
Delving into Sequential Patches for Deepfake Detection

Anonymous Author(s)
Affiliation
Address
email

1 Appendix1

1.1 Dataset details2

FF++ is one of the most widely used dataset in deepfake detection, which contains 1000 real videos3

collected from Youtube and 4000 fake videos generated by four different forgery methods including4

Deepfakes [1], FaceSwap [2], Face2Face [8] and NeuralTextures [7]. To simulate the real-world5

stream media environment, FF++ also provides three versions with different compression rates, which6

are denoted by raw (no compression), HQ (constant rate quantization parameter equal to 23), and LQ7

(the quantization parameter is set to 40), respectively. Based on the 1000 real videos of FF++, FaceSh8

is a later published dataset containing 1000 fake videos, which are generated by a more sophisticated9

face swapping technique. DeepFo is a large-scale dataset for real-world deepfake detection. To10

ensure better quality and diversity, the authors make the source videos in a controlled scenario with11

paid actors. More impressively, a new face swapping pipeline considering temporal consistency12

is proposed to generate deepfakes with more “natural” low-level temporal features. DFDC is a13

million-scale dataset used in the most famous deepfake challenge [3]. Following previous works14

[4], we use more than 3000 videos in the private test set for cross-dataset evaluation in this paper.15

In addition, CelebDF is one of the most challenging dataset, which is generated using an improved16

deepfake technique based on videos of celebrities.17

1.2 Data preprocessing details18

As the goal of our method is to learn the low-level temporal features, the per-frame face cropping19

applied by most works is not optimal for our consideration. Instead, whether for fake or real video,20

keeping the original voxel-level changes should be a precondition for our model input. We thus crop21

the faces using a same bounding box to form a clip where the same box should lastingly cover the22

face. This processing can also be learned from the following steps:23

• Given a full-frame video.24

• Randomly determine a valid clip range, e.g., from frame 10 to frame 25.25

• Sample the determined clip with 16 successive frames.26

• Detect all the bounding boxes of the faces in the 16 frames, resulting in 16 boxes (case of27

multi-face is omitted here).28

• Generated the crop-box by picking the largest or smallest indices on each coordinate as:29

30
boxes.shape = [16 , 4]31

[xmin , ymin , xmax , ymax] = boxes[0]32

box = boxes.min(axis=0)[:2].tolist () +33

boxes.max(axis=0)[2:].tolist ()3435

• (Optional) Expand or narrow the crop-box. In this paper, the crop-box is enlarged by a36

factor 0.15.37

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

• Crop the faces using the crop-box to form a face clip as model input.38

1.3 Low-level enhancement implementation39

In terms of the low-level enhancement, we include a detailed torch-like description here to demonstrate40

how shallow 3D filter works:41

42
x: LST features , [B*patch_num , T+1, embed_dim]43

y: enhanced features of last stage44

p: patch size of last stage45

conv3d: 3D filer , kernel_size=3x3x346

patch_embed: linear transform47

48

y = F.max_pool3d(y, kernel_size=(1, 2, 2), stride=(1, 2, 2))49

B, C, T, H, W = y.shape50

p = p // 251

52

y = F.unfold(y.transpose(1, 2).reshape(B * T, C, H, W), kernel_size=(p53

, p), stride=(p, p)).view(B, T, C,54

p, p, -1).permute(0, 5, 2, 1, 3, 4)55

.view(-1, C, T, p, p)56

st_feat = conv3d(y)57

st_feat = st_feat.view(B, H // p, W // p, -1, T, p, p).permute(0, 3, 458

, 1, 5, 2, 6).contiguous ().view(B,59

-1, T, H, W).transpose(1, 2).60

contiguous ().view(B * T, -1, H, W)61

st_feat = patch_embed(st_feat)62

BT , patch_num , embed_dim = st_feat.shape63

st_feat = st_feat.view(B, T, patch_num , embed_dim).permute(0, 2, 1, 3)64

.reshape(-1, T, embed_dim)65

66

temp_token = x[..., 0, :]67

x_enhance = torch.zeros_like(x)68

x_enhance[..., 1:, :] = x[..., 1:, :] * st_feat.sigmoid ()69

x_enhance[..., 0, :] = temp_token70

x = x_enhance7172

1.4 Robustness ablation73

Table 1: Robustness ablations. Average performance evaluated on perturbed videos at five levels.
Clean: origin videos, CS: color saturation, CC: color contrast, BW: block-wise noise, GNC: gaussian
noise, GB: gaussian blur, PX: pixelation, VC: video compression, Avg: averaged performance on
distored videos, Drop: performance drop comparing to Clean. The gray numbers do not reflect
robustness, and metrics of video-level AUC% is reported.

Method Clean CS CC BW GNC GB PX VC Avg/Drop
Face X-ray [5] 99.8 97.6 88.5 99.1 49.8 63.8 88.6 55.2 77.5/-22.3
LTTD w/o LST 98.8 93.9 92.6 86.6 68.8 93.2 95.9 91.7 88.9/-9.9
LTTD w/o CPI 98.8 93.9 92.6 86.2 68.9 93.2 95.1 91.7 88.8/-10.0
LTTD w/o GCC 99.1 97.6 90.6 94.9 76.0 89.0 97.4 91.4 90.9/-8.2
LTTD 99.4 98.9 96.4 96.1 82.6 97.5 98.6 95.0 95.0/-4.3

We conduct ablations for generalization and here we provide more discussion with the robustness.74

From the results in Table 1, we find that the special designs all contribute to optimal performance.75

For color contrast (CC), the Global Contrastive Classification (GCC) module has a more significant76

contribution as it better enhances the detection of local color anomalies by modeling features in77

different spatial regions through global comparisons. In contrast to block-wise noise (BW), the Local78

Sequence Transformer (LST) and Cross-Patch Inconsistency (CPI) modules contribute more, since79

BW noise affects only a very small local area, it has no effect on the low-level temporal features in80

other regions, however, the global contrast learning of GCC will be interfered. The results on gaussian81

2

noise (GNC) can be understood consistently with BW. Since GNC comprehensively modifies the82

low-level features, low-level temporal learning of LST and CPI will be greatly affected, while the83

global contrastive learning of GCC is less affected, thus leading to a more significant contribution of84

GCC. Compared with Face X-ray focusing on spatial low-level feature learning, the performance85

degradation of our models are significantly smaller due to the consideration of temporal dimension.86

This phenomenon is also in line with our motivation we discussed in the Sec. Introduction that87

low-level features are susceptible to perturbations and robustness will be enhanced by incorporating88

temporal learning.89

1.5 Forgery localization90

Our model enjoys a local-to-global learning protocol, where differences between real and fake regions91

are naturally explored. Here we investigate this property by visualizing the CAM [6] responses of92

our model. Considering the input size of 224× 224 and the patch size of 16× 16, the spatial space is93

divided into a 14× 14 grid. We use the CAM responses of the xclass token to draw a localization94

map by bilinear interpolation.

Deepfakes Face2Face

FaceSwap NeuralTextures

Figure 1: Forgery localization.

95

As shown in the Fig. 1, our model is able to identify the local inconsistencies. In addition, we can96

learn some different characteristics of each forgery type. Most distinctively, regions of mouth and97

eyes in FaceSwap are not modified, thus showing patterns that distinguish from other facial parts.98

Moreover, regions relating to the mouth are reenacted in NeuralTextures, just like the localization99

results shown in the figure.100

Despite the good intuitive demonstrations, it remains future works to determine whether the localiza-101

tion results are confidently credible.102

References103

[1] Deepfakes github. https://github.com/deepfakes/faceswap, 2022. Accessed: 2022-02-28.104
[2] Deepfakes github. https://github.com/MarekKowalski/FaceSwap, 2022. Accessed: 2022-02-28.105
[3] Dfdc challenge. https://www.kaggle.com/c/deepfake-detection-challenge, 2022. Accessed:106

2022-04-04.107
[4] Alexandros Haliassos, Konstantinos Vougioukas, Stavros Petridis, and Maja Pantic. Lips don’t lie: A108

generalisable and robust approach to face forgery detection. In Proceedings of the IEEE/CVF Conference109

on Computer Vision and Pattern Recognition, pages 5039–5049, 2021.110
[5] Lingzhi Li, Jianmin Bao, Ting Zhang, Hao Yang, Dong Chen, Fang Wen, and Baining Guo. Face x-ray for111

more general face forgery detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and112

Pattern Recognition, pages 5001–5010, 2020.113
[6] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and114

Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In115

Proceedings of the IEEE international conference on computer vision, pages 618–626, 2017.116
[7] Justus Thies, Michael Zollhöfer, and Matthias Nießner. Deferred neural rendering: Image synthesis using117

neural textures. ACM Transactions on Graphics (TOG), 38(4):1–12, 2019.118

3

https://github.com/deepfakes/faceswap
https://github.com/MarekKowalski/FaceSwap
https://www.kaggle.com/c/deepfake-detection-challenge

[8] Justus Thies, Michael Zollhofer, Marc Stamminger, Christian Theobalt, and Matthias Nießner. Face2face:119

Real-time face capture and reenactment of rgb videos. In Proceedings of the IEEE conference on computer120

vision and pattern recognition, pages 2387–2395, 2016.121

4

	Appendix
	Dataset details
	Data preprocessing details
	Low-level enhancement implementation
	Robustness ablation
	Forgery localization

