditional generative adversarial networks for jointly
learning shadow detection and shadow removal. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1788–1797, 2018.

[35] Liangqiong Qu, Jiandong Tian, Shengfeng He, Yandong Tang, and Rynson WH Lau. Deshadownet: A
multi-context embedding deep network for shadow removal. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 4067–4075, 2017.

14

[36] Hieu Le and Dimitris Samaras. Physics-based shadow image decomposition for shadow removal. IEEE
Transactions on Pattern Analysis and Machine Intelligence, (01):1–1, 2021.

[37] Hieu Le and Dimitris Samaras. From shadow segmentation to shadow removal. In European Conference
on Computer Vision, pages 264–281, 2020.

[38] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784,
2014.

[39] Jianmin Bao, Dong Chen, Fang Wen, Houqiang Li, and Gang Hua. Cvae-gan: fine-grained image
generation through asymmetric training. In IEEE International Conference on Computer Vision, pages
2745–2754, 2017.

[40] Tianming Wang and Xiaojun Wan. T-cvae: Transformer-based conditioned variational autoencoder for
story completion. In International Joint Conferences on Artificial Intelligence, pages 5233–5239, 2019.

[41] Danyang Liu and Gongshen Liu. A transformer-based variational autoencoder for sentence generation. In
International Joint Conference on Neural Networks, pages 1–7, 2019.

15

	Experimental Details
	Ablation Study of SEIDNet
	Supplementary Results on Rain Removal
	Extensive Comparison on Different Tasks
	Limitation
	Negative Societal Impacts
	Analysis of the Average Kernels
	Code Segment
	Traing and testing pseudo-code of SEIDNet

