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Abstract

We address the consistency of a kernel ridge regression estimate of the conditional
mean embedding (CME), which is an embedding of the conditional distribution of
Y given X into a target reproducing kernel Hilbert space HY . The CME allows us
to take conditional expectations of target RKHS functions, and has been employed
in nonparametric causal and Bayesian inference. We address the misspecified
setting, where the target CME is in the space of Hilbert-Schmidt operators acting
from an input interpolation space between HX and L2, to HY . This space of
operators is shown to be isomorphic to a newly defined vector-valued interpolation
space. Using this isomorphism, we derive a novel and adaptive statistical learning
rate for the empirical CME estimator under the misspecified setting. Our analysis
reveals that our rates match the optimal O(log n/n) rates without assuming HY

to be finite dimensional. We further establish a lower bound on the learning rate,
which shows that the obtained upper bound is optimal.

1 Introduction

Approximation of the conditional expectation operator is a central issue in the statistical learning
community, and many approaches have been proposed [42, 20, 21, 22]. Given random variables X
and Y , the conditional expectation operator for a function f is defined

[Pf ] (x) := E [f(Y )|X = x] .

Conventional parametric models to approximate P often involve density estimation and expensive
numerical analysis. Hence, recent studies attempt to explore a new framework to approximate
P via kernel methods. Specifically, given kernels kX and kY with corresponding reproducing
kernel Hilbert space HX and HY for X and Y respectively, we may define the conditional mean
embedding (CME) as F⇤(x) := E[kY (·, Y )|X = x], and we may employ the reproducing property
to obtain [Pf ](x) = hf, F⇤(x)iHY for any f 2 HY . The advantage of the CME framework is that it
allows the straightforward evaluation of conditional expectations of any function in HY . The CME
framework has been applied successfully to many learning problems such as probabilistic inference
[35], reinforcement learning [28, 16] and causal inference [25, 31].

⇤ denotes equal contribution.
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Despite these successful applications, there have been two main challenges in establishing a rigorous
theory of CMEs. The first challenge, remarkably, has been in establishing a principled and sufficiently
general definition of the conditional mean embedding itself. The CME was originally introduced as
an operator mapping from HX to HY [12, 37]. This definition has the benefit of elegance, and of a
straightforward expression in terms of feature covariances and cross-covariances. A disadvantage
is that the definition requires the conditional mean E[g(Y )|X = ·] 2 HX , 8g 2 HY . This strong
assumption may be violated in practice (see [18, 19] and [13, Section 3.1] for illustrations and
alternative requirements), and significantly restricts the class of distributions on which we can define
a CME.

An alternative approach, due to [15], is to express the conditional mean embedding as the solution of
a least-squares regression problem in a vector-valued RKHS [5, 6]. In subsequent work, a rigorous
measure-theoretic definition of the conditional mean embedding as the HY -valued square integrable
function F⇤ is established in [29, 18], which is the definition we will use in the present work. Both
[15, 29] connect this CME definition to the original operator-mapping definition by means of a
surrogate loss, which upper bounds the regression loss. A direct connection remained elusive until
the work of [26, 19], which show that under denseness assumptions, the CME can be arbitrarily well
approximated by a Hilbert-Schmidt operator from HX to HY , thus connecting the operator-theoretic
and measure-theoretic definitions.

The second challenge has been in obtaining consistency results and the optimal learning rates for
empirical estimates of the CME. An early consistency analysis of the sample estimator, due to [36],
requires very strong smoothness assumptions. A more refined analysis, due to [15], attains the
minimax optimal learning rate O(log n/n) for the sample estimator, but only in the case where HY

is finite dimensional. For the infinite dimensional RKHS, [31] and [29] establish consistency in
the well-specified case, with learning rates of O(n�1/6) and O(n�1/4). Nevertheless, the obtained
rates are far from optimal and consistency under misspecified setting was not established. Recently,
[41] obtains a sharper rate under the misspecified case using the interpolation RKHS. The results of
[41] impose assumptions, however, which strongly limit their applicability (refer to Remark 5 for a
rigorous discussion):

1. They require an explicit relation between the smoothness of the target CME and the size
of the RKHS. In particular, when the kernel has slow eigenvalue decay (as in the case of
Matérn kernels, for example), the setting is very close to the well-specified scenario.

2. They rely on the explicit construction of an interpolation RKHS. Unlike in [11], where
a similar approach is based only on equivalence classes of functions (i.e., Sobolev-like
spaces), this concept requires the embedding of the RKHS into the corresponding L2-space
(or equivalently the integral operator) to be injective—which is generally not the case (see
[40] for details). Counterexamples can easily be constructed when one considers degenerate
pushforward measures on the RKHS in one or more coordinate directions (for example
point masses). By contrast, the authors of [11] do not explicitly require the injectivity in
the real-valued learning scenario. Moreover, in case where the chosen kernel has slow
eigenvalue decay, the constructed interpolation RKHS is not well-defined.

Finally, to our knowledge, there is presently no result establishing a matching lower bound for the
CME learning rate in the case where HY may be infinite dimensional. Hence, whether the obtained
upper rate is optimal remains unknown.

In the present work, we address the challenges mentioned above. Building on [29, 26] and the
interpolation space theory results of [40, 11], we introduce an interpolation space consisting of
vector-valued functions via a natural tensor product construction. This concept is compatible with
the recent measure-theoretic definition of the CME due to [29] and allows to prove convergence in
the misspecified setting without the limitations of prior work. Based on this novel vector-valued
interpolation space, we establish consistency and convergence rates of the CME sample estimator
in the misspecified setting. In particular, under certain benign conditions, we obtain the optimal
O(1/n) learning rate up to a logarithmic factor. This matches with the current optimal analysis from
[15] without the restrictive assumption of finite dimensional HY . Thanks to our operator-theoretic
definition of the CME, and unlike [41], we do not require an a-priori relation between the rate of
kernel eigenvalue decay and the smoothness of the conditional mean operator (i.e., our results apply
generally in the misspecified setting). Finally, in Theorem 3, we provide a novel lower bound on the
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CME learning rate, which demonstrates that the obtained upper rate is optimal in the setting of a
smooth CME operator.

2 Background

Throughout the paper, we consider two random variables X , Y defined respectively on the second
countable locally compact Hausdorff spaces EX and EY endowed with their respective Borel �-field
FEX and FEY . We let (⌦,F ,P) be the underlying probability space with expectation operator E.
Let ⇡ and ⌫ be the pushforward of P under X and Y respectively, i.e., X ⇠ ⇡ and Y ⇠ ⌫. We use
the Markov kernel p : EX ⇥ FEY ! R+ to define the conditional distribution:

P[Y 2 A|X = x] =

Z

A

p(x, dy),

for all x 2 EX and events A 2 FEY . We denote the space of real-valued Lebesgue square
integrable functions on (EX ,FEX ) with respect to ⇡ as L2(EX ,FEX ,⇡) abbreviated L2(⇡) and
similarly for ⌫ we use L2(EY ,FEY , ⌫) abbreviated L2(⌫). Let B be a separable Banach space with
norm k · kB and H a separable real Hilbert space with inner product h·, ·iH . We write L(B,B0)
as the Banach space of bounded linear operators from B to another Banach space B0, equipped
with the operator norm k · kB!B0 . When B = B0, we simply write L(B) instead. We also
let Lp(EX ,FEX ,⇡;B), abbreviated Lp(⇡;B), the space of strongly FEX � FB measurable and
Bochner p-integrable functions f : EX ! B for 1  p  1. Finally, we denote the p-Schatten class
Sp(H,H 0) to be the space of all compact operators C from H to another Hilbert space H 0 such that
kCkSp(H,H0) :=

��(�i(C))
i2J

��
`p

is finite. Here k (�i(C))
i2J

k`p is the `p sequence space norm of
the sequence of the strictly positive singular values of C indexed by the countable set J . For p = 2,
S2(H,H 0) is the Hilbert space of Hilbert-Schmidt operators from H to H 0.

Tensor Product of Hilbert Spaces ([1], Section 12): Denote H ⌦H 0 the tensor product of Hilbert
spaces H , H 0. The Hilbert space H ⌦ H 0 is the completion of the algebraic tensor product with
respect to the norm induced by the inner product hx1⌦x0

1, x2⌦x0

2iH⌦H0 = hx1, x2iHhx0

1, x
0

2iH0 for
x1, x2 2 H and x0

1, x
0

2 2 H 0 defined on the elementary tensors of H ⌦H 0. This definition extends to
span{x⌦x0

|x 2 H,x0
2 H 0

} and finally to its completion. The space H⌦H 0 is separable whenever
both H and H 0 are separable. The element x⌦x0

2 H⌦H 0 is treated as the linear rank-one operator
x⌦ x0 : H 0

! H defined by y0 ! hy0, x0
iH0x for y0 2 H 0. Based on this identification, the tensor

product space H ⌦H 0 is isometrically isomorphic to the space of Hilbert-Schmidt operators from
H 0 to H , i.e., H ⌦ H 0

' S2(H 0, H). We will hereafter not make the distinction between those
two spaces and see them as identical. If {ei}i2I and {e0

j
}j2J are orthonormal basis in H and H 0,

{ei ⌦ e0
j
}i2I,j2J is an orthonormal basis in H ⌦H 0.

Remark 1 ([1], Theorem 12.6.1). Consider the Bochner space L2(⇡;H) where H is a separable
Hilbert space. One can show that L2(⇡;H) is isometrically identified with the tensor product space
H ⌦ L2(⇡).

Reproducing Kernel Hilbert Spaces, Covariance Operators: We let kX : EX ⇥ EX ! R
be a symmetric and positive definite kernel function and HX be a vector space of EX ! R
functions, endowed with a Hilbert space structure via an inner product h·, ·iHX . kX is a reproducing
kernel of HX if and only if: 1. 8x 2 EX , kX(·, x) 2 HX ; 2.8x 2 EX and 8f 2 HX , f(x) =
hf, kX(x, ·)i

HX
. A space HX which possesses a reproducing kernel is called a reproducing kernel

Hilbert space (RKHS)[2]. We denote the canonical feature map of HX as �X(x) = kX(·, x).
Similarly for EY , we consider a RKHS HY with symmetric and positive definite kernel kY :
EY ⇥ EY ! R and canonical feature map denoted as �Y .

We require some technical assumptions on the previously defined RKHSs and kernels:

1. HX and HY are separable, this is satisfied if EX and EY are Polish spaces and kX , kY are
continuous [38];

2. kX(·, x) and kY (·, y) are measurable for ⇡-almost all x 2 EX and ⌫-almost all y 2 EY ;
3. kX(x, x)  2

X
for ⇡-almost all x 2 EX and kY (y, y)  2

Y
for ⌫-almost all y 2 EY .

Note that the above assumptions are not restrictive in practice, as well-known kernels such as
the Gaussian, Laplacian and Matérn kernels satisfy all of the above assumptions on Rd. We now
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introduce some facts about the interplay between HX and L2(⇡), which has been extensively studied
by [32, 33],[9] and [40]. We first define the (not necessarily injective) embedding I⇡ : HX ! L2(⇡),
mapping a function f 2 HX to its ⇡-equivalence class [f ]. The embedding is a well-defined compact
operator as long as its Hilbert-Schmidt norm is finite. In fact, this requirement is satisfied since its
Hilbert-Schmidt norm can be computed as

kI⇡kS2(HX ,L2(⇡))
= kkXkL2(⇡) :=

✓Z

EX

kX(x, x)d⇡(x)

◆1/2

< 1.

The adjoint operator S⇡ := I⇤
⇡
: L2(⇡) ! HX is an integral operator with respect to the kernel kX ,

i.e. for f 2 L2(⇡) and x 2 EX we have

(S⇡f) (x) =

Z

EX

kX (x, x0) f (x0) d⇡ (x0)

Next, we define the self-adjoint and positive semi-definite integral operators

LX := I⇡S⇡ : L2(⇡) ! L2(⇡) and CXX := S⇡I⇡ : HX ! HX

These operators are trace class and their trace norms satisfy

kLXk
S1(L2(⇡))

= kCXXk
S1(HX) = kI⇡k

2
HX!L2(⇡)

= kS⇡k
2
L2(⇡)!HX

.

Vector-valued RKHS We also give a brief overview of the vector-valued reproducing kernel Hilbert
space (vRKHS). We refer the reader to [5] and [6] for more detail.
Definition 1. Let H be a real Hilbert space and K : EX ⇥ EX ! L(H) be an operator valued
positive-semidefinite (psd) kernel such that K(x, x0) = K(x0, x)⇤ for all x, x0

2 EX , and for all
x1, . . . , xn 2 EX and hi, hj 2 H ,

nX

i,j=1

hhi,K(xi, xj)hjiH � 0.

Fix K, x 2 EX , and h 2 H , [Kxh] (·) := K(·, x)h defines a function from EX to H . We now
consider

Gpre := span {Kxh | x 2 EX , h 2 H}

with inner product on Gpre by linearly extending the expression

hKxh,Kx0h0
i
G
:= hh,K (x, x0)h0

i
H
. (1)

Let G be the completion of Gpre with respect to this inner product. We call G the vRKHS induced
by the kernel K. The space G is a Hilbert space consisting of functions from EX to H with the
reproducing property

hF (x), hiH = hF,KxhiG , (2)

for all F 2 G, h 2 H and x 2 EX . For all F 2 G we obtain

kF (x)kH  kK(x, x)k1/2kFkG , x 2 EX .

Since the inner product given by Eq. (1) implies that Kx is a bounded operator for all x 2 EX . For
all F 2 G and x 2 EX , Eq. (2) can be written as F (x) = K⇤

x
F . The linear operators Kx : H ! G

and K⇤

x
: G ! H are bounded with

kKxk = kK⇤

x
k = kK(x, x)k1/2

and we have K⇤

x
Kx0 = K (x, x0) , x, x0

2 EX . In the following, we will denote G as the vRKHS
induced by the kernel K : EX ⇥ EX ! L(HY ) with

K(x, x0) := kX(x, x0)IdHY , x, x
0
2 EX .

An important property of G is that elements in G are isometric to Hilbert-Schmidt operators between
HX and HY .
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Theorem 1 (Theorem 4.4 in [26]). Let HX and HY be real-valued RKHS with kernel kX and kY
respectively. For fY 2 HY and gX 2 HX , define the map  ̄ on the elementary tensors as

⇥
 ̄ (fY ⌦ gX)

⇤
(x) := gX(x)fY = (fY ⌦ gX)�X(x).

We then have that  ̄ defines an isometric isomorphism between S2(HX ,HY ) and G through linearity
and completion.

More details regarding Theorem 1 can be found in [26, Theorem 4.4]. The isometric isomorphism  ̄
induces the operator reproducing property stated below.
Corollary 1. For every function F 2 G there exists an operator C :=  ̄�1(F ) 2 S2(HX ,HY ) such
that

F (x) = C�X(x) 2 HY ,

for all x 2 EX with kCkS2(HX ,HY ) = kFkG and vice versa. Conversely, for any pair F 2 G and
C 2 S2(HX ,HY ), we have C =  ̄�1(F ) as long as F (x) = C�X(x).

The proof of Corollary 1 is a simple extension of Lemma 15 in [7] and Corollary 4.5 in [26]. Corollary
1 shows that the vRKHS G is generated via the space of Hilbert-Schmidt operators S2(HX ,HY )

G = {F : EX ! HY |F = C�X(·), C 2 S2(HX ,HY )} .

Conditional Mean Embedding: A particular advantage of kernel methods is its convenience of
operating probability distributions, see [27, 30] for examples. This is through the so called kernel mean
embedding [2, 34, 17]. Assuming the integrability condition

R
EX

p
kX(x, x)d⇡(x) < 1 (which is

satisfied when the kernel is almost surely bounded), we define the kernel mean embedding µX(·) =R
EX

kX(·, x)d⇡(x). It is easy to show that for each f 2 HX ,
R
EX

f(x)d⇡(x) = hf, µXi
HX

.
Replacing ⇡ with the conditional distribution, we obtain the kernel conditional mean embedding as
defined in [29, 18].
Definition 2. The HY -valued conditional mean embedding (CME) for the Markov kernel p(x, dy) is
defined as

F⇤(x) :=

Z

EY

�Y (y)p(x, dy) = E [�Y (Y )|X = x] 2 L2(EX ,FEX ,⇡;HY ) (3)

By the reproducing property, we have E[fY (Y )|X = x] = hfY , F⇤(x)iHY , 8fY 2 HY and x 2

EX . The approximation of F⇤ is a key concept in kernel methods. By [26], suppose we impose
Assumptions 1-3 together with two additional assumptions: i) HX ✓ C0(EX) where C0(EX) is the
space of continuous functions vanishing at infinity2; and ii) HX is dense in L2(⇡), then we have
that G is dense in L2(EX ,FEX ,⇡;HY ). As a result, for any � > 0, there is an F 2 G such that
kF �F⇤kL2 < �. Hence, in the literature, we often assume the so-called well-specified case to obtain
a closed-form solution,

F⇤ 2 G. (4)

It is shown in [18, Theorem 5.3] and [26, Corollary 5.6 and Remark 5.8] that F⇤ admits a closed
form expression under Eq. (4) via

F⇤(x) = (C†

XX
CXY )

⇤�X(x),

where CY X = E[�Y (Y )⌦ �X(X)] and C† denotes the pseudoinverse of C.
Remark 2. We point out that in the original derivations, the CME is written as F⇤(x) =
CY XC†

XX
�X(x) [37, 12, 13]. However, C†

XX
is not globally defined if HX is infinite-dimensional.

Hence the expression CY XC†

XX
�X(x) is problematic, as we expect F⇤ to be defined for all x 2 EX

based on the Markov kernel p. In the well-specified scenario, [18] corrected this issue by defining
the CME as (C†

XX
CXY )⇤�X(x). It is shown that in this case, (C†

XX
CXY )⇤ is bounded (actu-

ally Hilbert-Schmidt, see also [19]), and hence globally defined. The connection of this corrected
operator-theoretic perspective to the well-specified regression scenario was established in [26].

2This is satisfied if kX is bounded and kX(·, x) 2 C0(EX) for ⇡-almost all x 2 EX .
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Once we have the closed-form solution, a natural question to ask is how to estimate the CME. Indeed,
this has been extensively studied in [15, 29, 41]. Given a data set D = {(xi, yi)}ni=1 independently
and identically sampled from the joint distribution of X and Y , a regularized estimate of F⇤ is the
solution of the following optimization problem:

ĈY |X,� := argmin
C2S2(HX ,HY )

1

n

nX

i=1

k�Y (yi)� C�X(xi)k
2
HY

+ �kCk
2
S2(HX ,HY ), (5)

F̂�(·) :=  ̄
⇣
ĈY |X,�

⌘
(·) = ĈY |X,��X(·), where � is the regularization parameter. Implicit in the

construction, however, is the assumption F⇤ 2 G that the solution is well-specified. We provide a few
remarks regarding this assumption:
Remark 3. i) In the literature, the prevalent definition of well-specifiedness is through

E [fY (Y )|X = ·] 2 HX , 8fY 2 HY , (6)

see e.g. [12, 37, 18] for details. However, this definition is not equivalent to that in Eq. (4). Specifically,
assuming F⇤ 2 G implies that Eq. (6) holds. Nonetheless, the reverse is not true. In particular, there
exist concrete examples satisfying Eq. (6), but the corresponding operator representative of the CME
is not Hilbert–Schmidt (see Section D in Appendix for details). To avoid confusion, we refer to Eq. (4)
as the well-specified case hereafter.

ii) The conventional assumption Eq. (6) can actually be refined via the inclusion map I⇡ . In particular,
since I⇡ is an inclusion map from HX to L2(⇡) and E [fY (Y )|X = ·] 2 HX , we can apply I⇡ to
E [fY (Y )|X = ·]. In addition, we are only interested in the case where I⇡ (E [fY (Y )|X = ·]) 6= 0.
As a result, the refined definition should be

E [fY (Y )|X = ·] 2 (ker I⇡)
? , 8fY 2 HY . (7)

We now characterize the Hilbert spaces used to define the CME in the misspecified setting.

Real-valued Interpolation Space: We review the results of [40, 11] that set out the eigendecom-
positions of LX and CXX , and apply these in constructing the interpolation spaces used for the
misspecified setting. By the spectral theorem for self-adjoint compact operators, there exists an at
most countable index set I , a non-increasing sequence (µi)i2I > 0, and a family (ei)i2I 2 HX ,
such that ([ei])i2I

is an orthonormal basis (ONB) of ran I⇡ ✓ L2(⇡) and (µ1/2
i

ei)i2I is an ONB of
(ker I⇡)

?
✓ HX , and we have

LX =
X

i2I

µih·, [ei]iL2(⇡)[ei], CXX =
X

i2I

µih·, µ
1
2
i
eiiHXµ

1
2
i
ei.

For ↵ � 0, we define the ↵-interpolation space [40] by

[H]↵
X

:=

(
X

i2I

aiµ
↵/2
i

[ei] : (ai)i2I
2 `2(I)

)
✓ L2(⇡),

equipped with the ↵-power norm
�����
X

i2I

aiµ
↵/2
i

[ei]

�����
[H]↵X

:=
��(ai)i2I

��
`2(I)

=

 
X

i2I

a2
i

!1/2

.

More broadly, we sometimes need to deal with function of the form f + c where f 2 [H]↵
X

and
c 2 R. For this, we follow the classical definition of the direct sum of two Hilbert spaces [8] and
define the ↵-power norm for f + c as

kf + ck[H]↵X
= kckR + kfk[H]↵X

. (8)

For (ai)i2I
2 `2(I), the ↵-interpolation space becomes a Hilbert space with inner product defined as

*
X

i2I

ai(µ
↵/2
i

[ei]),
X

i2I

bi(µ
↵/2
i

[ei])

+

[H]↵X

=
X

i2I

aibi.
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S2(L2(⇡),HY ) L2(⇡;HY )

S2(HX ,HY ) G

 

 ̄

I⇡

Figure 1:  and  ̄ are the bijective linear operators that define the respective isomorphisms between each pair
of spaces. The precise form of the isomorphisms is given in the appendix. I⇡ denotes the canonical embedding
between the two Hilbert-Schmidt spaces.

Moreover,
⇣
µ↵/2
i

[ei]
⌘

i2I

forms an ONB of [H]↵
X

and consequently [H]↵
X

is a separable Hilbert
space. In the following, we use the abbreviation k · k↵ := k · k[H]↵X

. For ↵ = 0 we have [H]0
X

=
ran I⇡ ✓ L2(⇡) with k · k0 = k · kL2(⇡). Moreover, for ↵ = 1 we have [H]1

X
= ran I⇡ and [H]1

X
is

isometrically isomorphic to the closed subspace (ker I⇡)
? of HX via I⇡, i.e. k[f ]k1 = kfkHX for

f 2 (ker I⇡)
?. For 0 < � < ↵, we have

[H]↵
X

,! [H]�
X

,! [H]0
X

✓ L2(⇡). (9)

Moreover, under Assumptions 1-3, if we further assume that supp(⇡) = EX and HX is dense in
L2(⇡), we have [H]0

X
= L2(⇡).

3 Approximation of CME with Vector-valued Interpolation Space

In this section, we deal with the misspecified setting where F⇤ /2 G. To do this, we first define
the vector-valued interpolation space via the tensor product space. We now recall from Remark 1
that L2(⇡;HY ) is isomorphic to S2 (L2(⇡),HY ) and we denote by  the isomorphism between the
two spaces. Similarly, we have G ' S2(HX ,HY ) and we denote by  ̄ the isomorphism between
both spaces in accordance with Theorem 1. This is summarized in Figure 1. The second chain of
spaces is not isometric to the first but can be naturally embedded into the first as follows. Recall
that we denote by I⇡ : HX ! L2(⇡) the embedding that maps each function to its equivalent class,
I⇡(f) = [f ]. We therefore naturally define the embedding I⇡ : S2(HX ,HY ) ! S2(L2(⇡),HY )
through I⇡(g ⌦ f) = g ⌦ I⇡(f) = g ⌦ [f ] for all f 2 HX , g 2 HY , and obtain the extension to the
whole space by linearity and continuity. Therefore, for F 2 G we define [F ] :=  � I⇡ �  ̄�1(F ). In
the rest of the paper, every embedding will be denoted using the notation [ · ]. Strict notation would
require us to write [ · ]⇡ due to dependence on the measure ⇡, but we omit the subscript for ease of
notation.
Definition 3. Suppose that we are given real-valued kernels kX and kY with associated RKHS HX

and HY and let [H]↵
X

be the real-valued interpolation space associated to HX with some ↵ � 0.
Since [H]↵

X
✓ L2(⇡), it is natural to define the vector-valued interpolation space [G]↵ as

[G]↵ :=  (S2([H]↵
X
,HY )) = {F | F =  (C), C 2 S2([H]↵

X
,HY )}.

[G]↵ is a Hilbert space equipped with the norm

kFk↵ := kCkS2([H]↵X ,HY ) (F 2 [G]↵),

where C =  �1(F ). For ↵ = 0, we retrieve,

kFk0 = kCkS2(L2(⇡),HY ).

Remark 4. The vector-valued interpolation space [G]↵ allows us to study the CME in the misspecified
case. To see this, we note that by Eq. (3), we have F⇤ 2 L2(EX ,FEX ,⇡;HY ). In light of Eq. (9),
for 0 < � < ↵ we have

[G]↵ ,! [G]� ,! [G]0 ✓ L2(EX ,FEX ,⇡;HY ).

Again, once we further assume that supp(⇡) = EX and HX is dense in L2(⇡), we have [G]0 =
L2(EX ,FEX ,⇡;HY ). Hence, while the well-specified case corresponds to F⇤ 2 G, the misspecified
case amounts to assuming that F⇤ 2 [G]↵ for some 0 < ↵ < 1, and relaxes the well-specified
assumption in Eq. (4).

7



4 Learning Rate for CME

In this section, we derive the learning rate for the difference between [F̂�] and F⇤ in the interpolation
norm. We first state additional assumptions that are needed in our derivations. As our assumptions
match those of [11], we include the corresponding labels from [11] for ease of reference.

5. Recall that (µi)i2I are the eigenvalues of CXX . For some constants c2 > 0 and p 2 (0, 1]
and for all i 2 I ,

µi  c2i
�1/p (EVD)

6. For ↵ 2 (p, 1], the inclusion map I↵,1
⇡

: [H]↵
X

,! L1(⇡) is continuous, and there is a
constant A > 0 such that

kI↵,1
⇡

k[H]↵X!L1(⇡)  A (EMB)

7. There exists 0 < �  2 such that
F⇤ 2 [G]� (SRC)

We let CY |X :=  �1(F⇤) 2 S2([H]�
X
,HY ) and we call CY |X the conditional mean

embedding operator.

(EVD) is a standard assumption on the eigenvalue decay of the integral operator (see more details
in [4, 11, 41]). (EMB) is referred as the embedding property in [11] and it can be shown that it
implies

P
i2I

µ↵

i
e2
i
(x)  A2 for ⇡-almost all x 2 EX ([11] Theorem 9). Since we assume kX to

be bounded, the embedding property always hold true when ↵ = 1. Furthermore, (EMB) implies
a polynomial eigenvalue decay of order 1/↵, which is why we take ↵ � p. (SRC) is justified by
Remark 4 and is often referred as the source condition in literature ([4, 11, 23, 24]). It imposes
the smoothness assumption on the target CME operator F⇤. In particular, when � � 1, the source
condition implies that F⇤ has a representative from G, indicating the well specified scenario. However,
once we let � < 1, we are in the misspecified learning setting, which is the main interest in this
manuscript. Finally, in computing the learning rate for real-valued regression, one often needs the
so-called (MOM) condition on the Markov kernel p(x, dy) (see [4, 11, 41] for more details). The
generalization to our setting would amount to assume that there exists constants �, R > 0 such that

E
⇥
k�Y (Y )� F⇤(x)k

q

HY
| X = x

⇤


1

2
q!�2Rq�2,

for ⇡-almost surely all x 2 EX and all q � 2. The reason for requiring (MOM) in the scalar
regression setting is that we do not usually have |Y | < 1 almost surely. In our setting, however,
Assumption 3 implies k�Y (y) � F⇤(x)kHY  2Y for ⇡-almost all x 2 EX and ⌫-almost all
y 2 EY . Therefore, (MOM) is automatically satisfied with � = R = 2Y .
Remark 5. We remark that in [41], a variant of SRC condition is employed. In particular, instead
of assuming F⇤ 2 [G]� , they impose the assumption that F⇤ 2 G

�
' S2(H

�

X
,HY ), where H

�

X

is an RKHS with corresponding kernel defined as k�
X
(·, x) =

P
i
µ�

i
ei(·)ei(x). Comparing to

[G]� ' S2([H]�
X
,HY ), there are two shortcomings that arise when working with G

� .

First, H�

X
denotes the interpolating RKHS consisting of continuous functions only, while [H]�

X
is

the interpolating Hilbert space, where elements are defined through an equivalence classes. Hence,
by working with G

� , the implicit assumption is that F⇤ is a continuous function. On the other hand,
assuming F⇤ 2 [G]� avoids the continuity requirement. In particular, we have H

�

X
✓ [H]�

X
for any

� > 0. Therefore, our (SRC) condition applies to a more general setting.

Second, and more importantly, the construction of H�

X
relies on the condition that

P
i
µ�

i
e2
i
(x) < 1,

as pointed out in [40]. Failing this, the kernel k�
X

associated with the interpolating RKHS H
�

X
is

unbounded, indicating H
�

X
is not well-defined. Under (EVD), this effectively amounts to require that

� � p. When kernel has slow eigenvalue decay (as for the Matérn kernel), p can be close to 1. Results
obtained using G

� while requiring � > p are very close to the well-specified case. By contrast, [H]�
X

is always well-defined as a subspace of L2(⇡) for any � > 0, even if
P

i
µ�

i
e2
i
(x) < 1 does not

hold.
Remark 6. It is important to assume � > 0 in (SRC), as our results do not apply when � = 0. The
� = 0 setting arises for instance when Y ? X , or when both Y = X and HY = HX . In the former
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case, it is easy to see that the CME is the constant function (w.r.t X) F⇤(x) = µY =
R
EY

�Y (y)d⌫(y).
In the latter case, F⇤(x) = �X(x), and the CME is the identity operator. These functions are not
covered by [G]� for any � > 0 (see Appendix D for details).

We now provide an upper bound on the learning rate.
Theorem 2. Let Assumptions 1-3, (EVD), (EMB) and (SRC) with 0 < �  2 hold, and let 0  �  1
with � < �,

1. In the case � + p  ↵ and �n = ⇥
⇣
(n/ logr(n))�

1
↵

⌘
, for some r > 1, there is a constant

K > 0 independent of n � 1 and ⌧ � 1 such that

���[F̂�]� F⇤

���
2

�

 ⌧2K

✓
n

logr n

◆�
���
↵

is satisfied for sufficiently large n � 1 with Pn-probability not less than 1� 4e�⌧ .

2. In the case � + p > ↵ and �n = ⇥
⇣
n�

1
�+p

⌘
, there is a constant K > 0 independent of

n � 1 and ⌧ � 1 such that
���[F̂�]� F⇤

���
2

�

 ⌧2Kn�
���
�+p

is satisfied for sufficiently large n � 1 with Pn-probability not less than 1� 4e�⌧ .

Theorem 2 provides the finite sample �-norm learning rate for the empirical CME estimator defined
in Eq. (5). It states that the learning rate for [F̂�] is governed by the interplay between p, ↵, and �.
Intuitively, p describes the decay rate of the eigenvalues (µi)i2I , ↵ determines the boundedness of
the interpolation kernel (and has maximum value of 1 according to our assumption), � characterizes
the smoothness of the target CME operator.

To simplify the discussion, we may focus on the L2(EX ,FEX ,⇡;HY ) learning rate, corresponding
to � = 0. The exponent �/max{↵,�+ p} explicitly provides the learning rate for the CME operator.
For example, if we have ↵  �, we obtain a learning rate of �/(� + p). In particular, for a Gaussian
kernel, p and ↵ are arbitrarily close to 0, and our learning rate can achieve a fast O(1/n) rate up to a
logarithmic factor. If a kernel with slow eigenvalue decay is used, such as the Matérn kernel, we can
obtain the minimax optimal learning rate n�1/2 up to logarithmic factors if we have p  �. Finally,
in the worst case where � is close to 0, the learning rate can be arbitrarily slow.

5 Lower Bound

Our final theorem provides a lower bound for the convergence rate, which allows us to confirm the
optimality of our learning rate. In deriving the lower bound, we need an extra assumption

8. For some constants c1, c2 > 0 and p 2 (0, 1] and for all i 2 I ,

c1i
�1/p

 µi  c2i
�1/p (EVD+)

Theorem 3. Let kX be a kernel on EX such that Assumptions 1-3 hold and ⇡ be a probability
distribution on EX such that (EVD+) and (EMB) hold 0 < p  ↵  1. Then for all 0 < �  2,
0  �  1 with � < � there exist constants K0,K, s > 0 such that for all learning methods
D ! F̂D (D := {(xi, yi)}ni=1), all ⌧ > 0, and all sufficiently large n � 1 there is a distribution P
defined on EX ⇥ EY used to sample D, with marginal distribution ⇡ on EX , such that (SRC) with
respect to � is satisfied, and with Pn-probability not less than 1�K0⌧1/s,

k[F̂D]� F⇤k
2
�
� ⌧2Kn�

max{↵,�}��
max{↵,�}+p .

Theorem 3 states that under the assumtions of Theorem 2 and (EVD+), no learning method can
achieve a learning rate faster than n�

max{↵,�}
max{↵,�}+p in L2 norm. To our knowledge, this is the first

analysis that demonstrates the lower rate for CME learning. In the context of regularized regression,
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[4, 39, 3] provide a similar lower bound on the learning rate. However, a key difference in our analysis
is that the output of the regression learning now lives in an infinite dimensional RKHS HY , rather
than in R. Our analysis reveals that in the case where ↵  �, the obtained upper rate in Theorem 2 is
optimal, i.e., O(n�

�
�+p ). In particular, when kX is an exponentiated quadratic kernel on a compact

set EX ⇢ Rd with Lipschitz boundary, (EMB) is satisfied with any ↵ 2 (0, 1) [17, see Corollary
4.13]. As a result, the optimal rate is attained as long as � > 0. We point out that finding the optimal
rate for � < ↵ remains a challenge, and is an open problem when the output is R.
Remark 7. Theorem 3 states that the upper bound and the lower bound match when � > ↵.
In particular, for exponential kernels such as Gaussian and Laplacian kernels with subgaussian
distributions, the eigenvalues for the covariance operator have geometric decay rate. In these cases,
↵ is arbitrarily close to 0. Hence, as long as � > 0, we will have ↵ < �. In other words, for
commonly used kernels, CME learning can always obtain the optimal fast rate n�

�
�+p .

6 Conclusion

In this paper, we provide a rigorous theoretical foundation for approximating the CME operator, and
study the statistical learning rate. Utilizing recently developed interpolation space techniques, we first
define the vector-valued interpolation space [G]↵. This allows to define the target CME operator in the
larger interpolation space [G]↵, in contrast to the well-specified setting where F⇤ 2 G. By doing so,
we are able to study the convergence rate of the empirical CME operator in the misspecified scenario.
We then provide a �-norm learning rate for the CME without any assumption on the interplay between
� and p, with matching lower bound. Our analysis shows that under appropriate conditions, we can
obtain a fast O(log n/n) convergence rate, which matches the rate obtained in the existing literature
for finite dimensional HY . In more challenging settings, we still obtain the minimax optimal rate
O(n�1/2).

Looking beyond the present work, our current interpolation space setting indicates that the conver-
gence rate can be arbitrarily slow if � ! 0. This prevents learning the constant function, which plays
a crucial role in completing the theory of the CME, as pointed out by [18]. Addressing this challenge
is an important direction of future research.
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