
SoteriaFL: A Unified Framework for Private Federated
Learning with Communication Compression

Zhize Li
Carnegie Mellon University
zhizel@andrew.cmu.edu

Haoyu Zhao
Princeton University

haoyu@princeton.edu

Boyue Li
Carnegie Mellon University
boyuel@andrew.cmu.edu

Yuejie Chi
Carnegie Mellon University
yuejiec@andrew.cmu.edu

Abstract

To enable large-scale machine learning in bandwidth-hungry environments such
as wireless networks, significant progress has been made recently in designing
communication-efficient federated learning algorithms with the aid of communi-
cation compression. On the other end, privacy-preserving, especially at the client
level, is another important desideratum that has not been addressed simultaneously
in the presence of advanced communication compression techniques yet. In this
paper, we propose a unified framework that enhances the communication efficiency
of private federated learning with communication compression. Exploiting both
general compression operators and local differential privacy, we first examine a sim-
ple algorithm that applies compression directly to differentially-private stochastic
gradient descent, and identify its limitations. We then propose a unified framework
SoteriaFL for private federated learning, which accommodates a general family
of local gradient estimators including popular stochastic variance-reduced gradi-
ent methods and the state-of-the-art shifted compression scheme. We provide a
comprehensive characterization of its performance trade-offs in terms of privacy,
utility, and communication complexity, where SoteriaFL is shown to achieve better
communication complexity without sacrificing privacy nor utility than other private
federated learning algorithms without communication compression.

1 Introduction

With the proliferation of mobile and edge devices, federated learning (FL) [42, 55] has recently
emerged as a disruptive paradigm for training large-scale machine learning models over a vast amount
of geographically distributed and heterogeneous devices. For instance, Google uses FL in the Gboard
mobile keyboard for next word predictions [29]. FL is often modeled as a distributed optimization
problem [41, 42, 55, 35, 72], aiming to solve

min
x2Rd

(
f(x;D) :=

1

n

nX

i=1

f(x;Di)

)
, where f(x;Di) :=

1

m

mX

j=1

f(x; di,j). (1)

Here, D denotes the entire dataset distributed across all n clients, where each client i has a local
dataset Di = {di,j}mj=1 of equal size m,1 x 2 Rd denotes the model parameters, f(x;D), f(x;Di),
and f(x; di,j) denote the nonconvex loss function of the current model x on the entire dataset D, the
local dataset Di, and a single data sample di,j , respectively. For simplicity, we use f(x), fi(x) and
fi,j(x) to denote f(x;D), f(x;Di) and f(x; di,j), respectively.

1This is without loss of generality, since otherwise one can simply adjust the weights of the loss function.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

1.1 Motivation: privacy-utility-communication trade-offs

To unleash the full potential of FL, it is extremely important that the algorithm designed to solve (1)
needs to meet several competing desiderata.

Communication efficiency. Communication between the server and clients is well recognized as
the main bottleneck for optimizing the latency of FL systems, especially when the clients—such as
mobile devices—have limited bandwidth, the number of clients is large, and/or the machine learning
model has a lot of parameters—for example, the language model GPT-3 [7] has billions of parameters
and therefore cumbersome to share directly.

Therefore, it is very important to design FL algorithms to reduce the overall communication cost,
which takes into account both the number of communication rounds and the cost per communication
round for reaching a desired accuracy. With these two quantities in mind, there are two principal
approaches for communication-efficient FL: 1) local methods, where in each communication round,
clients run multiple local update steps before communicating with the server, in the hope of reducing
the number of communication rounds, e.g., [55, 48, 39, 27, 38, 71, 60, 9, 47, 46, 2, 78, 58, 57]; 2)
compression methods, where clients send compressed communication message to the server, in the
hope of reducing the cost per communication round, e.g., [4, 40, 70, 31, 37, 56, 61, 52, 28, 51, 62, 21,
45, 77, 79, 63]. While both categories have garnered significant attention in recent years, we focus on
the second approach based on communication compression to enhance communication efficiency.

Privacy preserving. While FL holds great promise of harnessing the inferential power of private
data stored on a large number of distributed clients, these local data at clients often contain sensitive
or proprietary information without consent to share. Although FL may appear to protect the data
privacy via storing data locally and only sharing the model updates (e.g., gradient information), the
training process can nonetheless reveal sensitive information as demonstrated by, e.g., Zhu et al. [81].
It is thus desirable for FL to preserve privacy in a guaranteed manner [24, 35, 64, 72].

To ensure the training process does not accidentally leak private information, advanced privacy-
preserving tools such as differential privacy (DP) [20] have been widely integrated into training
algorithms [18, 12, 19, 1, 69, 32, 15, 23]. A notable example is Abadi et al. [1], which developed
a differentially-private stochastic gradient descent (SGD) algorithm DP-SGD in the centralized
(single-node) setting. More recently, several differentially-private algorithms [33, 73, 65, 54] are
proposed for the more general distributed (n-node) setting suitable for FL. In this paper, we also
follow the DP approach to preserve privacy. In particular, we adopt local differential privacy (LDP)
to respect the privacy of each client, which is critical in FL.

Goal. Encouraged by recent advances in communication compression techniques, and the widespread
success of differentially-private methods, a natural question is

Can we develop a unified framework for private federated learning with communication compression,
and understand the trade-offs between privacy, utility, and communication?

Note that there have been a handful of works that simultaneously address compression and privacy
in FL. Unfortunately, they only provide partial answers to the above question. Most of the existing
works only consider specific, elementary, or tailored compression schemes that are applied directly to
the gradient messages in DP-SGD [3, 74, 26, 82, 76, 17]. A number of works [66, 13, 14, 36, 22, 67]
extended and considered different compression schemes, but did not provide concrete trade-offs in
terms of privacy, utility and communication. Furthermore, existing theoretical analyses can be limited
only to convex problems [26], lacking in some aspects such as utility [82], or delivering pessimistic
guarantees on utility and/or communication due to strong assumptions [76, 17]. Finally, existing
work only studied the DP framework for direct compression, while it is known that the recently
developed shifted compression scheme [56, 30, 50] achieves much better convergence guarantees.
Due to noise injection for privacy-preserving, it is a priori unclear if the shifted compression scheme
is also compatible with privacy.

1.2 Our contributions

In this paper, we answer the above question by providing a general approach that enhances the
communication efficiency of private federated learning in the nonconvex setting, through a unified
framework called SoteriaFL (see Algorithm 2). Specifically, we have the following contributions.

2

Table 1: Comparisons among (local) differentially-private algorithms for the nonconvex problem (1)
in both central (single-node) and distributed (n-node) settings. Here, m denotes the number of data
stored on a single client, n is the number of clients, d is the dimension, and ! is the parameter for the
compression operator (cf. Definition 1). The communication complexity is computed by ndT/(1+!),
where T is the total number of communication rounds, and nd/(1+!) is the communication cost per
round. The utility / accuracy measures the average squared gradient norm of the objective function
after T rounds. Note that the algorithm is better when the utility/accuracy and the communication
complexity are small under the same privacy guarantee.

Algorithm Privacy Utility/Accuracy Communication Complexity Remark

RRPSGD [75] (✏, �)-DP
p

d log(m/�) log(1/�)
m✏ — single node

DP-GD/SGD
[1, 69] (✏, �)-DP

p
d log(1/�)

m✏ — single node

DP-SRM [73] (✏, �)-DP
p

d log(1/�)
m✏ — single node

Distributed
DP-SRM [73]

(1) (✏, �)-DP
p

d log(1/�)
nm✏

n2m✏
p

dp
log(1/�)

n nodes,
no comp.

LDP SVRG
LDP SPIDER [54] (✏, �)-LDP

p
d log(1/�)p

nm✏
n3/2m✏

p
dp

log(1/�)

n nodes,
no comp.

Q-DPSGD-1 [17] (2) (✏, �)-LDP (�̃2/n+1/m)2/3(d log(1/�))1/3

m2/3✏2/3
(1+n/(m�̃2))m2✏2

d log(1/�)

n nodes,
direct comp.

SDM-DSGD [76] (3) (✏, �)-LDP Õ

✓p
d log(1/�)p

nm✏

◆
n7/2m✏

p
d

(1+!)3/2
p

log(1/�)
+ nm2✏2

(1+!) log(1/�)

n nodes,
direct comp.

CDP-SGD
(Theorem 1) (✏, �)-LDP

p
(1+!)d log(1/�)p

nm✏
n3/2m✏

p
d

(1+!)3/2
p

log(1/�)
+ nm2✏2

(1+!) log(1/�)
n nodes,

direct comp.

SoteriaFL-SGD
SoteriaFL-GD
(Corollary 1)

(4) (✏, �)-LDP
p

(1+!)d log(1/�)p
nm✏

(1 +
p
⌧) n3/2m✏

p
d

(1+!)3/2
p

log(1/�)
(1 +

p
⌧)

n nodes,
shifted comp.

SoteriaFL-SVRG
SoteriaFL-SAGA

(Corollary 2, 3)
(4) (✏, �)-LDP

p
(1+!)d log(1/�)p

nm✏
n3/2m✏

p
d

(1+!)3/2
p

log(1/�)
(1 + ⌧)

n nodes,
shifted comp.

(1) Wang et al. [73] considered the “global” (✏, �)-DP (which only protects the privacy for entire dataset D, i.e.,
the local dataset Di on node i may leak to other nodes j 6= i) without communication compression. However,
we consider the “local” (✏, �)-LDP which can protect the local datasets Di’s at the client level.

(2) Ding et al. [17] adopted a slightly different compression assumption E[kC(x)� xk2] �̃2, with �̃2 playing
a similar role as (1 + !) in ours. However, it obtains a worse accuracy (�̃2/n+1/m)2/3(d log(1/�))1/3

m2/3✏2/3
=p

(�̃2/n+1/m)d log(1/�)

m✏ ·
� (�̃2/n+1/m)m2✏2

d log(1/�)

�1/6
=

p
(�̃2/n+1/m)d log(1/�)

m✏ · T 1/6, a factor of T 1/6 worse than

the utility of the other algorithms including ours, where T = (�̃2/n+1/m)m2✏2

d log(1/�) is the optimal choice to achieve
the best accuracy for Q-DPSGD-1.

(3) Zhang et al. [76] only considered random-k sparsification, which is a special case of our general compression
operator. Moreover, it requires 1 + ! ⌧ log T , i.e., at least k � d

log T out of d coordinates need to be
communicated, and its utility hides logarithmic factors larger than 1 + !. The communication complexity n7/2

is due to their convergence condition T > n5.
(4) Here, ⌧ := (1+!)3/2

n1/2 . If n � (1 + !)3 (which is typical in FL), then ⌧ < 1, and we can drop the terms
involving ⌧ from SoteriaFL.

1. We first present a simple algorithm CDP-SGD (Algorithm 1) that directly combines com-
munication compression and DP-SGD. We provide theoretical analysis for CDP-SGD in
Theorem 1 and show its limitations in communication efficiency.

2. We then propose a general framework SoteriaFL for private FL, which accommodates a
general family of local gradient estimators including popular stochastic variance-reduced
gradient methods and the state-of-the-art shifted compression scheme. We provide a unified
characterization of its performance trade-offs in terms of privacy, utility (convergence
accuracy), and communication complexity.

3. We apply our unified analysis for SoteriaFL and obtain theoretical guarantees for several
new private FL algorithms, including SoteriaFL-GD, SoteriaFL-SGD, SoteriaFL-SVRG,
and SoteriaFL-SAGA. All of these algorithms are shown to perform better than the plain
CDP-SGD (Algorithm 1), and have lower communication complexity compared with other

3

private FL algorithms without compression. The numerical experiments also corroborate
the theory and confirm the practical superiority of SoteriaFL.

We provide detailed comparisons between the proposed approach and prior arts in Table 1. To the
best of our knowledge, SoteriaFL is the first unified framework that simultaneously enables local
differential privacy and shifted compression, and allows flexible local computation protocols at the
client level.

2 Preliminaries

Let [n] denote the set {1, 2, · · · , n} and k·k denote the Euclidean norm of a vector. Let hu,vi denote
the standard Euclidean inner product of two vectors u and v. Let f⇤ := minx f(x) > �1 denote
the optimal value of the objective function in (1). In addition, we use the standard order notation O(·)
to hide absolute constants. We now introduce the definitions of the compression operator and local
differential privacy, as well as some standard assumptions for the objective functions.

Compression operator. Let us introduce the notion of a randomized compression operator, which
is used to compress the gradients to save communication. The following definition of unbiased
compressors is standard and has been used in many distributed/federated learning algorithms [4, 40,
56, 30, 50, 52, 28, 51].
Definition 1 (Compression operator). A randomized map C : Rd 7! Rd is an !-compression operator
if for all x 2 Rd, it satisfies

E[C(x)] = x, E
h
kC(x)� xk2

i
 ! kxk2 . (2)

In particular, no compression (C(x) ⌘ x) implies ! = 0.

Note that the conditions (2) are satisfied by many practically useful compression operators, e.g.,
random sparsification and random quantization [4, 52, 51]. A useful rule of thumb is that the
communication cost is often reduced by a factor of 1

1+!
due to compression [4]. Next, we briefly

discuss an example called random sparsification to provide more intuition.

Example 1 (Random sparsification). Given x 2 Rd, the random-k sparsification operator is defined
by C(x) := d

k
· (⇠k �x), where � denotes the Hadamard (element-wise) product and ⇠k 2 {0, 1}d is

a uniformly random binary vector with k nonzero entries (k⇠kk0 = k). This random-k sparsification
operator C satisfies (2) with ! = d

k
� 1, and the communication cost is reduced by a factor of 1

1+!

since we transmit k = d

1+!
(due to ! = d

k
� 1) coordinates rather than d coordinates of the message.

Local differential privacy. We not only want to train the machine learning model using fewer
communication bits, but also want to maintain each client’s local privacy, which is a key component
for FL applications. Following the framework of (local) differential privacy [5, 11, 80], we say that
two datasets D and D

0 are neighbors if they differ by only one entry. We have the following definition
for local differential privacy (LDP).
Definition 2 (Local differential privacy (LDP)). A randomized mechanism M : D ! R with domain
D and range R is (✏, �)-locally differentially private for client i if for all neighboring datasets
Di, D

0
i
2 D on client i and for all events S 2 R in the output space of M, we have

Pr{M(Di) 2 S} e
✏ Pr{M(D0

i
) 2 S}+ �.

The definition of LDP (Definition 2) is very similar to the original definition of (✏, �)-DP [20, 19],
except that now in the FL setting, each client protects its own privacy by encoding and processing its
sensitive data locally, and then transmitting the encoded information to the server without coordination
and information sharing between the clients.

Assumptions about the functions. Recalling (1), we consider the nonconvex FL setting, where the
functions {fi,j} are arbitrary functions satisfying the following standard smoothness assumption
(Assumption 1) and bounded gradient assumption (Assumption 2).
Assumption 1 (Smoothness). There exists some L � 0, such that for all i 2 [n], j 2 [m], the
function fi,j is L-smooth, i.e.,

krfi,j(x1)�rfi,j(x2)k L kx1 � x2k , 8x1,x2 2 Rd
.

4

Assumption 2 (Bounded gradient). There exists some G � 0, such that for all i 2 [n], j 2 [m] and
x 2 Rd, we have krfi,j(x)k G.

The smoothness assumption is very standard for the convergence analysis [59, 25, 53, 49], and the
bounded gradient assumption is also standard for the differential privacy analysis [6, 69, 32, 23].

3 Warm-up: Plain Compressed Differentially-Private SGD

There are two methods to combine privacy and compression: (1) first perturb and then compress,
and (2) first compress and then perturb. The advantage of the first method is that it is very simple
and general, since compression will preserve the differential privacy and work seamlessly with any
existing privacy mechanisms. However, the second method requires carefully designed perturbation
mechanisms (otherwise the perturbation might diminish the communication saving of compression),
e.g., binomial perturbation [3] or discrete Gaussian perturbation [36]. In addition, it is observed that
the first method achieves better utility compared with the second one in some settings [17]. Thus, we
also apply the first method in this paper: first perturb then compress.

Baseline algorithm: CDP-SGD. As a warm-up, we first introduce a simple algorithm CDP-SGD
(described in Algorithm 1), which subsumes some existing algorithms as special cases (e.g., [76, 82])
for private FL with better theoretical guarantees. The procedure for CDP-SGD is very simple: at
round t, each client i first computes a local stochastic gradient g̃t

i
using its local dataset Di (Line 4

in Algorithm 1). Then, it uses Gaussian mechanism [1] to achieve LDP (Line 5 in Algorithm 1)
and communicates the compressed perturbed private gradient information to the server (Line 6 in
Algorithm 1). Finally, the server aggregates the compressed information and update the model
parameters (Line 8–9 in Algorithm 1).

Algorithm 1 Compressed Differentially-Private Stochastic Gradient Descent (CDP-SGD)
Input: initial point x0, stepsize ⌘t, variance �2

p
, minibatch size b

1: for t = 0, 1, 2, . . . , T do
2: for each node i 2 [n] do in parallel
3: Sample a random minibatch Ib from local dataset Di

4: Compute local stochastic gradient g̃t

i
= 1

b

P
j2Ib

rfi,j(xt) // all nodes use SGD method

5: Privacy: gt

i
= g̃t

i
+ ⇠t

i
, where ⇠i

t
⇠ N (0,�2

p
I)

6: Compression: let vt

i
= Ct

i
(gt

i
) and send to the server // direct compression

7: end each node
8: Server aggregates compressed information vt = 1

n

P
n

i=1 v
t

i

9: xt+1 = xt � ⌘tvt

10: end for

Now we present the theoretical guarantees for CDP-SGD in the following theorem.
Theorem 1 (Privacy, utility and communication for CDP-SGD). Suppose that Assumptions 1 and
2 hold, and the compression operators Ct

i
(cf. Line 6 of Algorithm 1) are drawn independently

satisfying Definition 1. By choosing the algorithm parameters properly and letting the total number of

communication rounds T = O

✓ p
nLm✏

G

p
(1+!)d log(1/�)

+ m
2
✏
2

d log(1/�)

◆
, CDP-SGD (Algorithm 1) satisfies

(✏, �)-LDP and the utility 1
T

P
T�1
t=0 Ekrf(xt)k2 O

✓
G

p
(1+!)Ld log(1/�)p

nm✏

◆
.

The proposed CDP-SGD (Algorithm 1) is simple but effective. When the compression parameter !

is a constant (i.e., constant compression ratio), CDP-SGD achieves the same utility O

⇣p
d log(1/�)

m✏

⌘

as DP-SGD in the single-node case with n = 1. In comparison, our utility is better than [17] by a
factor of T 1/6, and our communication complexity is much better than [76] (see Table 1).

However, the communication complexity of CDP-SGD still has room for improvements due to
direct compression (Line 6 in Algorithm 1). In particular, if the size of the local dataset m stored on
clients is dominating, then CDP-SGD (even if we compute local full gradients as CDP-GD) requires
O(m2) communication rounds (see Theorem 1), while previous distributed differentially-private

5

algorithms without communication compression (e.g., Distributed DP-SRM [73], LDP SVRG and
LDP SPIDER [54]) only need O(m) communication rounds (see Table 1).

4 SoteriaFL: A Unified Private FL Framework with Shifted Compression

Due to the limitations of plain CDP-SGD, we now present an advanced and unified private FL
framework called SoteriaFL in this section, which allows a large family of local gradient estimators
(Line 3 in Algorithm 2 and Line 3–11 in Algorithm 3). Via adopting the advanced shifted compression
(Line 5 in Algorithm 2), SoteriaFL reduces the total number of communication rounds O(m2) of
CDP-SGD to O(m), which matches previous uncompressed DP algorithms (see Table 1), and further
reduces the total communication complexity due to less communication cost per round.

4.1 A unified SoteriaFL framework

Our SoteriaFL framework is described in Algorithm 2. At round t, each client will compute a local
(stochastic) gradient estimator g̃t

i
using its local dataset Di (Line 3 in Algorithm 2). One can choose

several optimization methods for computing this local gradient estimator such as standard gradient
descent (GD), stochastic GD (SGD), stochastic variance reduced gradient (SVRG) [34, 43], and
SAGA [16] (see e.g., Line 3–11 in Algorithm 3). Then, each client adds a Gaussian perturbation
⇠t
i

on its gradient estimate g̃t

i
to ensure LDP (Line 4 in Algorithm 2). However, different from

CDP-SGD (Algorithm 1) where we directly compress the perturbed stochastic gradients, now each
client maintains a reference st

i
and compresses the shifted message g̃t

i
� st

i
(Line 5 in Algorithm 2).

This extra shift operation achieves much better convergence behavior (fewer communication rounds)
than CDP-SGD, and thus allowing much lower communication complexity.

Algorithm 2 SoteriaFL (a unified framework for compressed private FL)
Input: initial point x0, stepsize ⌘t, shift stepsize �t, variance �2

p
, initial reference s0

i
= 0

1: for t = 0, 1, 2, . . . , T do
2: for each node i 2 [n] do in parallel
3: Compute local gradient estimator g̃t

i
// it allows many methods, e.g., SGD, SVRG, and SAGA

4: Privacy: gt

i
= g̃t

i
+ ⇠t

i
, where ⇠t

i
⇠ N (0,�2

p
I)

5: Compression: let vt

i
= Ct

i
(gt

i
� st

i
) and send to the server // shifted compression

6: Update shift st+1
i

= st
i
+ �tCt

i
(gt

i
� st

i
)

7: end each node
8: Server aggregates compressed information vt = st + 1

n

P
n

i=1 v
t

i

9: xt+1 = xt � ⌘tvt

10: st+1 = st + �t
1
n

P
n

i=1 v
t

i

11: end for

4.2 Generic assumption and unified theory

We provide a generic Assumption 3, which is very flexible to capture the behavior of several existing
(and potentially new) gradient estimators, while simultaneously maintaining the tractability to enable
a unified and sharp theoretical analysis.
Assumption 3 (Generic assumption of local gradient estimator for SoteriaFL). The gradient es-
timator g̃t

i
(Line 3 of Algorithm 2) is unbiased Et[g̃t

i
] = rfi(xt) for i 2 [n], where Et takes the

expectation conditioned on all history before round t. Moreover, it can be decomposed into two terms
g̃t

i
:= At

i
+ Bt

i
and there exist constants GA, GB , C1, C2, C3, C4, ✓ and a random sequence {�t}

such that

At

i
=

1

b

X

j2Ib

'
t

i,j
, Bt

i
=

1

m

mX

j=1

t

i,j
, (3a)

Et

h 1
n

nX

i=1

kg̃t

i
�rfi(x

t)k2
i
 C1�

t + C2, (3b)

Et

⇥
�t+1

⇤
 (1� ✓)�t + C3krf(xt)k2 + C4Etkxt+1 � xtk2, (3c)

6

where 't

i,j
and t

i,j
are bounded by GA and GB respectively, and Ib usually denotes a random

minibatch with size b. Here, 't

i,j
and t

i,j
should be viewed as functions related to the j-th sample

di,j stored on client i.

A few comments are in order. Concretely, the decomposition (3a) is used for our unified privacy
analysis (i.e., Theorem 2). We can let one of them be 0 if the gradient estimator only contains one
term or is not decomposable. The parameters C1 and C2 in (3b) capture the variance of the gradient
estimators, e.g., C1 = C2 = 0 if the client computes local full gradient g̃t

i
= rfi(xt), and C1 6= 0

(note that �t will shrink in (3c)) and C2 = 0 if the client uses variance-reduced gradient estimators
such as SVRG/SAGA. Finally, the parameters ✓, C3 and C4 in (3c) capture the shrinking behavior
of the variance (incurred by the gradient estimators), where different variance-reduced gradient
methods usually have different shrinking behaviors. More concrete examples to follow in Lemma 1
in Section 5.

Unified theory for privacy-utility-communication trade-offs. Given our generic Assumption 3,
we can obtain a unified analysis for SoteriaFL framework. The following Theorem 2 unifies the
privacy analysis and Theorem 3 unifies the utility and communication complexity analysis.
Theorem 2 (Privacy for SoteriaFL). Suppose that Assumption 3 holds. There exist constants c and
c
0, for any ✏ < c

0
b
2
T/m

2 and � 2 (0, 1), SoteriaFL (Algorithm 2) is (✏, �)-LDP if we choose

�
2
p
= c

(G2
A
/4 +G

2
B
)T log(1/�)

m2✏2
. (4)

Theorem 3 (Utility and communication for SoteriaFL). Suppose that Assumptions 1 and 3 hold,
and the compression operators Ct

i
(cf. Line 5 of Algorithm 2) are drawn independently satisfying

Definition 1. Set the stepsize as

⌘t ⌘ ⌘ min

(
1

(1 + 2↵C4 + 4�(1 + !) + 2↵C3/⌘
2)L

,

p
�np

1 + 2↵C4 + 4�(1 + !)(1 + !)L

)
,

where ↵ = 3�C1

2(1+!)✓L2 , 8� > 0, the shift stepsize as �t ⌘
q

1+2!
2(1+!)3 , and the privacy variance �2

p

according to Theorem 2. Then, SoteriaFL (Algorithm 2) satisfies (✏, �)-LDP and the following

1

T

T�1X

t=0

Ekrf(xt)k2 2�0

⌘T
+

3�

(1 + !)L⌘

✓
C2 +

c(G2
A
/4 +G

2
B
)dT log(1/�)

m2✏2

◆
,

where �0 := f(x0) � f
⇤ + ↵L�0 + �

Ln

P
n

i=1 krfi(x0) � s0
i
k2. By further choosing the total

number of communication rounds T as

T = max

(
m✏

p
2(1 + !)L�0p

3�cd(G2
A
/4 +G2

B
) log(1/�)

,
C2m

2
✏
2

cd(G2
A
/4 +G2

B
) log(1/�)

)
, (5)

SoteriaFL has the following utility (accuracy) guarantee:

1

T

T�1X

t=0

Ekrf(xt)k2 O

max

(p
�d(G2

A
/4 +G2

B
) log(1/�)

⌘m✏
p

(1 + !)L
,

�C2

(1 + !)L⌘

)!
. (6)

Theorem 3 is a unified theorem for our SoteriaFL framework, which covers a large family of local
stochastic gradient methods under the generic Assumption 3. In the next Section 5, we will show that
many popular local gradient estimators (GD, SGD, SVRG, and SAGA) satisfy Assumption 3, and
thus can be captured by our unified analysis.

5 Some Algorithms within SoteriaFL Framework

In this section, we propose several new private FL algorithms (SoteriaFL-GD, SoteriaFL-SGD,
SoteriaFL-SVRG and SoteriaFL-SAGA) captured by our SoteriaFL framework. We give a detailed
Algorithm 3 which describes all these four SoteriaFL-type algorithms in a nutshell.

To analyze Algorithm 3 using our unified SoteriaFL framework, we begin by showing that these
local gradient estimators (GD, SGD, SVRG, and SAGA) satisfy Assumption 3 in the following
main lemma, detailing the corresponding parameter values (i.e., GA, GB , C1, C2, C3, C4, and ✓).

7

Algorithm 3 SoteriaFL-SGD, SoteriaFL-SVRG, and SoteriaFL-SAGA
Input: initial point x0, stepsize ⌘t, shift stepsize �t, variance �2

p
, minibatch size b, initial reference

s0
i
= 0, initial w0 = x0 for SVRG or w0

i,j
= x0 for SAGA, probability p

1: for t = 0, 1, 2, . . . , T do
2: for each node i 2 [n] do in parallel
3: Option I: SGD
4: Compute local SGD estimator g̃t

i
= 1

b

P
j2Ib

rfi,j(xt) // GD if choose b = m

5: Option II: SVRG
6: Compute local SVRG estimator g̃t

i
= 1

b

P
j2Ib

(rfi,j(xt)�rfi,j(wt)) +rfi(wt)

7: Update SVRG snapshot point wt+1 =

⇢
xt

, with probability p

wt
, with probability 1� p

8: Option III: SAGA
9: Compute local SAGA estimator:

g̃t

i
= 1

b

P
j2Ib

(rfi,j(xt)�rfi,j(wt

i,j
)) + 1

m

P
m

j=1 rfi,j(wt

i,j
)

10: Update SAGA variables wt+1
i,j

=

⇢
xt

, for j 2 Ib
wt

i,j
, for j /2 Ib

11: End Options
12: Privacy: gt

i
= g̃t

i
+ ⇠t

i
, where ⇠t

i
⇠ N (0,�2

p
I)

13: Compression: let vt

i
= Ct

i
(gt

i
� st

i
) and send to the server

14: Update shift st+1
i

= st
i
+ �tCt

i
(gt

i
� st

i
)

15: end each node
16: Server aggregates compressed information vt = st + 1

n

P
n

i=1 v
t

i

17: xt+1 = xt � ⌘tvt

18: st+1 = st + �t
1
n

P
n

i=1 v
t

i

19: end for

Lemma 1 (SGD/SVRG/SAGA estimators satisfy Assumption 3). Suppose that Assumptions 1 and 2
hold. The local SGD estimator g̃t

i
(Option I in Algorithm 3) satisfies Assumption 3 with

GA = G, GB = C1 = C3 = C4 = 0, C2 =
(m� b)G2

mb
, ✓ = 1, �t ⌘ 0.

The local SVRG estimator g̃t

i
(Option II in Algorithm 3) satisfies Assumption 3 with

GA = 2G, GB = G, C1 =
L
2

b
, C2 = 0, C3 =

2(1� p)⌘2

p
, C4 = 1, ✓ =

p

2
, �t = kxt �wtk2.

The local SAGA estimator g̃t

i
(Option III in Algorithm 3) satisfies Assumption 3 with

GA = 2G, GB = G, C1 =
L
2

b
, C2 = 0, C3 =

2(m� b)⌘2

b
, C4 = 1,

✓ =
b

2m
, �t =

1

nm

nX

i=1

mX

j=1

kxt �wt

i,j
k2.

With Lemma 1 in hand, we can plug their corresponding parameters into the unified Theo-
rem 3 to obtain detailed utility and communication bounds for the resulting methods (SoteriaFL-
SGD/SoteriaFL-GD, SoteriaFL-SVRG, and SoteriaFL-SAGA). Formally, we have the following
three corollaries.
Corollary 1 (SoteriaFL-SGD/SoteriaFL-GD). Suppose that Assumptions 1 and 2 hold and we
combine Theorem 3 and Lemma 1, i.e., choosing stepsize ⌘t ⌘ ⌘ 1

(1+2
p

(1+!)3/n)L
, where

we set � = ⌧

2(1+!) and ⌧ := (1+!)3/2

n1/2 , shift stepsize �t ⌘
q

1+2!
2(1+!)3 , and privacy variance

�
2
p

= O
�
G

2
T log(1/�)
m2✏2

�
. If we further set the minibatch size b = min

n
m✏G

p
�p

(1+!)Ld log(1/�)
,m

o

and the total number of communication rounds T = O

⇣ p
nLm✏

G

p
(1+!)d log(1/�)

(1 +
p
⌧)
⌘
, then

8

Table 2: Gradient complexity for our proposed SoteriaFL-style algorithms, which is computed as the
product of the total number of communication rounds T and the minibatch size b. Here, for notation
simplicity, K :=

p
nLm✏

G

p
(1+!)d log(1/�)

and ⌧ := (1+!)3/2

n1/2 .

Algorithms
SoteriaFL-GD

(Option I in Algorithm 3
with b = m)

SoteriaFL-SGD
(Option I in Algorithm 3)

SoteriaFL-SVRG
SoteriaFL-SAGA

(Option II, III in Algorithm 3)

Gradient
Complexity K(1 +

p
⌧)m K(1 +

p
⌧)b K(1 + ⌧)m2/3

SoteriaFL-SGD satisfies (✏, �)-LDP and the following utility guarantee 1
T

P
T�1
t=0 Ekrf(xt)k2

O

⇣
G

p
(1+!)Ld log(1/�)p

nm✏
(1 +

p
⌧)
⌘
. If we choose a minibatch size b = m (local full gradient) in

SoteriaFL-SGD, the result of SoteriaFL-SGD leads to that of SoteriaFL-GD.

Corollary 2 (SoteriaFL-SVRG). Suppose that Assumptions 1 and 2 hold and we combine Theorem 3

and Lemma 1, i.e., choosing stepsize ⌘t ⌘ ⌘ p
2/3

b
1/3min{1,

p
n/(1+!)3}

2L , where we set � =
p
4/3

b
2/3(1+!)2 min{1,n/(1+!)3}

n
, p2/3b1/3 1/4 and p 1/4, shift stepsize �t ⌘

q
1+2!

2(1+!)3 , and

privacy variance �2
p
= O

�
G

2
T log(1/�)
m2✏2

�
. If we further let the minibatch size b = m

2/3

4 , the probability

p = b/m, and the total number of communication rounds T = O

⇣ p
nLm✏

G

p
(1+!)d log(1/�)

max
�
1, ⌧

 ⌘
,

where ⌧ := (1+!)3/2

n1/2 , then SoteriaFL-SVRG satisfies (✏, �)-LDP and the following utility guarantee
1
T

P
T�1
t=0 Ekrf(xt)k2 O

⇣
G

p
(1+!)Ld log(1/�)p

nm✏

⌘
.

The utility and communication complexity for SoteriaFL-SAGA are the same as SoteriaFL-SVRG,
and we defer its detailed corollary to the appendix.

Interestingly, SoteriaFL-style algorithms are more communication-efficient than CDP-SGD when
the local dataset size m is large, with a communication complexity of O(m), in contrast to O(m2)
for CDP-SGD. In terms of utility, SoteriaFL-SVRG and SoteriaFL-SAGA can achieve the same
utility as CDP-SGD, while SoteriaFL-GD and SoteriaFL-SGD achieve a slightly worse guarantee
than that of CDP-SGD by a factor of 1 +

p
⌧ , where ⌧ := (1+!)3/2

n1/2 is small when the number of
clients n is large.

Gradient complexity of SoteriaFL-style algorithms. Although the utility and the communication
complexity are the most important considerations in private FL, another worth-noting criterion is
the gradient complexity, which is defined as the total number of stochastic gradients computed by
each client. Although SoteriaFL-GD, SoteriaFL-SGD, SoteriaFL-SVRG and SoteriaFL-SAGA
have similar communication complexity (see Table 1), they actually have very different gradient
complexities—summarized in Table 2—since the minibatch sizes and gradient update rules for
these algorithms vary a lot. The gradient complexity of SoteriaFL-SVRG/SoteriaFL-SAGA is
usually smaller than SoteriaFL-SGD, and all of them are smaller than SoteriaFL-GD. In sum, we
recommend SoteriaFL-SVRG/SoteriaFL-SAGA due to its superior utility and gradient complexity
while maintaining almost the same communication complexity as SoteriaFL-SGD/SoteriaFL-GD.

6 Numerical Experiments

We conduct experiments on standard real-world datasets [10, 44] to numerically verify privacy-utility-
communication trade-offs among different algorithms. The code can be accessed at:

https://github.com/haoyuzhao123/soteriafl.

Concretely, we compare the direct compression algorithm CDP-SGD (Algorithm 1), shifted compres-
sion algorithms SoteriaFL-SGD (Algorithm 3 with Option I) and SoteriaFL-SVRG (Algorithm 3

9

https://github.com/haoyuzhao123/soteriafl

0 5 10 15 20 25

0.2

0.4

0.6

0.8

Communication rounds

U
til

ity

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

0 0.2 0.4 0.6 0.8 1

·105

0.2

0.4

0.6

0.8

Communication bits

U
til

ity

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

Figure 1: Logistic regression with nonconvex regularization on the a9a dataset under (✏, �)-LDP with
✏ = 1 and � = 10�3.

0 50 100 150
0

0.5

1

1.5

Communication rounds

U
til

ity

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

0 0.5 1 1.5 2 2.5

·108

0.5

1

1.5

Communication bits
U

til
ity

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

Figure 2: Shallow neural network training on the MNIST dataset under (✏, �)-LDP with ✏ = 1 and
� = 10�3.

with Option II), and algorithms without compression LDP-SGD [1, 54] and LDP-SVRG [54] on two
nonconvex problems (logistic regression with nonconvex regularization, and shallow neural network
training). The detailed problem definition, experiment setup, and more experiments can be found in
Appendix A.

The experimental results show that compressed algorithms converges faster than the uncompressed
algorithm in terms of communication bits (right columns), and also confirm that shifted compression
based SoteriaFL can perform better than direct compression based CDP-SGD.

7 Conclusion

We propose SoteriaFL, a unified framework for private FL, which accommodates a general family of
local gradient estimators including popular stochastic variance-reduced gradient methods and the
state-of-the-art shifted compression scheme. A unified characterization of its performance trade-offs
in terms of privacy, utility (convergence accuracy), and communication complexity is presented,
which is then instantiated to arrive at several new private FL algorithms. All of these algorithms are
shown to perform better than the plain CDP-SGD algorithm especially when the local dataset size is
large, and have lower communication complexity compared with other private FL algorithms without
compression.

Acknowledgments

The work of Z. Li, B. Li and Y. Chi is supported in part by ONR N00014-19-1-2404, by AFRL
under FA8750-20-2-0504, and by NSF under CCF-1901199, CCF-2007911, DMS-2134080 and
CNS-2148212. The work of H. Zhao is supported in part by NSF, ONR, Simons Foundation, DARPA
and SRC through awards to S. Arora. B. Li is also gratefully supported by Wei Shen and Xuehong
Zhang Presidential Fellowship at Carnegie Mellon University.

10

References

[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep
learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages 308–318, 2016.

[2] D. A. E. Acar, Y. Zhao, R. M. Navarro, M. Mattina, P. N. Whatmough, and V. Saligrama.
Federated learning based on dynamic regularization. arXiv preprint arXiv:2111.04263, 2021.

[3] N. Agarwal, A. T. Suresh, F. X. X. Yu, S. Kumar, and B. McMahan. cpSGD: Communication-
efficient and differentially-private distributed SGD. Advances in Neural Information Processing
Systems, 31, 2018.

[4] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. QSGD: Communication-efficient
SGD via gradient quantization and encoding. In Advances in Neural Information Processing
Systems, pages 1709–1720, 2017.

[5] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi. Geo-
indistinguishability: Differential privacy for location-based systems. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security, pages 901–914, 2013.

[6] R. Bassily, A. Smith, and A. Thakurta. Private empirical risk minimization: Efficient algorithms
and tight error bounds. In 2014 IEEE 55th Annual Symposium on Foundations of Computer
Science, pages 464–473. IEEE, 2014.

[7] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

[8] M. Bun and T. Steinke. Concentrated differential privacy: Simplifications, extensions, and
lower bounds. In Theory of Cryptography Conference, pages 635–658. Springer, 2016.

[9] S. Cen, H. Zhang, Y. Chi, W. Chen, and T.-Y. Liu. Convergence of distributed stochastic variance
reduced methods without sampling extra data. IEEE Transactions on Signal Processing, 68:
3976–3989, 2020.

[10] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines. ACM transactions
on intelligent systems and technology (TIST), 2(3):1–27, 2011.

[11] K. Chatzikokolakis, M. E. Andrés, N. E. Bordenabe, and C. Palamidessi. Broadening the
scope of differential privacy using metrics. In International Symposium on Privacy Enhancing
Technologies Symposium, pages 82–102. Springer, 2013.

[12] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate. Differentially private empirical risk mini-
mization. Journal of Machine Learning Research, 12(3), 2011.

[13] W.-N. Chen, P. Kairouz, and A. Ozgur. Breaking the communication-privacy-accuracy trilemma.
Advances in Neural Information Processing Systems, 33:3312–3324, 2020.

[14] W.-N. Chen, C. A. Choquette-Choo, and P. Kairouz. Communication efficient federated learning
with secure aggregation and differential privacy. In NeurIPS 2021 Workshop Privacy in Machine
Learning, 2021.

[15] A. Cheu, A. Smith, J. Ullman, D. Zeber, and M. Zhilyaev. Distributed differential privacy via
shuffling. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 375–403. Springer, 2019.

[16] A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method
with support for non-strongly convex composite objectives. Advances in neural information
processing systems, 27, 2014.

[17] J. Ding, G. Liang, J. Bi, and M. Pan. Differentially private and communication efficient
collaborative learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual
Conference, 2021.

11

[18] C. Dwork. Differential privacy: A survey of results. In International conference on theory and
applications of models of computation, pages 1–19. Springer, 2008.

[19] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Foundations and
Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

[20] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private
data analysis. In Theory of cryptography conference, pages 265–284. Springer, 2006.

[21] I. Fatkhullin, I. Sokolov, E. Gorbunov, Z. Li, and P. Richtárik. EF21 with bells & whistles:
Practical algorithmic extensions of modern error feedback. arXiv preprint arXiv:2110.03294,
2021.

[22] V. Feldman and K. Talwar. Lossless compression of efficient private local randomizers. In
International Conference on Machine Learning, pages 3208–3219. PMLR, 2021.

[23] V. Feldman, T. Koren, and K. Talwar. Private stochastic convex optimization: optimal rates
in linear time. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, pages 439–449, 2020.

[24] R. C. Geyer, T. Klein, and M. Nabi. Differentially private federated learning: A client level
perspective. arXiv preprint arXiv:1712.07557, 2017.

[25] S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[26] A. Girgis, D. Data, S. Diggavi, P. Kairouz, and A. T. Suresh. Shuffled model of differential
privacy in federated learning. In International Conference on Artificial Intelligence and Statistics,
pages 2521–2529. PMLR, 2021.

[27] E. Gorbunov, F. Hanzely, and P. Richtárik. Local SGD: Unified theory and new efficient
methods. arXiv preprint arXiv:2011.02828, 2020.

[28] E. Gorbunov, K. P. Burlachenko, Z. Li, and P. Richtárik. MARINA: Faster non-convex dis-
tributed learning with compression. In International Conference on Machine Learning, pages
3788–3798. PMLR, 2021.

[29] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augenstein, H. Eichner, C. Kid-
don, and D. Ramage. Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604, 2018.

[30] S. Horváth, D. Kovalev, K. Mishchenko, S. Stich, and P. Richtárik. Stochastic distributed
learning with gradient quantization and variance reduction. arXiv preprint arXiv:1904.05115,
2019.

[31] N. Ivkin, D. Rothchild, E. Ullah, V. Braverman, I. Stoica, and R. Arora. Communication-
efficient distributed SGD with sketching. Advances in Neural Information Processing Systems,
32, 2019.

[32] R. Iyengar, J. P. Near, D. Song, O. Thakkar, A. Thakurta, and L. Wang. Towards practical
differentially private convex optimization. In 2019 IEEE Symposium on Security and Privacy,
pages 299–316. IEEE, 2019.

[33] B. Jayaraman, L. Wang, D. Evans, and Q. Gu. Distributed learning without distress: Privacy-
preserving empirical risk minimization. Advances in Neural Information Processing Systems,
31, 2018.

[34] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26, 2013.

[35] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz,
Z. Charles, G. Cormode, R. Cummings, et al. Advances and open problems in federated learning.
arXiv preprint arXiv:1912.04977, 2019.

12

[36] P. Kairouz, Z. Liu, and T. Steinke. The distributed discrete Gaussian mechanism for federated
learning with secure aggregation. In International Conference on Machine Learning, pages
5201–5212. PMLR, 2021.

[37] S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi. Error feedback fixes signSGD and
other gradient compression schemes. In International Conference on Machine Learning, pages
3252–3261. PMLR, 2019.

[38] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh. SCAFFOLD:
Stochastic controlled averaging for federated learning. In International Conference on Machine
Learning, pages 5132–5143. PMLR, 2020.

[39] A. Khaled, K. Mishchenko, and P. Richtárik. Tighter theory for local sgd on identical and
heterogeneous data. In International Conference on Artificial Intelligence and Statistics, pages
4519–4529. PMLR, 2020.

[40] S. Khirirat, H. R. Feyzmahdavian, and M. Johansson. Distributed learning with compressed
gradients. arXiv preprint arXiv:1806.06573, 2018.

[41] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik. Federated optimization: Distributed
machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527, 2016.

[42] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon. Federated
learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492,
2016.

[43] D. Kovalev, S. Horváth, and P. Richtárik. Don’t jump through hoops and remove those loops:
Svrg and katyusha are better without the outer loop. In Algorithmic Learning Theory, pages
451–467. PMLR, 2020.

[44] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[45] C.-S. Lee, N. Michelusi, and G. Scutari. Finite-bit quantization for distributed algorithms with
linear convergence. arXiv preprint arXiv:2107.11304, 2021.

[46] B. Li, S. Cen, Y. Chen, and Y. Chi. Communication-efficient distributed optimization in
networks with gradient tracking and variance reduction. Journal of Machine Learning Research,
21:1–51, 2020.

[47] B. Li, Z. Li, and Y. Chi. DESTRESS: Computation-optimal and communication-efficient
decentralized nonconvex finite-sum optimization. SIAM Journal on Mathematics of Data
Science, 4(3):1031–1051, 2022.

[48] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Federated optimization
in heterogeneous networks. Proceedings of Machine Learning and Systems, 2:429–450, 2020.

[49] Z. Li and J. Li. Simple and optimal stochastic gradient methods for nonsmooth nonconvex
optimization. Journal of Machine Learning Research, 23(239):1–61, 2022.

[50] Z. Li and P. Richtárik. A unified analysis of stochastic gradient methods for nonconvex federated
optimization. arXiv preprint arXiv:2006.07013, 2020.

[51] Z. Li and P. Richtárik. CANITA: Faster rates for distributed convex optimization with com-
munication compression. In Advances in Neural Information Processing Systems, pages
13770–13781, 2021.

[52] Z. Li, D. Kovalev, X. Qian, and P. Richtárik. Acceleration for compressed gradient descent
in distributed and federated optimization. In International Conference on Machine Learning,
pages 5895–5904. PMLR, 2020.

[53] Z. Li, H. Bao, X. Zhang, and P. Richtárik. PAGE: A simple and optimal probabilistic gradient
estimator for nonconvex optimization. In International Conference on Machine Learning, pages
6286–6295. PMLR, 2021.

13

[54] A. Lowy, A. Ghafelebashi, and M. Razaviyayn. Private non-convex federated learning without
a trusted server. arXiv preprint arXiv:2203.06735, 2022.

[55] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient
learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages
1273–1282. PMLR, 2017.

[56] K. Mishchenko, E. Gorbunov, M. Takáč, and P. Richtárik. Distributed learning with compressed
gradient differences. arXiv preprint arXiv:1901.09269, 2019.

[57] K. Mishchenko, G. Malinovsky, S. Stich, and P. Richtárik. ProxSkip: Yes! local gradient steps
provably lead to communication acceleration! finally! arXiv preprint arXiv:2202.09357, 2022.

[58] A. Mitra, R. Jaafar, G. J. Pappas, and H. Hassani. Linear convergence in federated learning:
Tackling client heterogeneity and sparse gradients. Advances in Neural Information Processing
Systems, 34:14606–14619, 2021.

[59] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, 2004.

[60] R. Pathak and M. J. Wainwright. Fedsplit: An algorithmic framework for fast federated
optimization. Advances in Neural Information Processing Systems, 33:7057–7066, 2020.

[61] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani. FedPAQ: A
communication-efficient federated learning method with periodic averaging and quantization.
In International Conference on Artificial Intelligence and Statistics, pages 2021–2031. PMLR,
2020.

[62] P. Richtárik, I. Sokolov, and I. Fatkhullin. EF21: A new, simpler, theoretically better, and
practically faster error feedback. Advances in Neural Information Processing Systems, 34, 2021.

[63] P. Richtárik, I. Sokolov, E. Gasanov, I. Fatkhullin, Z. Li, and E. Gorbunov. 3PC: Three
point compressors for communication-efficient distributed training and a better theory for lazy
aggregation. In International Conference on Machine Learning, pages 18596–18648. PMLR,
2022.

[64] C. Sabater, A. Bellet, and J. Ramon. Distributed differentially private averaging with improved
utility and robustness to malicious parties. arXiv preprint arXiv:2006.07218, 2020.

[65] F. Shang, T. Xu, Y. Liu, H. Liu, L. Shen, and M. Gong. Differentially private ADMM algorithms
for machine learning. IEEE Transactions on Information Forensics and Security, 16:4733–4745,
2021.

[66] A. T. Suresh, F. X. Yu, S. Kumar, and H. B. McMahan. Distributed mean estimation with
limited communication. In International Conference on Machine Learning, pages 3329–3337.
PMLR, 2017.

[67] A. Triastcyn, M. Reisser, and C. Louizos. DP-REC: Private & communication-efficient federated
learning. arXiv preprint arXiv:2111.05454, 2021.

[68] T. Van Erven and P. Harremos. Rényi divergence and kullback-leibler divergence. IEEE
Transactions on Information Theory, 60(7):3797–3820, 2014.

[69] D. Wang, M. Ye, and J. Xu. Differentially private empirical risk minimization revisited: Faster
and more general. Advances in Neural Information Processing Systems, 30, 2017.

[70] H. Wang, S. Sievert, S. Liu, Z. Charles, D. Papailiopoulos, and S. Wright. ATOMO:
Communication-efficient learning via atomic sparsification. Advances in Neural Information
Processing Systems, 31, 2018.

[71] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor. Tackling the objective inconsistency
problem in heterogeneous federated optimization. Advances in neural information processing
systems, 33:7611–7623, 2020.

14

[72] J. Wang, Z. Charles, Z. Xu, G. Joshi, H. B. McMahan, M. Al-Shedivat, G. Andrew, S. Aves-
timehr, K. Daly, D. Data, et al. A field guide to federated optimization. arXiv preprint
arXiv:2107.06917, 2021.

[73] L. Wang, B. Jayaraman, D. Evans, and Q. Gu. Efficient privacy-preserving stochastic nonconvex
optimization. arXiv preprint arXiv:1910.13659, 2019.

[74] L. Wang, R. Jia, and D. Song. D2P-Fed: Differentially private federated learning with efficient
communication. arXiv preprint arXiv:2006.13039, 2020.

[75] J. Zhang, K. Zheng, W. Mou, and L. Wang. Efficient private ERM for smooth objectives. arXiv
preprint arXiv:1703.09947, 2017.

[76] X. Zhang, M. Fang, J. Liu, and Z. Zhu. Private and communication-efficient edge learning: a
sparse differential Gaussian-masking distributed SGD approach. In Proceedings of the Twenty-
First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for
Mobile Networks and Mobile Computing, pages 261–270, 2020.

[77] H. Zhao, K. Burlachenko, Z. Li, and P. Richtárik. Faster rates for compressed federated learning
with client-variance reduction. arXiv preprint arXiv:2112.13097, 2021.

[78] H. Zhao, Z. Li, and P. Richtárik. FedPAGE: A fast local stochastic gradient method for
communication-efficient federated learning. arXiv preprint arXiv:2108.04755, 2021.

[79] H. Zhao, B. Li, Z. Li, P. Richtárik, and Y. Chi. BEER: Fast O(1/T) rate for decentralized
nonconvex optimization with communication compression. arXiv preprint arXiv:2201.13320,
2022.

[80] Y. Zhao, J. Zhao, M. Yang, T. Wang, N. Wang, L. Lyu, D. Niyato, and K.-Y. Lam. Local
differential privacy-based federated learning for internet of things. IEEE Internet of Things
Journal, 8(11):8836–8853, 2020.

[81] L. Zhu, Z. Liu, and S. Han. Deep leakage from gradients. Advances in Neural Information
Processing Systems, 32, 2019.

[82] H. Zong, Q. Wang, X. Liu, Y. Li, and Y. Shao. Communication reducing quantization for
federated learning with local differential privacy mechanism. In 2021 IEEE/CIC International
Conference on Communications in China, pages 75–80. IEEE, 2021.

15

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] All assumptions
are stated in Section 2.

(b) Did you include complete proofs of all theoretical results? [Yes] All detailed proofs
for our theorems, lemmas and corollaries are provided in appendix.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [No]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

16

	Introduction
	Motivation: privacy-utility-communication trade-offs
	Our contributions

	Preliminaries
	Warm-up: Plain Compressed Differentially-Private SGD
	SoteriaFL: A Unified Private FL Framework with Shifted Compression
	A unified SoteriaFL framework
	Generic assumption and unified theory

	Some Algorithms within SoteriaFL Framework
	Numerical Experiments
	Conclusion
	Experiments
	Logistic regression with nonconvex regularization
	Shallow neural network training

	Proof of Theorem 2
	Proof of Lemma 2
	Proof of Lemma 3

	Proof of Theorem 3
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8

	Proof of Theorem 1
	Privacy guarantee of CDP-SGD
	Utility guarantee of CDP-SGD

	Proofs for Section 5
	Proof of Lemma 1
	Proofs for SoteriaFL-style Algorithms

