
A On the Orthogonal Decomposition Property 1

In this part, we state the orthogonal decomposition Property, motivate its importance with a peda-
gogical example, and finally prove Proposition 1, which enables the decomposition property in the
context of HSIC attribution method.

A.1 Orthogonal Decomposition Property

Let x = {x1, ..., xn} 2 Xn be a set of n univariate random input variables. For any subset
A = {l1, ..., l|A|} ✓ {1, ..., n}, we denote xA = (xl1 , ..., xl|A|) the vector of input variables with
indices in A. Let y the random output variable defined by y = f(x), F the RKHS defined by the
kernel kA : X |A| ! R and G the RKHS defined by the kernel l : Y ! R.

In [11], the author shows that for any choice of kernel l, if we respect some constraints on the kernel
kA, we can construct indices HSIC(xA,y) that satisfy the following decomposition property.
Property 2 (Decomposition property). For any kernel l, the kernel kA satisfies the decomposition

property if:

HSIC(x,y) =
X

A✓{1,...,n}

HSICA, (7)

where each term HSICA is given by

HSICA =
X

B✓A

(�1)|A|�|B|HSIC(xB ,y),

and HSIC(xB ,y) is defined as in equation (1) with kernels l and kA.

The constraints on the kernel kA are detailed in the main document and in the last section of this
appendix. Before describing these constraints and how to fulfill them with Proposition 1, let us
illustrate the importance of the property with a motivating, pedagogical example.

A.2 Motivating example

In this section, we introduce a pedagogical example to motivate the interest in assessing the in-
teractions and the importance of the Orthogonal Decomposition Property in that regard. Let
f : [0, 2]3 ! {0, 1} such that

y = f(x1, x2, x3) =

8
<

:

1 if x1 2 [0, 1], x2 2 [1, 2], x3 2 [0, 1],

1 if x1 2 [0, 1], x2 2 [0, 1], x3 2 [1, 2],

0 otherwise.

Figure 1: Input points Xi = (x1,i, x2,i, x3,i) for which f(Xi) = 1 with respect to x2 and x3.

The relation between x2, x3 and the output of function f is illustrated on Figure 7. Here xi is
analogous to Mi. In that case, it is clear that x1 is important to explain the output. However, assessing

15

the effect of x2 and x3 is more difficult. Given the definition of f ; they are important to explain the
output y, but it can be shown theoretically that HSIC(x2, y) = 0 and HSIC(x3, y) = 0 [34]. This
motivates to assess the interactions between input variables. One way to retrieve the information that
x2 and x3 are important is to assess HSIC(x2,3, y), where x2,3 = (x2, x3)

One could assess HSIC(x2,3, y) without any constraints on the kernel k, and the obtained value
for HSIC(x2,3, y) would indeed be > 0 . However, by doing so, we would also obtain that
HSIC(x1,2, y) > 0 and HSIC(x1,3, y) > 0, whereas x1 does not interact with x2 and x3, only
because of the individual effect of x1. We empirically illustrate this by assessing these metrics using
the estimator of Eq. 2 with p = 10000, and kernels k, l chosen as the Radial Basis Function (RBF).
The results are found in Table 1 below and show that:

• HSIC(x2, y) ⇡ HSIC(x3, y) ⇡ 0

• HSIC(x1,2, y) ⇡ HSIC(x1,3, y) > HSIC(x2,3, y)

HSIC(x1, y) HSIC(x2, y) HSIC(x3, y) HSIC(x1,3, y) HSIC(x1,2, y) HSIC(x2,3, y)

1.79⇥ 10�2 2.28⇥ 10�6 9.63⇥ 10�6 1.36⇥ 10�2 1.36⇥ 10�2 2.92⇥ 10�3

Table 1: HSIC metrics with k taken as RBF

In order to correctly assess the pairwise interactions of input variables x1 and x2, one has to remove the
individual effect of each variable from the HSIC(x1,2, y). The orthogonal decomposition property
[11] allows to do so by simply computing HSICinter(x1,2, y) as

HSICinter(x1,2, y) = HSIC(x1,2, y)�HSIC(x1, y)�HSIC(x2, y)

If the decomposition property does not hold, we are not guaranteed to fully remove the indi-
vidual effect of x1 and x2 using the previous formula. We estimate HSICinter(x1,2, y) when the
kernel k satisfies the decomposition property (in that case we choose a Sobolev kernel as in [1]), and
when it does not, and show that the correct information of HSICinter(x1,2, y) is only retrieved when
the decomposition property is satisfied. As previously, this is illustrated in the experiment, whose
results are found in Table 2.

HSIC(x2, y) HSIC(x3, y) HSIC(x1,3, y)

k Sobolev 7.68⇥ 10�6 2.83⇥ 10�6 7.85⇥ 10�4

k RBF �4.35⇥ 10�3 �4.30⇥ 10�3 2.91⇥ 10�3

Table 2: HSIC metrics for assessing interactions, when k satisfies (Sobolev) / does not satisfy (RBF)
the orthogonal decomposition property

In that case, with k satisfying the orthogonal decomposition property (Sobolev), we retrieve that
HSICinter(x1,2, y) ⇡ HSICinter(x1,3, y) ⇡ 0 and HSICinter(x2,3, y) is significant. When k
does not satisfy the property (RBF), the values are not relevant (a negative value has no meaning
since the metric is a distance)

A.3 Proof of Proposition 1

To benefit from Property 2, the kernel kA must satisfy the following assumption [11]:
Assumption 1. The kernel kA satisfies Property 2 if

kA(xA,x
0
A
) =

Y

i2A

(1 + k0(xi, x
0
i
)),

where

k0(x, x
0) = k(x, x0)�

R
k(x, t)dP (t)

R
k(x0, t)dP (t)R R

k(s, t)dP (s)dP (t)
.

We now recall and prove the introduced Proposition 1 defined in Section 3.3.

16

Proposition 1. Let x a Bernoulli variable of parameter p = 1/2, and �(x = x0) the dirac kernel

such that �(x = x0) = 1 if x = x0
and 0 otherwise. Let k0 be defined as in equation (4). Then, the

kernel kA satisfies the decomposition property (Property 1) if it is defined according to Assumption 1,

with

k0(x, x
0) = �(x = x0)� 1

2
. (8)

Proof. Let s and t be two iid random Bernoulli variables of parameter p with probability density
functions ps and pt. We have that

(
dP (s) = ps(s)ds =

�
p�(s = 1) + (1� p)�(s = 0)

�
ds

dP (t) = pt(t)dt =
�
p�(t = 1) + (1� p)�(t = 0)

�
dt.

Now, let’s consider two Bernoulli variables x and x0, two samples x ⇠ x and x0 ⇠ x0, and a kernel k
such that k(x, x0) = �(x = x0).

• if x 6= x0 8
>><

>>:

Z
k(x, t)dP (t)

Z
k(x, s)dP (s) = p(1� p)

Z Z
k(s, t)dP (s)dP (t) = p2 + (1� p)2

• if x = x0 = 0 8
>><

>>:

Z
k(x, t)dP (t)

Z
k(x, s)dP (s) = p2

Z Z
k(s, t)dP (s)dP (t) = p2 + (1� p)2

• if x = x0 = 1 8
>><

>>:

Z
k(x, t)dP (t)

Z
k(x, s)dP (s) = (p� 1)2

Z Z
k(s, t)dP (s)dP (t) = p2 + (1� p)2

Therefore, since p = 1
2 , R

k(x, t)dP (t)
R
k(x0, t)dP (t)R R

k(s, t)dP (s)dP (t)
=

1

2
,

so the kernel
k0(x, x

0) = �(x = x0)� 1

2
satisfies the decomposition property 2.

17

B Complete fidelity results

Method ResNet50 VGG16 EfficientNet MobileNetV2 Exec. time (s)

Del. (#)

W
hi

te
-b

ox

Saliency [48] 0.158 ± 0.006 0.120 ± 0.005 0.091 ± 0.003 0.113 ± 0.004 0.360
Grad.-Input [47] 0.153 ± 0.006 0.116 ± 0.004 0.084 ± 0.003 0.110 ± 0.004 0.023
Integ.-Grad. [58] 0.138 ± 0.005 0.114 ± 0.004 0.078 ± 0.002 0.096 ± 0.004 1.024
SmoothGrad [50] 0.127 ± 0.005 0.128 ± 0.005 0.094 ± 0.003 0.088 ± 0.003 0.063
GradCAM++ [45] 0.124 ± 0.004 0.105 ± 0.003 0.112 ± 0.005 0.106 ± 0.005 0.127
VarGrad [45] 0.134 ± 0.005 0.229 ± 0.007 0.224 ± 0.007 0.097 ± 0.004 0.097

B
la

ck
-b

ox

LIME [41] 0.186 ± 0.006 0.258 ± 0.008 0.186 ± 0.007 0.148 ± 0.006 6.480
Kernel Shap [32] 0.185 ± 0.006 0.165 ± 0.006 0.164 ± 0.006 0.149 ± 0.006 4.097
RISE [36] 0.114 ± 0.004 0.106 ± 0.004 0.113± 0.005 0.115 ± 0.004 8.427
Sobol [13] 0.121 ± 0.003 0.109 ± 0.004 0.104 ± 0.003 0.107 ± 0.004 5.254
Hp

i
eff. (ours) 0.106 ± 0.003 0.100 ± 0.004 0.095 ± 0.003 0.094 ± 0.003 0.956

Hp

i
acc. (ours) 0.105 ± 0.003 0.099 ± 0.004 0.094 ± 0.003 0.093 ± 0.003 1.668

Ins. (")

W
hi

te
-b

ox

Saliency [48] 0.357 ± 0.009 0.286 ± 0.009 0.224 ± 0.008 0.246 ± 0.008 0.360
Grad.-Input [47] 0.363 ± 0.010 0.272 ± 0.008 0.220 ± 0.009 0.231 ± 0.007 0.023
Integ.-Grad. [58] 0.386 ± 0.010 0.276 ± 0.009 0.248 ± 0.008 0.258 ± 0.008 1.024
SmoothGrad [50] 0.379 ± 0.010 0.229 ± 0.008 0.172 ± 0.006 0.246 ± 0.008 0.063
GradCAM++ [45] 0.497 ± 0.010 0.413 ± 0.010 0.316 ± 0.009 0.387 ± 0.009 0.127
VarGrad [45] 0.527 ± 0.010 0.241 ± 0.008 0.222 ± 0.007 0.399 ± 0.009 0.097

B
la

ck
-b

ox

LIME [41] 0.472 ± 0.010 0.273 ± 0.009 0.223 ± 0.007 0.384 ± 0.009 6.480
Kernel Shap [32] 0.480 ± 0.010 0.393 ± 0.009 0.367 ± 0.008 0.383 ± 0.009 4.097
RISE [36] 0.554 ± 0.010 0.485 ± 0.010 0.439 ± 0.009 0.443 ± 0.009 8.427
Sobol [13] 0.370 ± 0.009 0.313 ± 0.009 0.309 ± 0.009 0.331 ± 0.009 5.254
Hp

i
eff. (ours) 0.470 ± 0.011 0.387 ± 0.010 0.357 ± 0.009 0.381 ± 0.009 0.956

Hp

i
acc. (ours) 0.481 ± 0.011 0.395 ± 0.011 0.366 ± 0.009 0.392 ± 0.009 1.668

Table 3: Deletion and Insertion scores obtained on 1,000 ImageNet validation set images (For
Deletion, lower is better and for Insertion, higher is better). The execution times are averaged over
100 explanations of ResNet50 predictions with a RTX Quadro 8000 GPU. The first and second best
results are bolded and underlined.

Method ResNet50 VGG16 EfficientNet MobileNetV2 Exec. time (s)

W
hi

te
-b

ox

Saliency [48] 0.192 ± 0.034 0.092 ± 0.035 0.102 ± 0.029 0.172 ± 0.030 0.360
Grad.-Input [47] 0.157 ± 0.034 0.066 ± 0.029 0.085 ± 0.030 0.116 ± 0.029 0.023
Integ.-Grad. [58] 0.162 ± 0.033 0.073 ± 0.029 0.139 ± 0.028 0.157 ± 0.030 1.024
SmoothGrad [50] 0.230 ± 0.032 0.087 ± 0.030 0.101 ± 0.030 0.126 ± 0.028 0.063
GradCAM++ [45] 0.142 ± 0.032 0.143 ± 0.032 0.128 ± 0.031 0.131 ± 0.029 0.127
VarGrad [45] 0.021 ± 0.022 0.022 ± 0.020 0.001 ± 0.003 0.101 ± 0.032 0.097

B
la

ck
-b

ox

LIME [41] 0.110 ± 0.033 0.015 ± 0.032 0.000 ± 0.024 0.055 ± 0.031 6.480
Kernel Shap [32] 0.104 ± 0.033 0.068 ± 0.034 0.079 ± 0.032 0.051 ± 0.031 4.097
RISE [36] 0.182 ± 0.034 0.099 ± 0.034 0.133 ± 0.036 0.123 ± 0.031 8.427
Sobol [13] 0.230 ± 0.034 0.110 ± 0.030 0.141 ± 0.034 0.131 ± 0.030 5.254
Hp

i
eff. (ours) 0.202 ± 0.034 0.116 ± 0.034 0.154 ± 0.035 0.111 ± 0.031 0.956

Hp

i
acc. (ours) 0.187 ± 0.035 0.136 ± 0.030 0.155 ± 0.035 0.120 ± 0.031 1.668

Table 4: µFidelity scores, obtained on 1,000 images from ImageNet validation set. Higher is better.
The first and second best results are bolded and underlined. The execution times are averaged over
100 explanations of ResNet50 predictions with a RTX Quadro 8000 GPU.

C Additional visualizations on object detection explanations

C.1 Visualizations

In this part we provide a sample of visualizations of object detection explanations for HSIC, RISE and
KernelShap. HSIC seems more robust than the two other methods that are often blurry and sometimes
fail. These images are taken from the 40 first images of COCO dataset. Out of transparancy, we

18

provide all the 40 first explanations in the github repository found at https://anonymous.4open.
science/r/HSIC-Attribution-Method-C684.

H
SI

C
R

IS
E

K
er

ne
lS

ha
p

Figure 2: Visualisations of object detection explanations (1/2).

C.2 Error explanations oh HSIC against RISE

In this section, we show explanations of RISE and KernelShap for the image where Yolov4 erroneously
recognizes a cat instead of a zebra. HSIC manages to find an explanation for this error while both
RISE and KernelShap fail, even for different grid sizes.

19

H
SI

C
R

IS
E

K
er

ne
lS

ha
p

Figure 3: Visualisations of object detection explanations (2/2).

D Additional visualizations of HSIC attribution method on ImageNet

20

HSIC

RISE

KernelShap

Figure 4: Visualizations of object detection explanations for a model error with HSIC method. Blurry
explanations for different grid sizes with RISE and KernelShap.

E Attribution methods

In the following section, we give the formulation of the different attribution methods used in this
work. The library used to generate the attribution maps is Xplique [14]. By simplification of notation,

21

Figure 5: Explanations for ImageNet with HSIC eff.

we define f(x) the logit score (before softmax) for the class of interest (we omit c). We recall that
an attribution method provides an importance score for each input variable xi. We will denote the
explanation functionnal mapping an input of interest x = (x1, ..., xd) as g(x).

Saliency [48] is a visualization technique based on the gradient of a class score relative to the input,
indicating in an infinitesimal neighborhood which pixels must be modified to most affect the score of
the class of interest.

g(x) = ||rxf(x)||

Gradient � Input [46] is based on the gradient of a class score relative to the input, element-wise
with the input, it was introduced to improve the sharpness of the attribution maps. A theoretical
analysis conducted by [3] showed that Gradient � Input is equivalent to ✏-LRP and DeepLIFT [46]
methods under certain conditions – using a baseline of zero and with all biases to zero.

g(x) = x� ||rxf(x)||

Integrated Gradients [58] consists of summing the gradient values along the path from a baseline
state to the current value. The baseline x0 used is zero. This integral can be approximated with a set

22

Figure 6: Explanations for ImageNet with HSIC acc.

of m points at regular intervals between the baseline and the point of interest. In order to approximate
from a finite number of steps, we use a Trapezoidal rule and not a left-Riemann summation, which
allows for more accurate results and improved performance (see [53] for a comparison).

g(x) = (x� x0)

Z 1

0
rxf(x0 + ↵(x� x0)))d↵

SmoothGrad [50] is also a gradient-based explanation method, which, as the name suggests, averages
the gradient at several points corresponding to small perturbations (drawn i.i.d from an isotropic
normal distribution of standard deviation �) around the point of interest. The smoothing effect
induced by the average help reducing the visual noise, and hence improve the explanations. The
attribution is obtained by averaging after sampling m points. For all the experiments, we took m = 80
and � = 0.2⇥ (xmax � xmin) where (xmin, xmax) being the input range of the dataset.

g(x) = E
�⇠N (0,I�)

(rxf(x+ �))

23

VarGrad [26] is similar to SmoothGrad as it employs the same methodology to construct the
attribution maps: using a set of m noisy inputs, it aggregate the gradients using the variance rather
than the mean. For the experiment, m and � are the same as Smoothgrad. Formally:

g(x) = V
�⇠N (0,I�)

(rxf(x+ �))

Grad-CAM [45] can only be used on Convolutional Neural Network (CNN). Thus we couldn’t use it
for the MNIST dataset. The method uses the gradient and the feature maps Ak of the last convolution
layer. More precisely, to obtain the localization map for a class, we need to compute the weights ↵k

c

associated to each of the feature map activation Ak, with k the number of filters and Z the number of
features in each feature map, with ↵c

k
= 1

Z

P
i

P
j

@f(x)
@Ak

ij
and

g = max(0,
X

k

↵c

k
Ak)

As the size of the explanation depends on the size (width, height) of the last feature map, a bilinear
interpolation is performed in order to find the same dimensions as the input. For all the experiments,
we used the last convolutional layer of each model to compute the explanation.

Grad-CAM++ (G+) [7] is an extension of Grad-CAM combining the positive partial derivatives of
feature maps of a convolutional layer with a weighted special class score. The weights ↵(k)

c associated
with each feature map are computed as follows:

↵c

k
=
X

i

X

j

[

@
2f(x)

(@A(k)
ij)2

2 @2f(x)

(@A(k)
ij)2

+
P

i

P
j
A(k)

ij

@3f(x)

(@A(k)
ij)3

]

Occlusion [61] is a sensitivity method that sweeps a patch that occludes pixels over the images using
a baseline state and uses the variations of the model prediction to deduce critical areas. For all the
experiments, we took a patch size and a patch stride of 1

7 of the image size. Moreover, the baseline
state x0 was zero.

g(x)i = f(x)� f(x[xi=0])

RISE [36] is a black-box method that consists of probing the model with N randomly masked
versions of the input image to deduce the importance of each pixel using the corresponding outputs.
The masks m ⇠ M are generated randomly in a subspace of the input space. For all the experiments,
we use a subspace of size 7⇥ 7 and E(M) = 0.5.

g(x) =
1

E(M)N

NX

i=0

f(x�mi)mi

F Evaluation

For the purpose of the experiments, three fidelity metrics have been chosen. For the whole set of
metrics, f(x) score is the score after softmax of the models. We first describe these metrics and then
discuss the trade-off between Deletion and Insertion scores.

F.1 Definitions

Deletion. [36] The first metric is Deletion, it consists in measuring the drop in the score when the
important variables are set to a baseline state. Intuitively, a sharper drop indicates that the explanation
method has well identified the important variables for the decision. The operation is repeated on the
whole image until all the pixels are at a baseline state. Formally, at step k, with u the most important
variables according to an attribution method, the Deletion(k) score is given by:

24

Deletion(k) = f(x[xu=x0])

We then measure the AUC of the Deletion scores. For all the experiments, the baseline state is fixed
at x0 = 0.

Insertion. [36] Insertion consists in performing the inverse of Deletion, starting with an image in a
baseline state and then progressively adding the most important variables. Formally, at step k, with u
the most important variables according to an attribution method, the Insertion(k) score is given by:

Insertion(k) = f(x[xu=x0])

We then measure the AUC of the Deletion scores. The baseline is the same as for Deletion.

µFidelity [5] consists in measuring the correlation between the fall of the score when variables are
put at a baseline state and the importance of these variables. Formally:

µFidelity = Corr
u✓{1,...,d}

|u|=k

X

i2u

g(x)i,f(x)� f(x[xu=x0])

!

For all experiments, k is equal to 20% of the total number of variables and the baseline is the same as
the one used by Deletion.

F.2 Trade-off between Insertion and Deletion

Deletion and Insertion metrics consist in measuring AUC of scores that respectively decrease and
increase when deleting and adding patches, starting from a baseline image. Since the patches
deleted/added are those that are the most important (in the sense of the tested attribution method),
most of the score will come from the first patch deletions/additions. Using those different methods
has two important consequences, detailed below.

Deletion is preferable There is a key difference between those two evaluations that makes Deletion
more suited to explanation evaluation than Insertion. In Deletion, since we start from the original
image and sequentially delete patches, the score is tested in a region of the input image space that is
close to the input image. On the contrary, Insertion starts from an arbitrary baseline (here, pure black
image), which is far from the input image. It is likely that the value of the baseline has an undesired
impact on the score for Insertion. That is why we tend to favor Deletion over Insertion.

Some methods are more suited to Deletion or Insertion Since Deletion measures a drop in the
score, the faster the score drops, the better the metric. Hence, Deletion will favor methods that
sharply identify important regions. On the contrary, since Insertion starts from an arbitrary baseline
image, if the explanation map is more spread out, more relevant secondary information will be added,
so the score will be better. To illustrate this observation, in table 5 we show the value of Insertion
and Deletion metrics for HSIC method and for different grid sizes, obtained after a grid search for
MobileNetV2 on 1000 ImageNet validation images. The metrics are averaged over 27 runs (with
a different number of samples and different samplers). Table 5 gives an idea of the trend of the
evolution of Insertion and Deletion with respect to the grid size. As we can see, Deletion improves
when the grid size increases, i.e. when the explanation map becomes sharper, and Insertion improves
when the grid size decreases, i.e. when the map becomes more spread out.

grid size 5 6 7 8 9 10

Insertion ⇥10�1 4.14 4.02 3.90 3.72 3.54 3.40
Deletion ⇥10�1 1.01 0.97 0.94 0.93 0.92 0.90

Table 5: Result of a grid search for MobileNetV2

This trend also explains why RISE shines in the Insertion benchmark and why our HSIC attribution
method dominates the Deletion benchmark. Indeed, as we can see in the maps of Appendix C, RISE
saliency maps are way more spread out than HSIC’s, which are sharper.

25

G Additional experiments on stability

In this section, we report the evolution of the Deletion score for HSIC, RISE, and Sobol with respect
to the number of forward passes, with a Resnet50 on 100 Imagenet validation images.

Figure 7: Deletion score for HSIC, RISE, and Sobol with respect to the number of forward passes

The scores for Sobol and RISE are less stable than for HSIC, which corroborates that HSIC attribution
method can be used with fewer forward passes.

26

