
A Proof of Theorem 2

Sketch of Proof. Recall that F̂� 2 G is defined as F̂� :=  ̄
⇣
ĈY |X,�

⌘
where ĈY |X,� is solution of

Eq. (5). We introduce the theoretical estimator that solves the regression problem in population,

CY |X,� := argmin
C2S2(HX ,HY )

EXY k�Y (Y )� C�X(X)k2
HY

+ �kCk
2
S2(HX ,HY )

F� :=  ̄
�
CY |X,�

�
(10)

It can be readily shown (see for example [26]) that

CY |X,� = CY X (CXX + �IdHX )�1

ĈY |X,� = ĈY X

⇣
ĈXX + �IdHX

⌘�1
,

where IdHX is the identity operator and

CXX = E[�X(X)⌦ �X(X)] CY X = E[�Y (Y )⌦ �X(X)]

ĈXX =
1

n

nX

i=1

�X(xi)⌦ �X(xi) ĈY X =
1

n

nX

i=1

�Y (yi)⌦ �X(xi).
(11)

Finally, recall that the CME F⇤ is in L2(EX ,FEX ,⇡;HY ) and the CME operator is defined as
CY |X :=  �1 (F⇤). From the definition of the vector-valued interpolation norm we introduce the
following decomposition,

���[F̂�]� F⇤

���
�



���
h
F̂� � F�

i���
�

+ k[F�]� F⇤k� (12)

=
���
h
ĈY |X,� � CY |X,�

i���
S2([H]�X ,HY )

+
��[CY |X,�]� CY |X

��
S2([H]�X ,HY ) (13)

We can see that the error for the first term is mainly due to the sample approximation. We therefore
refer to the first term as the Variance. We refer to the second term as the Bias. Our proof of
convergence of the bias adapts the proof in [31, Theorem 6] and [11], and utilizes the fact that CY |X

is Hilbert-Schmidt to obtain a sharp rate.

A.1 Bounding the Bias

In this section, we establish the bound on the bias. The key insight is that thanks to [1, Theorem
12.6.1], the conditional mean embedding can be expressed as a Hilbert-Schmidt operator in the
misspecified case. We then exploit the proof techniques from the bias consistency result of [31,
Theorem 6] and [11].
Lemma 1. If F⇤ 2 [G]� is satisfied for some 0  �  2, then the following bound is satisfied, for all
� > 0 and 0  �  � :

k[F�]� F⇤k
2
�
 kF⇤k

2
�
���� (14)

Proof. We first recall that since F⇤ 2 [G]� , F⇤ =  
�
CY |X

�
with CY |X 2 S2([H]�

X
,HY ),

furthermore F� =  ̄
�
CY |X,�

�
with CY |X,� 2 S2(HX ,HY ). Hence, k[F�]� F⇤k� =��[CY |X,�]� CY |X

��
S2([H]�X ,HY ) and kF⇤k� =

��CY |X

��
S2([H]�X ,HY ). We first decompose

[CY |X,�] � CY |X , followed by computing the upper bound of the bias. Since CY |X 2

S2([H]�
X
,HY ) ✓ S2(ran I⇡,HY ), CY |X admits the decomposition

CY |X =
X

i2I

X

j2J

aijdj ⌦ [ei].

where (dj)j2J is any basis of HY . On the other hand, CY |X,� = CY X (CXX + �IdHX )�1. Since⇣
µ1/2
i

ei
⌘

i2I

is an ONB of (ker I⇡)
?, we can complete it with an at most countable basis (ēi)i2I0 of

ker I⇡ such that the union of the family forms a basis of HX . We get a basis of S2(HX ,HY ) through
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(dj ⌦ fi)i2I[I0,j2J
where fi = µ1/2

i
ei if i 2 I and fi = ēi if i 2 I 0. By Equation (23) from [11],

for a > 0 we then have

(CXX + �)�a =
X

i2I

(µi + �)�a

D
µ1/2
i

ei, ·
E

HX

µ1/2
i

ei + ��a
X

i2I0

hēi, ·iHX
ēi.

Furthermore,

CY X = EY X [�Y (Y )⌦ �X(X)]

= EX

⇥
EY |X [�Y (Y )]⌦ �X(X)

⇤

= EX [F⇤(X)⌦ �X(X)]

= EX

⇥
 
�
CY |X

�
(X)⌦ �X(X)

⇤

=
X

i2I

X

j2J

aijEX [ (dj ⌦ [ei]) (X)⌦ �X(X)]

=
X

i2I

X

j2J

aijEX [[ei](X)dj ⌦ �X(X)] ,

In the last step we used the explicit form of the isomorphism between L2(⇡;HY ) and S2(L2(⇡),HY )
mentioned in Remark 1:  is characterized by  (g ⌦ f) = (x 7! gf(x)), for all g 2 HY , f 2

L2(⇡). Then, using that ([ei])i2I
is an ONS in L2(⇡),

[CY |X,�] =
X

i2I

X

j2J

aij
µi

�+ µi

dj ⌦ [ei],

and hence
[CY |X,�]� CY |X = �

X

i2I

X

j2J

aij
�

�+ µi

dj ⌦ [ei]. (15)

We are now ready to compute the upper bound. Parseval’s identity w.r.t. the ONB⇣
dj ⌦ µ�/2

i
[ei]

⌘

i2I,j2J

of S2 ([H]�
X
,HY ) yields

��[CY |X,�]� CY |X

��2
S2([H]�X ,HY ) =

������

X

i2I

X

j2J

aij
�

�+ µi

dj ⌦ [ei]

������

2

S2([H]�X ,HY )

=
X

i2I

X

j2J

a2
ij

✓
�

�+ µi

◆2

µ��

i
.

Next we notice that,
✓

�

µi + �

◆2

µ��

i
=

✓
�

µi + �

◆2

µ��

i

✓
�

�

µi + �

µi + �

◆���

= ����µ��

i

✓
�

µi + �

◆2✓ µi

µi + �

◆��� ✓µi + �

�

◆���

= ����µ��

i

✓
µi

µi + �

◆��� ✓ �

�+ µi

◆2��+�

 ����µ��

i
,

where we used � � � � 0 and 2� � + � � 0. Hence,
��[CY |X,�]� CY |X

��2
S2([H]�X ,HY )  ����

X

i2I

X

j2J

a2
ij
µ��

i

= ����
��CY |X

��2
S2([H]�X ,HY )
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A.2 Bounding the Variance

The proof will require several lemmas in its construction, which we now present. We start with
a lemma that allows to go from the �-norm of embedded vector-valued maps to their norm in the
original Hilbert-Schmidt space.

Lemma 2. For 0  �  1 and F 2 G the inequality

k[F ]k
�


���CC
1��
2

XX

���
S2(HX ,HY )

(16)

holds, where C =  ̄�1(F ) 2 S2(HX ,HY ). If, in addition, � < 1 or C ? HY ⌦ ker I⇡ is satisfied,
then the result is an equality.

Proof. Let us fix F 2 G, and define C :=  ̄�1(F ) 2 S2(HX ,HY ). Since
⇣
µ1/2
i

ei
⌘

i2I

is an

ONB of (ker I⇡)
?, we can complete it with a basis (ēi)i2I0 of ker I⇡ such that the union of the

family forms a basis of HX . Let (dj)j2J
be a basis of HY , we get a basis of S2(HX ,HY ) through

(dj ⌦ fi)i2I[I0,j2J
where fi = µ1/2

i
ei if i 2 I and fi = ēi if i 2 I 0. Then C admits the decomposi-

tion

C =
X

i2I

X

j2J

aijdj ⌦ µ1/2
i

ei +
X

i2I0

X

j2J

aijdj ⌦ ēi,

where aij = hC, dj ⌦ fiiS2(HX ,HY ) = hCfi, djiHY
for all i 2 I [ I 0, j 2 J (see [14]). Since

[C] =
X

i2I

X

j2J

aijdj ⌦ µ1/2
i

[ei],

with Parseval’s identity w.r.t. the ONB
⇣
dj ⌦ µ�/2

i
[ei]

⌘

i2I[I0,j2J

of S2([H]�
X
,HY ) this yields

k[C]k2
S2([H]�X ,HY ) =

������

X

i2I

X

j2J

aijµ
1��
2

i
dj ⌦ µ�/2

i
[ei]

������

2

S2([H]�X ,HY )

=
X

i2I

X

j2J

a2
ij
µ1��

i
.

For � < 1, the spectral decomposition of CXX together with the fact that
⇣
dj ⌦ µ1/2

i
ei
⌘

i2I,j2J

is

an ONS in S2(HX ,HY ) yields

���CC
1��
2

XX

���
2

S2(HX ,HY )
=

�����C
X

i2I

µ
1��
2

i
h·, µ

1
2
i
eiiHXµ

1
2
i
ei

�����

2

S2(HX ,HY )

=
X

i2I

�����
X

l2I

µ
1��
2

l
hµ

1
2
i
ei, µ

1
2
l
eliHXµ

1
2
l
Cel

�����

2

HY

+
X

i2I0

�����
X

l2I

µ
1��
2

l
hēi, µ

1
2
l
eliHXµ

1
2
l
Cel

�����

2

HY

=
X

i2I

���µ
1��
2

i
µ

1
2
i
Cei

���
2

HY

=
X

i2I

X

j2J

µ1��

i

D
C
⇣
µ

1
2
i
ei
⌘
, dj

E2

HY

=
X

i2I

X

j2J

a2
ij
µ1��

i
.

(17)
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This proves the claimed equality in the case of � < 1. For � = 1, we have C
1��
2

XX
= IdHX and the

Pythagorean theorem together with Parseval’s identity yields

���CC
1��
2

XX

���
2

S2(HX ,HY )
=

������

X

i2I

X

j2J

aijdj ⌦ µ1/2
i

ei +
X

i2I0

X

j2J

aijdj ⌦ ēi

������

2

S2(HX ,HY )

=

������

X

i2I

X

j2J

aijdj ⌦ µ1/2
i

ei

������

2

S2(HX ,HY )

+

������

X

i2I0

X

j2J

aijdj ⌦ ēi

������

2

S2(HX ,HY )

=
X

i2I

X

j2J

a2
ij
+

������

X

i2I0

X

j2J

aijdj ⌦ ēi

������

2

S2(HX ,HY )

(18)
This gives the claimed equality if C ? HY ⌦ ker I⇡, as well as the claimed inequality for general
C 2 S2(HX ,HY ). We conclude with k[F ]k� = k[C]kS2([H]�X ,HY ) by definition.

Lemma 3. If F⇤ 2 [G]� is satisfied for some 0  �  2, then the following bounds are satisfied, for
all � > 0:

k[F�]� F⇤k
2
�
 kF⇤k

2
�
���� (0  �  �), (19)

k[F�]k
2
�
 kF⇤k

2
min{�,�} �

�(���)+ (� � 0). (20)

Proof. The first term corresponds to the bias and has already been covered in Lemma 1. To show the
second term, we get from Parseval’s identity

k[F�]k
2
�
=
X

i2I

X

j2J

✓
µi

µi + �

◆2

µ��

i
a2
ij
.

where aij =
⌦
CY |X [ei], dj

↵
HY

for all i 2 I, j 2 J as in the proof of Lemma 1. In the case of �  �
we estimate the fraction by 1 and then Parseval’s identity gives us

k[F�]k
2
�


X

i2I

X

j2J

µ��

i
a2
ij
= kF⇤k

2
�
.

In the case of � > �,

k[F�]k
2
�
=
X

i2I

X

j2J

0

@µ
1� ���

2
i

µi + �

1

A
2

µ��

i
a2
ij
 ��(���)

X

i2I

X

j2J

µ��

i
a2
ij
= ��(���)

kF⇤k
2
�
,

where we used Parseval’s identity in the equality and Lemma 25 from [11].

By (EMB), the inclusion map I↵,1
⇡

: [H]↵
X

,! L1(⇡) has bounded norm A > 0 i.e. for f 2 [H]↵
X

,
f is ⇡�a.e. bounded and kfk1  Akfk↵. We know show that (EMB) automatically implies that
the inclusion operator for [G]↵ is bounded.
Lemma 4. Under (EMB) the inclusion operator I

↵,1

⇡
: [G]↵ ,! L1(⇡;HY ) is bounded with

operator norm less than or equal to A.

L1(⇡;HY ) denotes the space of FEX � FHY measurable HY -valued functions (gathered by ⇡-
equivalent classes) that are essentially bounded with respect to ⇡. L1(⇡;HY ) is endowed with the
norm kfk1 := inf{c � 0 : kf(x)kHY  c for ⇡-almost every x 2 EX}.

Proof. For every F 2 [G]↵, there is a sequence aij 2 `2(I ⇥ J) such that for ⇡�almost all x 2 EX ,

F (x) =
X

i2I,j2J

aijdjµ
↵/2
i

[ei](x)
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where (dj)j2J is any orthonormal basis of HY and kFk
2
↵
=
P

i2I,j2J
a2
ij
. We consider F 2 [G]↵

such that
P

i2I,j2J
a2
ij
 1. For ⇡�almost all x 2 EX ,

kF (x)k2
HY

=

������

X

j2J

 
X

i2I

aijµ
↵/2
i

[ei](x)

!
dj

������

2

HY

=
X

j2J

 
X

i2I

aijµ
↵/2
i

[ei](x)

!2



X

j2J

 
X

i2I

a2
ij

X

i2I

µ↵

i
[ei](x)

2

!

 A2
X

j2J

X

i2I

a2
ij

 A2

where we used the Cauchy-Schwarz inequality for each j 2 J for the first inequality and a con-
sequence of (EMB) in the second inequality (see Theorem 9 in [11]). We therefore conclude
kI

↵,1

⇡
k  A.

Combining Lemmas 3 and 4 we have the following corollary.
Lemma 5. If F⇤ 2 [G]� and (EMB) are satisfied for some 0  �  2 and 0 < ↵  1, then the
following bounds are satisfied, for all 0 < �  1:

k[F�]� F⇤k
2
1

 (kF⇤k1 +AkF⇤k�)
2 ���↵, (21)

k[F�]k
2
1

 A2
kF⇤k

2
min{↵,�} �

�(↵��)+ . (22)

In addition, we have kF⇤k1  Y .

Proof. For Eq. 22, we use Lemma 4 and Eq. 20 in Lemma 3.

k[F�]k
2
1

 A2
k[F�]k

2
↵
 A2

kF⇤k
2
min{↵,�} �

�(↵��)+

To show Eq. 21, in the case �  ↵ we use the triangle inequality, Eq. 22 and �  1 to obtain

k[F�]� F⇤k1  kF⇤k1 + k[F�]k1



⇣
kF⇤k1 +A kF⇤k�

⌘
��

↵��
2

In the case � > ↵, Eq. 21 is a consequence of Lemma 4 and Eq. 19 in Lemma 3 with � = ↵,

k[F�]� F⇤k
2
1

 A2
k[F�]� F⇤k

2
↵
 A2

kF⇤k
2
�
���↵

 (kF⇤k1 +AkF⇤k�)
2 ���↵.

We emphasize that F⇤ always belongs to L1(⇡;HY ). Indeed, for ⇡-almost all x 2 EX we have

kF⇤(x)kHY =

����
Z

EX

�Y (y)p(x, dy)

����
HY



Z

EX

k�Y (y)kHY
p(x, dy)



Z

EX

Y p(x, dy) = Y .
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Theorem 4. Suppose Assumptions 1 to 3 and (EMB) with A > 0 hold. We define

M(�) = k[F�]� F⇤k1 ,

N (�) = tr
⇣
CXX (CXX + �)�1

⌘
,

Q� = max{M(�), 2Y },

g� = log

✓
2eN (�)

kCXXk+ �

kCXXk

◆
.

Then, for ⌧ � 1, � > 0, n � 8A2⌧g���↵ and � > 0, with probability 1� 4e�⌧ :

���
h
ĈY |X,� � CY |X,�

i���
2

S2([H]�X ,HY )


576⌧2

n��

 
42

Y
N (�) +

kF⇤ � [F�]k
2
L2(⇡;HY ) A

2

�↵
+

2Q2
�
A2

n�↵

!
(23)

Proof. We first decompose the variance term as

���
h
ĈY |X,� � CY |X,�

i���
S2([H]�X ,HY )

(24)

=

����


ĈY X

⇣
ĈXX + �Id

⌘�1
� CY X (CXX + �Id)�1

�����
S2([H]�X ,HY )



����

✓
ĈY X

⇣
ĈXX + �Id

⌘�1
� CY X (CXX + �Id)�1

◆
C

1��
2

XX

����
S2(HX ,HY )



���
⇣
ĈY X � CY X (CXX + �Id)�1

⇣
ĈXX + �Id

⌘⌘
(CXX + �Id)�

1
2

���
S2(HX ,HY )

(25)

·

����(CXX + �Id)
1
2

⇣
ĈXX + �Id

⌘�1
(CXX + �Id)

1
2

����
HX!HX

(26)

·

���(CXX + �Id)�
1
2 C

1��
2

XX

���
HX!HX

(27)

where we used Lemma 2. Eq. (26) is bounded as in Theorem 16 in [11],
����(CXX + �Id)

1
2

⇣
ĈXX + �Id

⌘�1
(CXX + �Id)

1
2

����  3

for n � 8A2⌧g���↵ with probability 1� 2e�⌧ . For Eq. (27) we have, using Lemma 25 from [11]

���(CXX + �Id)�
1
2 C

1��
2

XX

��� 

s

sup
i

µ1��

i

µi + �
 ��

�
2 .

Finally for the bound of Eq. (25) we show that for ⌧ � 1, � > 0 and n � 1 with probability 1�2e�⌧ :

����
⇣
ĈY X � CY X (CXX + �Id)�1 (ĈXX + �Id)

⌘
(CXX + �Id)�

1
2

����
2

S2(HX ,HY )


64⌧2

n

 
42

Y
N (�) +

kF⇤ � [F�]k
2
L2(⇡;HY ) A

2

�↵
+

2Q2
�
A2

n�↵

!
.

(28)
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We begin with the decomposition

ĈY X � CY X (CXX + �Id)�1
⇣
ĈXX + �Id

⌘

= ĈY X � CY X (CXX + �Id)�1
⇣
CXX + �Id+ ĈXX � CXX

⌘

= ĈY X � CY X + CY X (CXX + �Id)�1
⇣
CXX � ĈXX

⌘

= ĈY X � CY X (CXX + �Id)�1 ĈXX �

⇣
CY X � CY X (CXX + �Id)�1 CXX

⌘

= ĈY X � CY X (CXX + �Id)�1 Ê[�X(X)⌦ �X(X)]�
⇣
CY X � CY X (CXX + �Id)�1 E[�X(X)⌦ �X(X)]

⌘

= Ê [(�Y (Y )� F�(X))⌦ �X(X)]� E [(�Y (Y )� F�(X))⌦ �X(X)]

where we denote Ê[�X(X) ⌦ �X(X)] = 1
n

P
n

i
�X(xi) ⌦ �X(xi). We wish to apply Theorem 6

with H = S2(HX ,HY ). We emphasise the difference from [41], where the proof is formulated for
bounded linear operators. Consider the random variables ⇠0, ⇠2 : EX ⇥EY ! HY ⌦HX defined by

⇠0(x, y) := (�Y (y)� F�(x))⌦ �X(x),

⇠2(x, y) := ⇠0(x, y) (CXX + �Id)�1/2 .

Moreover, since our kernels kX and kY are bounded,

k⇠0(x, y)kS2(HX ,HY ) = k�Y (y)� F�(x)kHY
k�X(x)kHX

 k�Y (y)� F�(x)kHY
X


�
Y + kF�(x)kHY

�
X ,

and F� is ⇡-almost surely bounded by Lemma 5. As a result ⇠0 is Bochner-integrable. This yields

1

n

nX

i=1

(⇠2 (xi, yi)� E⇠2) = Ê⇠2�E⇠2 =
⇣
ĈY X � CY X (CXX + �Id)�1

⇣
ĈXX + �Id

⌘⌘
(CXX + �Id)�

1
2 ,

and therefore Eq. (25) coincides with the left hand side of Bernstein’s inequality for H-valued random
variables (Theorem 6). Consequently, it remains to bound the m-th moment of ⇠2, for m � 2,

E k⇠2k
m

S2(HX ,HY ) =

Z

EX

���(CXX + �Id)�1/2 �(x)
���
m

HX

Z

EY

k�Y (y)� F�(x)k
m

HY
p(x, dy)d⇡(x).

First, we consider the inner integral. Using the triangle inequality and the fact that
k�Y (y)� F�(x)kHY

 2Y almost surely,
Z

EY

k�Y (y)� F�(x)k
m

HY
p(x, dy)  2m�1

⇣
k�Y (·)� F⇤(x)k

m

Lm(p(x,·)) + kF⇤(x)� F�(x)k
m

HY

⌘

 22m�1m

Y
+ 2m�1

kF⇤(x)� F�(x)k
m

HY

for ⇡-almost all x 2 EX . If we plug this bound into the outer integral and use the abbreviation
hx := (CXX + �)�1/2 �X(·) we get

E k⇠2k
m

S2(HX ,HY )  22m�1m

Y

Z

EX

khxk
m

HX
d⇡(x) + 2m�1

Z

EX

khxk
m

HX
kF⇤(x)� F�(x)k

m

HY
d⇡(x).

(29)
Using Lemma 13 [11], we can bound the first term in Equation 29 above by
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where we only used 2Y  Q� and 1
2m! � 1 in the last step. Again, using Lemma 13 from [11], the

second term in Equation (29) can be bounded by
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where we only used M(�)  Q� and 2  m ! in the last step. Finally, we get

E k⇠2k
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and an application of Bernstein’s inequality from Theorem 6 with L = 2Q�A��↵/2 and �2 =

2
⇣
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Y
N (�) + kF⇤ � [F�]k

2
L2(⇡;HY ) A

2��↵

⌘
yield the bound in Eq. 28. Putting all the terms

together, we obtain our result.

A.3 The CME Learning Rate

In this section, we aim to establish our upper bound on the learning rate of the conditional mean
embedding by combining the learning rates obtained for the bias and variance.

Let us fix some ⌧ � 1 and a lower bound 0 < c1  1 with c1  kCXXk. We first show that
Theorem 4 is applicable. To this end, we prove that there is an index bound n0 � 1 such that
n � 8A2 log ⌧g�n�

�↵

n
is satisfied for all n � n0. Since �n ! 0 we choose n0

0 � 1 such that
�n  c1  min{1, kCXXk} for all n � n0

0. We get for n � n0
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where the second step uses Lemma 10. Hence, it is enough to show log(��1
n )

n�↵
n

! 0. We consider the
cases � + p  ↵ and � + p > ↵.

• � + p  ↵. By substituting that �n = ⇥
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Consequently, there is a n0 � n0

0 with n � 8A2 log ⌧g�n�
�↵

n
for all n � n0. Moreover, n0 just

depends on �n, c, c1, ⌧, A, and on the parameters ↵, p.

Let n � n0 be fixed. By Theorem 4, we have
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Using Lemma 10, Lemma 3 with � = 0, we have
���[ĈY |X � C�
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For the last term, using the definition of Q� in Theorem 4 with Lemma 5 and �n  1, we get
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For the first and second terms in the bracket, we use again the fact that �n  1, and get
4c2

Y
��p

n
+A2

kF⇤k
2
�
��(↵��)
n


�
4c2

Y
+A2

kF⇤k
2
�

�
max{��p

n
,��(↵��)

n
}  K1�

�max{p,↵��}

n

with K1 := 4c2
Y
+A2

kF⇤k
2
�

. We now have
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Again, we treat the cases � + p  ↵ and � + p > ↵ separately.

• � + p  ↵. In this case we have
↵+ (↵� �)+ �max{p,↵� �} = ↵.
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Using p > ↵� � again gives us
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As such, there is a constant K2 > 0 with
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for all n � n0. Defining K3 := 576(K1 + 2A2K0K2), and using the bias-variance splitting from
Eq. (13) and Lemma 1, we have
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where we used ⌧ � 1 and �n  1. Since in both cases � + p  ↵ and � + p > ↵, �n <
n�1/max{↵,�+p} there is some constant K > 0 such that���[F̂�]� F⇤
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for all n � n0.
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B Proof of Theorem 3

In this section, we establish a lower bound on the learning rate for the empirical conditional mean
embedding. To this end, we build on the lower bound for kernel ridge regression for real-valued
outputs in [11], and for finite dimensional vector-valued outputs in [4, 15, 10]. The usual approach
to build such lower bounds is to construct a family of distributions on the data space and to control
the Kullback-Leibler divergence between each pair of distributions. We cannot directly adapt the
proofs of [4, 15, 10] and [11], however, since both [15] and [11] requires the output space to be finite
dimensional, which is not the case in our setting. In addition, [11] builds a Gaussian distribution for
Y conditioned on X . It would be a challenge to build a distribution on EX ⇥ EY so as to attain the
required Gaussian conditional distribution in feature space HY , however.

Our novelty in obtaining the lower bound is to reduce the infinite dimensional learning to a specially
designed scalar regression problem. We show that the learning risk is lower bounded by the learning
problem evaluated at a particular point (Eq. (35)), which can be seen as the risk of a scalar-valued
regression problem. This effectively allows us to derive the lower bound exploiting proof techniques
from [4, 11].

We start by noticing that for any F 2 L2(⇡;HY ) and a 2 EY ,
Z

EX

(hF (x),�Y (a)iHY � hF⇤(x),�Y (a)iHY )
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kF (x)� F⇤(x)k
2
HY

k�Y (a)k
2
HY

d⇡(x)

 2
Y
kF � F⇤k

2
L2(⇡;HY ).

(31)
Moreover, by Lemma 6, the inequality holds for general �-norm (which implies the previous equation,
setting � = 0),

khF,�Y (a)iHY � hF⇤,�Y (a)iHY k�  Y kF � F⇤k� . (32)

Lemma 6. Let � � 0, for any F 2 [G]� and a 2 EY , we have

khF,�Y (a)iHY k�  Y kFk� .

Proof. The case where � = 0 is already proved in Eq. (31). We now let � > 0. Recall {dj}j2J and
{µ�/2

i
[ei]}i2I are the orthonormal basis of HY and [H]�

X
, since F 2 [G]� , we can write F as
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aijdjµ
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Therefore, we have
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d2
j
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= kY (a, a)
X

i,j

a2
ij

 2
Y
kFk

2
�
< +1,

where for the second step, we used Cauchy-Schwartz inequality. The third step is due to Parseval’s
identity since {dj}j2J is an orthonormal basis of HY .

We now express the l.h.s as the risk of a scalar-valued regression. Consider a distribution P on
EX ⇥ EY that factorizes as P (x, y) = p(y | x)⇡(x) for all (x, y) 2 EX ⇥ EY . For all x 2 EX ,
p(· | x) defines a probability distribution on EY . We fix an element a 2 EY and define Ea

Y
:=
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kY (EY , a) = {ya 2 R | ya = kY (y, a), y 2 EY }. Consider the joint distribution Pa on EX ⇥ Ea

Y

such that

pa(. | x) := (kY (·, a))# p(· | x)

Pa(x, ya) := pa(ya | x)⇡(x), (x, ya) 2 EX ⇥ Ea

Y

(33)

where # denotes the push-forward operation. For a dataset D = {(xi, yi)}ni=1 2 (EX ⇥ EY )
n

where the data are i.i.d from P , the dataset Da = {(xi, ya.i)}ni=1 2 (EX ⇥ Ea

Y
)n ✓ (EX ⇥ R)n

where ya.i := kY (yi, a) for all i = 1, . . . , n is i.i.d from Pa. Note that pa(· | x) is a probability
distribution on R for all x supported by ⇡. By definition of the push-forward operator, the Bayes
predictor associated to the joint distribution Pa is

fa,⇤(x) =

Z

R
yadpa(ya | x) =

Z

EY

kY (y, a)dp(y | x)

=

⌧Z

EY

�Y (y)dp(y | x),�Y (a)

�

HY

= hF⇤(x),�Y (a)iHY

(34)

where F⇤ is the HY -valued conditional mean embedding associated to P . Therefore, plugging
Eq. (34) in Eq. (31) we obtain that for any learning method D ! F̂D 2 (HY )

EX

k[F̂D]� F⇤kL2(⇡;HY ) � �1
Y

k[f̂Da ]� fa.⇤kL2(⇡) (35)

where f̂Da(.) := hF̂D(.),�Y (a)iHY . The r.h.s is the error measured in L2-norm of the learning
method Da ! f̂Da 2 REX on the scalar-regression learning problem associated to Da.

To derive a lower bound on the r.h.s in Eq. 35, the strategy is to define a conditional distribution
pa(. | x) on Ea

Y
, x 2 EX , that is difficult to learn. As Ea

Y
is a bounded subset of R, we cannot directly

exploit the Gaussian conditional distributions used in [11]. Indeed, for all y 2 EY , |kY (y, a)|  2
Y

.
Instead, we suggest to swap the Gaussian conditional distributions used in [11] with the discrete
conditional distributions used in [4, 15, 10].

We will need the following Lemma that corresponds to Lemma 19, Lemma 23 and Equation (55) in
[11].
Lemma 7. Let kX be a kernel on EX such that Assumptions 1-3 hold and ⇡ be a probability
distribution on EX such that (EVD+) and (EMB) are satisfied for some 0 < p  ↵  1. Then, for
all parameters 0 < �  2, 0  �  1 with � < � and all constants B̄, B1 > 0, there exist constants
0 < ✏0  1 and C0, C > 0 such that the following statement is satisfied: for all 0 < ✏  ✏0 there is
an M✏ � 1 with

2C0✏
�u

 M✏  23C0✏
�u

(36)

where u := p

max{↵,�}��
and functions f1, . . . , fM✏ such that fi 2 [H]�

X
, kfik�  B̄, kfikL1(⇡) 

B1, and
kfi � fjk

2
�
� 4✏ (37)

kfi � fjk
2
L2(⇡)

 32C�✏m��/p, (38)

for all i, j 2 {0, . . . ,M"} with i 6= j where m comes from Lemma 23 in [11].

We now combine Lemma 7 with the conditional distributions introduced in [4, 10].
Lemma 8. Under the notations and assumptions of Lemma 7 there are probability measures
Pa,0, Pa,1, . . . , Pa,M✏ on EX ⇥ Ea

Y
each with marginal distribution ⇡ on EX , for which the Bayes

estimators fa

⇤,i
, i = 1, . . . ,M✏ satisfy fa

⇤,i
= fi + r, r 2 R where the f 0

i
s have been introduced in

Lemma 7. Furthermore,

KL(Pa,i, Pa,j)  40B2
1
C�✏m��/p

for all i, j 2 {0, . . . ,M"} with i 6= j, where KL denotes the Kullback-Leibler divergence and C,B1

come from Lemma 7.
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Proof. For all i = 1, . . . ,M✏, recall that kfikL1(⇡)  B1. Pick any point r 2 R such that r�L and
r+L belong to Ea

Y
where L := 1.5B1. Define the joint distribution Pa,i(x, ya) = pa,i(ya | x)⇡(x)

where

pa,i(ya | x) =
1

2L
{(L� fi(x))�r�L({ya}) + (L+ fi(x))�r+L({ya})} , ya 2 Ea

Y
(39)

where �r±L is a Dirac measure on Ea

Y
at point r ± L. pa,i(. | x) defines a probability distribution on

R such that
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R
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{(L� fi(x))(r � L) + (L+ fi(x))(r + L)} = r + fi(x).

We now investigate the KL divergence between Pa,i and Pa,j . The proof is the same as in Proposition
4 of [4] and Lemma 3.2 of [10]. We first note that
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Therefore, we can bound the KL divergence between Pa,i and Pa,j as

KL(Pa,i, Pa,j) 
1

2L

Z

EX

fi(x)� fj(x)

L+ fj(x)
(L+ fi(x))�

fi(x)� fj(x)

L� fj(x)
(L� fi(x))d⇡(x)

=
1

2L

Z

EX

fi(x)� fj(x)

L+ fj(x)
(L+ fj(x) + fi(x)� fj(x))

�
fi(x)� fj(x)

L� fj(x)
(L� fj(x) + fj(x)� fi(x))d⇡(x)

=
1

2L

Z

EX

(fi(x)� fj(x))2

L+ fj(x)
+

(fi(x)� fj(x))2

L� fj(x)
d⇡(x)

=

Z

EX

(fi(x)� fj(x))2

L2 � f2
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kfi � fjk
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 40B2
1
C�✏m��/p.

Combining Lemma 7 and Lemma 8 allows us to derive a lower bound on the scalar-valued regression
associated to Da. The proof of the following Theorem is a consequence of Theorem 20, Lemma 19
and Theorem 2 in [11].
Theorem 5. Under the notations and assumptions of Lemma 7 there exists constants K0,K, s > 0
such that for all learning methods Da ! f̂Da , all ⌧ > 0, and all sufficiently large n � 1 there is a
distribution Pa defined on EX ⇥Ea

Y
used to sample Da, with marginal distribution ⇡ on EX such

that fa,⇤ 2 [H]�
X

, kfa,⇤k�  B, and kfa,⇤k1  B1, and with probability not less than 1�K0⌧1/s,

k[f̂Da ]� fa,⇤k
2
�
� ⌧2Kn�

max{↵,�}��
max{↵,�}+p .

We now use Theorem 5 in conjunction with Eq. (35) to prove Theorem 3.

Proof of Theorem 3. The conditional distribution used in the proof of Lemma 8 Eq. (39) to obtain a
lower bound on the scalar-valued regression risk takes the form

pa(ya | x) =
1

2L
{(L� f(x))�r�L({ya}) + (L+ f(x))�r+L({ya})} 1ya2�Y (EY )(a), ya 2 R

(40)
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with L = 1.25B1, f 2 [H]�
X

, kf!k�  B̄ and kf!kL1(⇡)  B1. Since r ± L 2 Ea

Y
, there exists

y± 2 EY such that �y(y±)(a) = r ± L. Therefore, for all x 2 EX ,

p(y | x) =
1

2L

�
(L� f(x))�y�({y}) + (L+ f(x))�y+({y})

 
, y 2 EY (41)

defines a family of contional distributions on EY such that pa(. | x) = (kY (·, a))# p(· | x). For the
joint distribution p(x, y) = p(y | x)⇡(x) the conditional mean embedding is

F⇤(x) =

Z

EY

�Y (y)dp(y | x)

=
1

2L
{(L� f(x))�Y (y�) + (L+ f(x))�Y (y+)}

(42)

As a result, we have

kF⇤k� =
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k{(L� f)⌦ �Y (y�) + (L+ f)⌦ �Y (y+)}k�


1

2L

⇣
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⌘

=
1

2L

⇣
kL� fk

�
k�Y (y�)kHY + kL+ fk
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Y

2L

⇣
kL� fk

�
+ kL+ fk
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= Y +
Y

L
kfk� < +1,

where the third step follows from Definition 3, the fourth step is due to the boundedness of kernel kY
and the second last step follows from Eq. (8). We conclude by combining Theorem 5 with Eq. (35).

C Auxiliary Results

The following lemma is from [11].
Lemma 9. Under (EMB) we have

���(CXX + �IdHX )�
1
2 k(X, ·)

���
HX

 A��
↵
2 .

The following Theorem is from [11, Theorem 26].
Theorem 6. Bernstein’s Inequality. Let (⌦,B, P ) be a probability space, H be a separable Hilbert
space, and ⇠ : ⌦! H be a random variable with

EP k⇠k
m

H


1

2
m!�2Lm�2

for all m � 2. Then, for ⌧ � 1 and n � 1, the following concentration inequality is satisfied

Pn
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@(!1, . . . ,!n) 2 ⌦
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i=1

⇠ (!i)� EP ⇠
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2

H

� 32
⌧2

n

✓
�2 +

L2

n

◆1

A  2e�⌧

Lemma 10. Suppose (EVD) holds. Then, there exists a c > 0 such that:

N (�) = Tr
⇣
CXX (CXX + �IdHX )�1

⌘
 c��p

D Well-specifiedness of the CME problem and discussion of some corner
cases

As the CME has been redefined various times, the conditions ensuring the existence of a closed-
form solution have been subject to various modifications. The purpose of this section is to briefly
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investigate the well-specifiedness assumptions in the operator-theoretic setting [37, 18] and in our
kernel regression setting [29]. The connections between these assumptions are rather complex (we
also refer to Section 5 of [19] and to Section 2.4 of [41]).

To recapitulate, well-specifiedness in the original operator-theoretic setting usually involves the
requirement

E[g(Y )|X = ·] 2 HX for all g 2 HY , (a)
while well-specifiedness in the kernel regression setting means that a representative of the L2-function
class associated with the CME function is contained in the hypothesis space G, which we write for
simplicity as

E[�Y (Y )|X = ·] 2 G. (b)
Before we discuss some corner cases, we first point out that condition (b) implies condition (a). To see
this, we notice that by Corollary 1, we have E[�Y (Y )|X = ·] = C�X(·) for some C 2 S2(HX ,HY ).
Therefore, for any g 2 HY , we have

E[g(Y )|X = ·] = hg, C�X(·)iHY = hC⇤g,�X(·)iHX .

It is easy to see that C⇤g 2 HX for any g 2 HY , hence condition (a) is satisfied.

Y = X: This is an example that condition (a) does not imply condition (b). Let G be the vRKHS
induced by the kernel

K(x, x0) = kX(x, x0)IdHY , x, x
0
2 E.

The first example is the special case where we have kY = kX as well as X = Y . It is easy to see that
this reduces the CME to

E[�X(X)|X = ·] = �X(·).

We can also verify that condition (a) is satisfied in this case, as we have E[g(X)|X = ·] = g(·) 2 HX .

Furthermore, it is clear that the identity operator IdHX is the correct operator-theoretic solution to
the CME problem, as it represents the CME in terms of �X(·) = IdHX �X(·). However, if HX is
infinite dimensional, it is also clear that IdHX is not Hilbert–Schmidt and hence

IdHX �X(·) /2 G ' HX ⌦HX .

Hence, according to condition (a), we have a well-specified setting, while according to condition (b),
we clearly have a misspecified setting.

This example demonstrates that, without additional requirements, the well-specifiedness condition (a)
allows cases where the CME is represented by a bounded operator, while condition (b) restricts the
class of admissible representative operators to the Hilbert–Schmidt class.

Y ? X: In this case, it is clear that

E[�Y (Y )|X = ·] =

Z

EY

�Y (y)d⌫(y) = µY .

Similar to the previous case, neither condition (a) nor (b) are satisfied. Moreover, requiring that
the CME is contained in [G]� amounts to require that E(g(Y )|X = ·) 2 [H]�

X
. However, when

Y is independent of X , we have E(g(Y )|X = ·) = E(g(Y )) which is a constant function. Since
the constant function is included in [H]�

X
for � = 0, essentially independence between Y and X is

equivalent to the case where the target CME is contained in [G]0.
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