
A Additional Related Work

Beyond Worst-Case Online Learning [RST11] consider online learning where the adversary is
constrained and build a framework based on minimax analysis and constrained sequential Rademacher
complexity to analyze regret in these scenarios. These techniques have been applied to other
constrained settings [KAH+19].

Smoothed Online Learning [GR17] consider smoothed online learning when looking at problems
in online algorithm design. They prove that while optimizing parameterized greedy heuristics for
combinatorial problems in presence of smoothing this problem can be learned with non-trivial
sublinear regret. [CAK17] consider the same problem with an emphasis on the per-step runtime
being logarithmic in T . [HRS20, HRS22] both study the notion of smoothed analysis with adaptive
adversary and show that statistically the regret is bounded by O(

p
Td log(1/�)).

Online Learning with Predictable Sequences Another line of work has focused on the future
sequences being predictable given the past instances. [RS13b] incorporate additional information
available in terms of an estimator for future instances. They achieve regret bounds depending on the
path length of these estimators and can beat the worst-case ⌦(

p
T) if the estimators are accurate.

[HM07] models predictability as knowing the first coordinate of loss vectors, which is revealed to
the learner before he chooses actions. Some other work model predictability through hints which
are additive estimate of loss vectors [HK10, RS13a, SL14, MY16]. [DHJ+17, BCKP20] considers
settings where the learner has access to hints in form of vectors that are weakly correlated with the
future instances and show exponential improvement in the regret in some cases. The literature on
hints represents an active and growing subarea of online learning (see [BCKP20] and references
within).

B Oracle-Efficient Learning with Real-valued Functions

B.1 Coupling Lemma

Lemma B.1 (Coupling, [HRS22]). Let D� be an adaptive sequence of t �-smooth distributions on
X . Then, there is a coupling ⇧ such that

�
x1, z1,1, . . . , z1,K , . . . , xt, zt,1, . . . , zt,K

�
⇠ ⇧ satisfy

a. x1, . . . , xt is distributed according D� .

b. For every j t, {zi,k}i�j,k2[K] are uniformly and independently distributed on X , condi-
tioned on x1, . . . , xj�1.

c. With probability at least 1� t (1� �)K , {x1, · · · , xT } ✓ {zt,k}t=1:T ,k=1:K .

B.2 Monotonicity of the Regularized Rademacher Complexity

Lemma 4.1 (Restated). Let Z = {zi}i2[m] 2 X
m be a set of unlabeled instances and � : H! R

be a mapping from the set of hypothesis to real values. Recall that the Rademacher complexity for set
Z regularized by � is defined as

R(�, Z) = E
✏1:m

iid
⇠U(±1)

2

4sup
h2H

n mX

i=1

✏ih(zi) + �(h)
o
3

5 .

Then for any dataset z1:m 2 X
m and any additional data point x 2 X , we have

R(�, z1:m) R(�, z1:m [{x}).

14

Proof of Lemma 4.1. Using E[sup� X�] � sup� E[X�], we have

R(�, Z [{x}) = E
✏1:m+1

2

64sup
h2H

8
<

:

mX

i=1

✏ih(zi) + ✏m+1h(x) + �(h)

9
=

;

3

75

= E
✏1:m,✏m+1

2

64sup
h2H

8
<

:

mX

i=1

✏ih(zi) + ✏m+1h(x) + �(h)

9
=

;

3

75

� E
✏1:m

2

64sup
h2H

8
<

:

mX

i=1

✏ih(zi) + E
✏m+1

[✏m+1h(x)] + �(h)

9
=

;

3

75

= R(�, Z),

as desired.

B.3 Notions for Real-Valued Functions

In this section we introduce the notions that will be useful in analyzing real-valued hypothesis classes,
including pseudo dimension and covering numbers.
Definition B.1 (Pseudo-dimension, [AB99]). For every h 2 H, let Bh(x, y) = sgn(h(x) � y) be
the indicator of the region below or on the graph of h. The pseudo-dimension of hypothesis class H
is defined as the VC dimension of the subgraph class BH = {Bh : h 2 H}.

We will see in the two following lemmas that pseudo dimension can be used to characterize the
magnitude of covering numbers and Rademacher complexity.
Lemma B.2 (dL1(U)-Covering Number Bound, [AB99]). The ✏-covering number of H with respect
to metric dL1(U), denoted by N (✏,H, L1(U(X))), is the cardinality of the smallest subset H0 of H,
such that for every h 2 H, there exists h0

2 H
0 such that dL1(U)(h, h

0) ✏, where dL1(U)(f, g) =
EU [|f � g|]. If d is the pseudo-dimension of H, then for any ✏ > 0,

logN (✏,H, L1(U(X))) 2 eO

d log

✓
1

✏

◆!
.

Lemma B.3 (Rademacher Complexity Bound, [Bar06]). The Rademacher complexity of class H for
a set of n elements is upper bounded by O

�p
dn log n

�
, where d is the pseudo dimension of H.

B.4 Proof of Theorem 3.1

Theorem 3.1 (Restated). For any �-smooth adversary D�, Algorithm 1 has expected regret upper
bounded by eO(G

p
Td/�), where eO hide factors that are polynomial in log(T) and log(1/�). Here

G is the Lipschitz constant of the loss and d is the pseudodimension of class H. Furthermore, the
algorithm is oracle-efficient: at every round t, this algorithm uses two oracle calls with histories of
length eO(T/�).

Proof. To prove Theorem 3.1 we use the following relaxation:

RelT (H|s1:t) =2G E
V (t) iid

⇠U(X)

h
R(�Lr(·, s1:t), V

(t))
i
+ 2G�(T � t)

=2G E
V (t),E(t)

2

664sup
h2H

8
><

>:

X

i=t+1:T
k=1:K

✏(t)i,kh(v
(t)
i,k)� Lr(h, s1:t)

9
>=

>;

3

775+ 2G�(T � t), (2)

15

where K = 100 log T/� and � = 10TK(1 � �)K . We will show in Lemma B.4 that the above
relaxation is admissible. Therefore, Proposition 4.1 gives us the following upper bound on the
expected regret:

E[REGRET(T)] RelT (H|;)+O(
p

T)=2G E
V (0),E(0)

2

664sup
h2H

8
><

>:

X

i=1:T
k=1:K

✏(0)i,kh(v
(0)
i,k)

9
>=

>;

3

775

| {z }
(a)

+2G�T+O(
p

T).

The first term (a) is the Rademacher complexity of the hypothesis class H with respect to the
uniform distribution for sample size TK. By Lemma B.3, (a) O

⇣p
dTK log(TK)

⌘
. For the

second term, we have �T 2 o(1) because � . TKe��K . T�99 log T/� = o(1/T). Plugging in
K = O

�
log(T)/�

�
, we have the following bound:

E[REGRET(T)] O

0

@G

s
dT

�
log T log

✓
T

�

◆1

A ✓ eO(G
p

dT/�),

where eO hide factors that are polynomial in log(T) and log(1/�).

B.5 Admissibility of the Relaxation

Lemma B.4. The prediction rule Q = (Q1, · · · ,QT) given by Algorithm 1 is admissible with
respect to the relaxation defined in Equation (2).

Proof. Using the language of regularized Rademacher complexity, the above relaxation can be written
as

RelT (H|s1:t) = 2G E
V (t) iid

⇠U(X)

h
R(�Lr(·, s1:t), V

(t))
i
+ 2G�(T � t),

where Lr(·, s1:t) =
Pt�1

i=1 l
r(h(xi), yi). When t = T , the relaxation becomes

RelT (H|s1:T) = �2GLr(h, s1:T) = � inf
h2H

TX

i=1

l(h(xi), yi),

thus it satisfies the second condition of Definition 4.1. For the first condition, we need to verify

sup
Dt2Dt

E
xt⇠Dt

sup
yt2Y

⇢
E

byt⇠Qt

[l(byt, yt)]+RelT (H | s1:t�1[(xt, yt))

�
RelT (H | s1:t�1). (3)

We first upper bound the LHS of Equation (3) by matching the randomness in V (t) and applying
Jensen’s inequality to the supremum function. For every fixed input xt and hint set V (t), we denote
our prediction rule in Equation (1) with Qt(V (t)). This gives us

sup
Dt2Dt

E
xt⇠Dt

sup
yt2Y

⇢
E

byt⇠Qt

[l(byt, yt)]+RelT (H | s1:t�1[(xt, yt))

�

= sup
Dt2Dt

E
xt⇠Dt

sup
yt2Y

E
V (t) iid

⇠U(X)

"
E

byt⇠Qt(V (t))

⇥
l(byt, yt)

⇤
+ 2G ·R(�Lr(·, s1:t), V

(t))

#
+ 2G�(T � t)(4)

 sup
Dt2Dt

E
xt⇠Dt

E
V (t) iid

⇠U(X)

2

4 sup
yt2Y

(
E

byt⇠Qt(V (t))

⇥
l(byt, yt)

⇤
+ 2G ·R(�Lr(·, s1:t), V

(t))

)3

5+ 2G�(T � t)

(5)

In Equation (5), note that Qt(V (t)) is the same as the transductive prediction rule in [RSS12, Equation
(25)], with V (t) being the set of unlabeled future instances and s1:t�1 being the historical data with
labels.

16

According to [RSS12, Lemma 12], for all input xt and unlabeled sequence X (which plays the role
of xt+1:T), the decision rule Qt(X) satisfies

sup
yt2Y

8
><

>:
E

byt⇠Qt(X)
[l(byt, yt)] + 2GE

E

2

64sup
h2H

8
<

:
X

x2X

✏xh(x)� Lr(h, s1:t�1 [(xt, yt))

9
=

;

3

75

9
>=

>;

 2GE
E

2

64sup
h2H

8
<

:
X

x2X [{xt}

✏xh(x)� Lr(h, s1:t�1)

9
=

;

3

75 .

Therefore, if we choose the sequence X to be V (t), we obtain the following inequality which is
written in the language of regularized Rademacher complexity:

sup
yt2Y

(
E

byt⇠Qt(V (t))

⇥
l(byt, yt)

⇤
+ 2G ·R(�Lr(·, s1:t), V

(t))

)
 2G ·R(�Lr(·, s1:t�1), V

(t)
[{xt}).

By adding the expectations over V (t) and xt on both sides, we obtain the following upper bound:

(5) sup
Dt2Dt

E
xt⇠Dt

E
V (t) iid

⇠U(X)

h
2G ·R(�Lr(·, s1:t�1), V

(t)
[{xt})

i
+ 2G�(T � t)

 E
V (t) iid

⇠U(X)

"
sup

Dt2Dt

E
xt⇠Dt

2G ·R(�Lr(·, s1:t�1), V
(t)
[{xt})

#
+ 2G�(T � t).

According to Lemma B.5, we can replace the xt sampled from the worst-case smooth distribution by
Zt sampled independently from the uniform distribution, with the extra cost �. This gives

(5) E
V (t) iid

⇠U(X)

E
Zt

iid
⇠U(X)

2G ·

⇣
R(�Lr(·, s1:t�1), V

(t)
[Zt) + �

⌘�
+ 2G�(T � t)

=2G E
V (t) iid

⇠U(X)

h
R(�Lr(·, s1:t�1), V

(t�1))
i
+ 2G�(T � t+ 1) (6)

=RelT (H|s1:t�1),

which is precisely the RHS of Equation (3).

Lemma B.5 (Replacing Supremum by Expectation). For any V (t)
2 X

K(T�t), there exists a set of
K variables Zt = {zt,k}k2[K], such that

sup
D

X

t 2��(X)

E
xt⇠D

X

t

h
R(�Lr(·, s1:t�1), V

(t)
[{xt})

i
 E

Zt
iid
⇠U(X)

h
R(�Lr(·, s1:t�1), V

(t)
[Zt)

i
+ �.

Proof. To establish the monotonicity property, we need to show that the random instance xt drawn
from a smooth distribution belongs to a set of uniform i.i.d. hints with high probability. This is
where the coupling lemma comes in. For the smooth distribution Dt 2 ��(X) that achieves the
supremum (assume the supremum is achievable), Lemma B.1 shows the existence of a coupling ⇧ on
(xt, zt,1, · · · , zt,K) such that xt is distributed according to D

X

t and Zt = {zt,k}k2[K] are uniformly
and independently distributed. We thus have

sup
Dt2��(X)

E
xt⇠Dt

h
R(�Lr(·, s1:t�1), V

(t)
[{xt})

i
= E

⇧

h
R(�Lr(·, s1:t�1), V

(t)
[{xt})

i
. (7)

This joint distribution ⇧ has the property that event the Et
def
= {xt 2 Zt} happens with high

probability. We now upper bound the expected value by conditioning on Et and Ēt respectively.

Conditioned on Et, we apply the monotonicity of regularized Rademacher complexity (Lemma 4.1)
recursively and obtain

R(�Lr(·, s1:t�1), V
(t)
[{xt}) R(�Lr(·, s1:t�1), V

(t)
[Zt). (8)

17

Conditioned on Ēt, we skirt the monotonicity issue by directly using upper and lower bounds on the
regularized Rademacher complexity. To be more precise, we use Lemma B.6 in Appendix B.6 to
show that

R(�Lr(·, s1:t�1), V
(t)
[{xt}) TK TK +

⇣
R(�Lr(·, s1:t�1), V

(t)
[Zt) + T

⌘

R(�Lr(·, s1:t�1), V
(t)
[Zt) + 2TK. (9)

Finally, we expand the right hand side of Equation (7) by conditioning on Et and Ēt respectively.
Putting Equations (8) and (9) together, we obtain

(7) =Pr[Et] · E
⇧

R(�Lr(·, s1:t�1), V

(t)
[{xt})

���Et

�

+ Pr[Ēt] · E
⇧

R(�Lr(·, s1:t�1), V

(t)
[{xt})

��� Ēt

�

Pr[Et] · E
⇧

R(�Lr(·, s1:t�1), V

(t)
[Zt)

���Et

�

+ Pr[Ēt] · E
⇧

R(�Lr(·, s1:t�1), V

(t)
[Zt) + 2TK

��� Ēt

�

=E
⇧

h
R(�Lr(·, s1:t�1), V

(t)
[Zt)

i
+ Pr[Ēt] · 2TK.

Since ⇧ has uniform marginal distribution on Zt, and that Pr[Ēt] · 2TK (1� �)K · 2TK �,
we further obtain

(7) E
Zt

iid
⇠U(X)

h
R(�Lr(·, s1:t�1), V

(t)
[Zt)

i
+ �,

thus completes the proof.

B.6 Upper and Lower Bounds on the Relaxation

Lemma B.6 (Upper and Lower Bounds on the Relaxation). For all t 2 [T], all sequence s1:T , and
all instance set Z of size no larger than (T � t)K,

�
T

2
 R(�Lr(·, s1:t), Z) TK.

Proof. Let I be the number of instances in set Z and let E = (✏1, · · · , ✏I) be the random labels
associated with them. By convexity of the supremum,

R(�Lt, Z) = E
E

iid
⇠U(Y)

2

64sup
h2H

8
<

:

IX

i=1

✏ih(zi)� Lr(h, s1:t)

9
=

;

3

75 � sup
h2H

8
<

: E
E

iid
⇠U(Y)

2

4
IX

i=1

✏ih(zi)� Lr(h, s1:t)

3

5

9
=

;

= sup
h2H

tX

i=1

(�lr(h(xt), yt))| {z }
��1

� �T.

For the upper bound, we notice that 8E , h,

IX

i=1

✏ih(zi)� Lr(h, s1:t) I + t (T � t)K + t TK.

So the R(�Lr(·, s1:t), Z) also has an upper bound of TK.

18

B.7 Remark on the Requirement of Fresh Dataset

In order to beat the adaptive adversary, the learner needs to sample fresh random hints in each round.
Otherwise, the adversary can enforce high regret by correlating future labels with the history. More
precisely, we will see that the matching randomness argument in Inequality (4) uses the crucial fact
that V (t) is a fresh dataset that is uniformly distributed independent of the interactions in the past.
If V (t) is reused, then the adaptive adversary has the power to correlate s1:t�1 with V (t) such that
V (t) is no longer unbiased conditioned on the history. In this case, the algorithm fails to mimic the
randomization in the relaxation, and the matching-randomness argument breaks down.

Another important property of the fresh self-generated hints v(t)i,k is that they are identically distributed
with the real hints zi,k in the coupling. Nevertheless, the analysis has to unite the fact that the
learner can only access v(t)i,ks, and the monotonicity property (lemma B.5) is based on zi,k. This point
is subtle because it is impossible for the self-generated hints to really tell the future (i.e., ensure
xt 2 {v(t�1)

t,k }k2[K]), since they are not controlled by the coupling ⇧. This issue is taken care of
by Equation (6). We can see that it is sufficient for the uncoupled hints in V (t�1) to resemble the
coupled hints Zt at distribution level. This distributional resemblence is not achievable if V (t�1)

were not independent with the past.

C Oracle-Efficient Online Binary Classification

C.1 Information Theoretic Lemmas

For two probability distributions P and Q over the same domain X , let �2(P,Q) =P
x2X

P (x)2/Q(x) � 1 be the �2-divergence. The following lemma upper bounds the TV dis-
tance by the �2-divergence; a proof could be found in [Tsy09, Chapter 2].
Lemma C.1 (From TV to �2). The following relations hold:

TV(P,Q)

r
1

2
log(1 + �2(Q,P))

r
�2(Q,P)

2
.

The following statement is the well-known Ingster’s �2 method, and we refer to the excellent book
[IS03] for a general treatment.
Lemma C.2 (Ingster’s �2 method). For a mixture distribution E✓⇠⇡[Q✓] and a generic distribution
P , the following identity holds:

�2

✓
E

✓⇠⇡
[Q✓], P

◆
= E

✓,✓0⇠⇡

"
E

x⇠P

✓
Q✓(x)Q✓0(x)

P (x)2

◆#
� 1,

where ✓0 is an independent copy of ✓.

C.2 Proof of Theorem 3.2

Theorem 3.2 (Restated). In the setting of binary classification with �-smoothed adversaries, Algo-

rithm 2 has regret that is at most eO
✓
min

np
dT��1/2,

p
T (d|X |)1/2

o◆
. Furthermore, Algorithm 2

is a proper learning oracle-efficient algorithm: at every round t, this algorithm uses a single ERM
oracle call on a history that is of length t+O(T/

p
�) with high probability.

In the remainder of this section, we present a proof of the regret upper bound eO(
p

dT��1/2) in
Theorem 3.2 when � � d/|X |. The proof of the other case � < d/|X | is slightly different and will
be presented in Appendix C.6.

To prove the upper bound, we will use the relaxation framework for analyzing the stability of FTPL.
Our proof establishes the connection between the relaxation and FTPL frameworks, which we believe
will be useful for the design of online algorithms more generally.

19

Writing s = (x, y) and L(h, s) = l(h(x), y) = �yh(x)/2, the relaxation is defined as

RelT (H | s1:t) = E
R(t+1)

2

64sup
h2H

0

@�
N(t+1)X

i=1

L(h, es (t+1)
i)�

tX

⌧=1

L(h, s⌧)

1

A

3

75+ ⌘(T � t), (10)

where

⌘ =
1
p
n�

+ c

r
d log T

n�
+

n�

4T 2 log T
+ e�n/8

2 eO
 r

d

n�

!
,

with an absolute constant c > 0 given in Lemma C.5 later, and R(t) = (N (t), {esi}i2N(t)) is the fresh
randomness generated at the beginning of time t, which is independent of {s⌧}⌧<t generated by
the adversary. The relaxation here is similar to Equation (2), where the key difference is a different
generation process for the hint set and an additional term ⌘(T � t) to account for the stability.

Let Qt be the distribution of the learner’s action ht 2 H in Algorithm 2, then the relaxation in
Equation (10) is admissible with respect to Algorithm 2 if the following two conditions hold:

sup
Dt2��(X)

E
xt⇠Dt

sup
yt

E

ht⇠Qt

[L(ht, st)] + RelT (H | s1:t)

�
 RelT (H | s1:t�1), 8s1:t�1 (11)

RelT (H | s1:T) � � inf
h2H

L(h, s1:T). (12)

According to proposition 4.1, if both Inequalities (11) and (12) hold, the expected regret of Algo-
rithm 2 will satisfy

E[REGRET(T)] RelT (H | ;) +O(
p

T) = E
R(1)

2

64sup
h2H

0

@�
N(1)X

i=1

L(h, es (1)
i)

1

A

3

75+ ⌘T +O(
p

T)

(a)
= O

✓
E

N(1)

hp
dN (1)

i
+ ⌘T +

p

T

◆
(b)
= O

⇣p
dn+ ⌘T +

p

T
⌘
,

and Theorem 3.2 follows from the choices n = T/
p
� and ⌘ = O(

p
d/n�). In the above inequality,

step (a) follows from random labels and the upper bound O(
p
nd) on the Rademacher complexity of

H over n points, and step (b) is due to Jensen’s inequality and E[N (1)] = n.

Now it remains to verify Inequalities (11) and (12). It is not hard to verify Inequality (12): this follows
from the fact that for any random variable �, E[sup� X�] � sup� E[X�] and ER[L(h, esi)] = 0. The
key technical difficulty is in the proof of Inequality (11). To overcome this challenge, we will show
that the stability of learner’s distribution Qt implies the admissibility of the relaxation, where the
stability is measured via

Stability = E
st⇠Dt

(E
ht⇠Qt

[L(ht, st)]� E
ht+1⇠Qt+1

[L(ht+1, st)]).

Note that here st ⇠ Dt denotes both the instance and its label and Dt’s marginal over X is �-smooth.

The following lemma formalizes the discussion in Section 4.2 and shows that a small TV distance
and modified generalization error suffice to ensure the stability of the algorithm, which in turn implies
the admissibility of the relaxation. This result could be of independent interest. The proof can be
found in Appendix C.3.
Lemma C.3 (TV + Generalization) Stability)Admissibility). Let Qt denote learner’s distribution
over H in Algorithm 2 at round t, Dt be adversary’s distribution at time t (given the history
s1, · · · , st�1), st ⇠ Dt be the realized adversarial instance at time t, and s0t be an independent copy
s0t ⇠ Dt. It holds that

E
st⇠Dt

✓
E

ht⇠Qt

[L(ht, st)] + RelT (H | s1:t)

◆
� RelT (H | s1:t�1)

 E
st⇠Dt

✓
E

ht⇠Qt

[L(ht, st)]� E
ht+1⇠Qt+1

[L(ht+1, st)]

◆
� ⌘

 TV(Qt, E
st⇠Dt

[Qt+1]) + E
st,s0t⇠Dt;R(t+1)

[L(ht+1, s
0

t)� L(ht+1, st)]

| {z }
Modified Generalization Error

�⌘.

20

Lemma C.3 shows that, in order to prove the admissibility of the relaxation in Equation (10), it
remains to upper bound the TV distance and the generalization error, respectively.

Our next lemma provides an upper bound on the TV distance between Qt and the mixture distribution
Est⇠Dt [Qt+1].
Lemma C.4 (Upper Bound of TV Distance). Let Qt be the distribution over ht at time t. We have

sup
Dt2��(S)

TV(Qt, E
st⇠Dt

[Qt+1])
1
p
n�

.

The key ingredient in the proof of Lemma C.4 is the Poissonization, which ensures the independence
of the number of +1 (or �1) labels across instances, and enables us to write down the mixture
distribution of inputs to the ERM oracle in a compact form. The proof of Lemma C.4 is presented in
Appendix C.4.

The following lemma upper bounds the modified generalization error for any smooth distribution
Dt. The proof of this lemma is based on the discussions in Section 4.4, and we formally present it in
Appendix C.5.
Lemma C.5 (Upper Bound of Generalization Error). Under the notations of Lemma C.3, it holds for
an absolute constant c > 0 (independent of (n, d, T,�)) that

sup
Dt2��(X)

(
E

st,s0t⇠Dt;R(t+1)

⇥
L(ht+1, s

0

t)� L(ht+1, st)
⇤
)
 c

r
d log T

n�
+

n�

4T 2 log T
+ e�n/8.

Now the claimed result of Theorem 3.2 when � � d/|X | follows from Lemma C.3, Lemma C.4, and
Lemma C.5.

C.3 Proof of Lemma C.3

To prove this lemma, we first introduce some notations. For t 2 [T] [{0}, let rt 2 ZX be the
|X |-dimensional random vector with rt(x) defined to be the difference between the number of +1
and �1 labels in the self-generated samples and the history up to time t on instance x. Formally,

rt(x) =
N(t+1)X

i=1

ey (t+1)
i · 1(ex (t+1)

i = x) +
tX

⌧=1

y⌧ · 1(x⌧ = x).

Let Pt be the distribution of rt. Also recall that R(t) = (N (t), {esi}i2N(t)) is the fresh randomness
generated at the beginning of time t.

Using the definitions of rt, Pt and R(t), the following chain of inequalities holds for any fixed st:
E

ht⇠Qt

[L(ht, st)] + RelT (H | s1:t)

(a)
= E

Pt�1
[L(opt(rt�1), st)]� E

R(t+1)

2

4
N(t+1)X

i=1

L(opt(rt), es(t+1)
i) +

tX

⌧=1

L(opt(rt), s⌧)

3

5+ ⌘(T � t)

= E
Pt�1

[L(opt(rt�1), st)]� E
Pt
[L(opt(rt), st)] + ⌘(T � t)

� E
R(t+1)

2

4
N(t+1)X

i=1

L(opt(rt), es(t+1)
i) +

t�1X

⌧=1

L(opt(rt), s⌧)

3

5

 E
ht⇠Qt

[L(ht, st)]� E
ht+1⇠Qt+1

[L(ht+1, st)] + ⌘(T � t) + E
R(t+1)

2

64sup
h2H

0

@�
N(t+1)X

i=1

L(h, es(t+1)
i)�

t�1X

⌧=1

L(h, s⌧)

1

A

3

75

(b)
= E

ht⇠Qt

[L(ht, st)]� E
ht+1⇠Qt+1

[L(ht+1, st)] + ⌘(T � t) + E
R(t)

2

64sup
h2H

0

@�
N(t)X

i=1

L(h, es(t)i)�
t�1X

⌧=1

L(h, s⌧)

1

A

3

75

= E
ht⇠Qt

[L(ht, st)]� E
ht+1⇠Qt+1

[L(ht+1, st)]� ⌘ + RelT (H | s1:t�1),

21

where (a) uses the definition of opt(rt), and (b) is due to the fact that R(t+1) is an independent copy
of R(t) conditioned on {s⌧}⌧<t. This implies the first inequality of Lemma C.3.

For the second inequality, we further take the expectation with respect to st ⇠ Dt, and note that Qt

and RelT (H | s1:t�1) are independent of st, while Qt+1 depends on st:

E
st⇠Dt

✓
E

ht⇠Qt

[L(ht, st)] + RelT (H | s1:t)

◆
� RelT (H | s1:t�1)

 E
st⇠Dt

E
ht⇠Qt

[L(ht, st)]� E
st⇠Dt

E
ht+1⇠Qt+1

[L(ht+1, st)]� ⌘

 E
st⇠Dt

E
ht⇠Qt

[L(ht, st)]� E
st,s0t⇠Dt

E
ht+1⇠Qt+1

[L(ht+1, s
0

t)]

+ E
st,s0t⇠Dt

E
ht+1⇠Qt+1

[L(ht+1, s
0

t)]� E
st⇠Dt

E
ht+1⇠Qt+1

[L(ht+1, st)]� ⌘

(c)
= E

s0t⇠Dt

E
ht⇠Qt

[L(ht, s
0

t)]� E
s0t⇠Dt

E
ht+1⇠Est⇠Dt [Qt+1]

[L(ht+1, s
0

t)]

+ E
st,s0t⇠Dt

E
ht+1⇠Qt+1

[L(ht+1, s
0

t)]� E
st⇠Dt

E
ht+1⇠Qt+1

[L(ht+1, st)]� ⌘

(d)
 TV(Qt, E

st⇠Dt

[Qt+1]) + E
st,s0t⇠Dt;R(t+1)

⇥
L(ht+1, s

0

t)� L(ht+1, st)
⇤
� ⌘,

where (c) follows from the independence of ht ⇠ Qt and (st, s0t), and (d) is due to |EX⇠P [f(X)]�
EX⇠Q[f(X)]| TV(P,Q) for every measurable function f with kfk1 1.

C.4 Upper Bounding TV Distance: Proof of Lemma C.4

Using the notations in lemma C.3, since ht in Algorithm 2 only depends on the vector rt�1, the
ERM objective could be written as a quantity depending only on rt�1 and h 2 H. We write
ht = opt

H,l(r
t�1) in the sequel, and then opt

H,l(r
t�1) ⇠ Qt as rt�1

⇠ P
t�1. Therefore, the

data-processing inequality shows that

TV(Qt, E
st⇠Dt

[Qt+1]) TV(Pt�1, E
st⇠Dt

[Pt]),

and is suffices to upper bound the TV distance TV(Pt�1,Est⇠Dt [P
t]).

Let us first create a better understanding of the structures of the distributions Pt�1 and P
t. Without

loss of generality we assume that X is discrete (the case of continuous X can be dealt by analyzing
the appropriate Poisson point process). Let n+(x), n�(x) be the numbers of +1 and �1 labels,
respectively, given instance x in the self-generated samples:

n+(x) =
NX

i=1

1(exi = x, eyi = +1) and n�(x) =
NX

i=1

1(exi = x, eyi = �1).

As each exi is uniformly distributed on X and eyi ⇠ U({±1}), by the subsampling property of the
Poisson distribution, the 2|X | random variables {n±(x)}x2X are i.i.d. distributed as Poi(n/2|X |).
This independence implied by the Poisson distribution plays a key role in the analysis. Moreover,
r0(x) = n+(x)� n�(x), so P

0 is determined by the joint distribution of {n±(x)}x2X .

As we move to general t, note that the only contribution of the historic data {s⌧}⌧<t to both P
t�1

and P
t is a common translation independent of P0. Since the TV distance is translation invariant, it

suffices to upper bound TV(P0,Es1 [P
1]). Let n1

±
(x) = n±(x) + 1(x1 = x, y1 = ±1), it holds that

r1(x) = n1
+(x)�n1

�
(x). Consequently, let P and Q be the probability distributions of {n±(x)}x2X

and {n1
±
(x)}x2X , respectively, the data-processing inequality implies that TV(P0,Es1 [P

1])
TV(P,Q).

As discussed above, the distribution P is a product Poisson distribution:

P ({n±(x)}) =
Y

x2X

Y

y2{±}

P(Poi(n/2|X |) = ny(x)).

22

As for the distribution Q, it could be obtained from P in the following way: the smooth adversary
draws x?

⇠ D, independent of {n±(x)}x2X ⇠ P , for some �-smooth distribution D 2 ��(X). He
then chooses a label y? = y(x?) 2 {±1} as a function of x?, and sets

n1
y(x?)(x

?) = ny(x?)(x
?) + 1, and n1

y(x) = ny(x), 8(x, y) 6= (x?, y(x?)).

Consequently, given a �-smooth distribution D and a labeling function y : X ! {±} used by the
adversary, the distribution Q is a mixture distribution Q = Ex?⇠DX [Qx?], with

Qx?({n±(x)}) = P(Poi(n/2|X |) = ny(x?)(x
?)� 1)⇥

Y

(x,y) 6=(x?,y(x?))

P(Poi(n/2|X |) = ny(x)).

To upper bound the TV distance between a mixture distribution Q and a base distribution P , we will
rely on the smoothness properties of D, in particular, that the probability of collision between two
independent draws x?

1, x
?
2 ⇠ D is small. To formally address this, we make use of two technical

lemmas, first to upperbound the TV distance in terms of the �2 distance, and second to use the
Ingster’s method for bounding the �2 distance between a mixture distribution and a base distribution.
See Lemma C.1 and Lemma C.2 in the Appendix C.1 for more details. Let x?

1, x
?
2 be an arbitrary pair

of instance. Using the closed-form expressions of distributions P and Qx? , it holds that

Qx?
1
({n±(x)})Qx?

2
({n±(x)})

P ({n±(x)})2
=

2|X |ny(x?
1)
(x?

1)

n
·
2|X |ny(x?

2)
(x?

2)

n
.

Using the fact that {n±(x)}x2X are i.i.d. distributed as Poi(n/2|X |) under P , we have

E
{n±(x)}⇠P

Qx?

1
({n±(x)})Qx?

2
({n±(x)})

P ({n±(x)})2

!
= 1 +

2|X |

n
· 1(x?

1 = x?
2).

Now using the aforementioned lemmas (Lemma C.1 and Lemma C.2), we have

TV(P,Q)

r
�2(Q,P)

2
=

r
�2(Ex?⇠D[Qx?], P)

2
=

s
|X |

n
· E
x?
1 ,x

?
2⇠D

[1(x?
1 = x?

2)]

=

s
|X |

n

X

x2X

D(x)2
(a)

s
|X |

n

X

x2X

D(x) ·
1

�|X |
=

1
p
�n

,

where (a) follows from the definition of a �-smooth distribution. This completes the proof.

C.5 Upper Bounding Generalization Error: Proof of Lemma C.5

In the proof of Lemma C.5, we shall need the following property of smooth distributions which is
a slightly strengthened version of the coupling lemma in Lemma B.1. The proof of lemma C.6 is
presented in Appendix C.7.
Lemma C.6. Let X1, · · · , Xm ⇠ Q and P be another distribution with a bounded likelihood ratio:
dP/dQ 1/�. Then using external randomness R, there exists an index I = I(X1, · · · , Xm, R) 2
[m] and a success event E = E(X1, · · · , Xm, R) such that Pr[Ec] (1� �)m, and

(XI | (E,X\I)) ⇠ P.

Fix any realization of the Poissonized sample size N ⇠ Poi(n). Choose m = 4��1 log T in
Lemma C.6, and without loss of generality assume that N is an integral multiple of m. Since for any
�-smooth Dt, it holds that

Dt(s)

U(X ⇥ {±1})(s)
=

Dt(x)

U(X)(x)
·

Dt(y | x)

U({±1})(y)

2

�
,

the premise of Lemma C.6 holds with parameter �/2 for P = Dt, Q = U(X ⇥{±1}). Consequently,
dividing the self-generated samples es1, · · · , esN into N/m groups each of size m, and running the
procedure in Lemma C.6, we arrive at N/m independent events E1, · · · , EN/m, each with probability

23

at least 1 � (1 � �/2)m � 1 � T�2. Moreover, conditioned on each Ej , we can pick an element
uj 2 {es(j�1)m+1, · · · , esjm} such that

(uj | (Ej , {es(j�1)m+1, · · · , esjm}\{uj})) ⇠ Dt.

For notational simplicity we denote the set of unpicked samples {es(j�1)m+1, · · · , esjm}\{uj} by vj .
As a result, thanks to the mutual independence of different groups and st ⇠ Dt conditioned on s1:t�1

(note that we draw fresh randomness at every round), for E , \j2[N/m]Ej we have

(u1, · · · , uN/m, st) | (E, s1:t�1, v1, · · · , vN/m)
iid
⇠ Dt.

Consequently, for each j 2 [N/m] we have
E

st⇠Dt,R(t+1)
[L(ht+1, st) | E]

= E
st⇠Dt,es1,··· ,esN

⇥
L(opt(es1, · · · , esN , s1:t�1, st), st) | E

⇤

= E
v,s1:t�1|E

E

st,u1,··· ,uN/m

h
L(opt(s1:t�1, v, u1, · · · , uN/m, st), st) | (E, s1:t�1, v)

i!

(a)
= E

v,s1:t�1|E

E

st,u1,··· ,uN/m

h
L(opt(s1:t�1, v, u1, · · · , uj�1, st, uj+1, · · · , uN/m, uj), uj) | (E, s1:t�1, v)

i!

(b)
= E

v,s1:t�1|E

E

st,u1,··· ,uN/m

[L(opt(s1:t�1, v, u1, · · · , uN/m, st), uj) | (E, s1:t�1, v)]

!

= E
st⇠Dt,R(t+1)

[L(ht+1, uj) | E],

where (a) follows from the conditional iid (and thus exchangeable) property of (u1, · · · , uN/m, st)
after the conditioning, and (b) is due to the invariance of the ERM output after any permutation of the
inputs. On the other hand, if s0t, u0

1, · · · , u
0

N/m are independent copies of st ⇠ Dt, by independence
it is clear that

E
st,s0t⇠Dt,R(t+1)

[L(ht+1, s
0

t) | E] = E
st,s0t⇠Dt,R(t+1)

[L(ht+1, u
0

j) | E], 8j 2 [N/m].

Consequently, using the shorthand u0 = st, u0

0 = s0t, we have
E

st,s0t⇠Dt,R(t+1)
[L(ht+1, s

0

t)� L(ht+1, st) | E]

=
1

N/m+ 1
E

st,s0t⇠Dt,R(t+1)

2

4
N/mX

j=0

(L(ht+1, u
0

j)� L(ht+1, uj))

���� E

3

5

1

N/m+ 1
E

u0,··· ,uN/m,u0

0,··· ,u
0

N/m
⇠Dt

2

4sup
h2H

N/mX

j=0

(L(h, u0

j)� L(h, uj))

3

5

2

N/m+ 1
E

u0,··· ,uN/m⇠Dt

E
✏1...✏N/m

2

4sup
h2H

N/mX

j=0

✏jh(uj)

3

5 c0

s
d

N/m+ 1
,

where the last inequality is due to the classical O(
p
d/n) upper bound on the Rademacher complexity,

and c0 > 0 in an absolute constant. Note that the union bound gives

Pr[Ec]

N/mX

j=1

Pr[Ec
j]

N

mT 2
,

the law of total expectation gives
E

st,s0t⇠Dt,R(t+1)
[L(ht+1, s

0

t)� L(ht+1, st)]

 E
st,s0t⇠Dt,R(t+1)

[L(ht+1, s
0

t)� L(ht+1, st) | E] + Pr[Ec] c0

s
d

N/m+ 1
+

N

mT 2
.

24

Finally, plugging the choice of m = 4��1 log T , taking the expectation of N ⇠ Poi(n), and using
Pr[N > n/2] � 1� e�n/8 in the above inequality completes the proof of Lemma C.5.

C.6 Proof of Theorem 3.2 for Small Domain

In this section we complete the proof of the O(
p
T (d|X |)1/2) upper bound in Theorem 3.2 when

� < d/|X | (and thus n = T
p
|X |/d). The proof is still through the same relaxation in Equation (10),

though we will choose a different parameter ⌘ and prove a slightly modified version of Lemma C.3:
Lemma C.7 (Expected TV) Admissibility). Let Qt denote learner’s distribution over H in Algo-
rithm 2 at round t, and st ⇠ Dt be the conditional distribution of st given the history s1, · · · , st�1.
It holds that

E
st⇠Dt

✓
E

ht⇠Qt

[L(ht, st)] + RelT (H | s1:t)

◆
� RelT (H | s1:t�1) E

st⇠Dt

[TV(Qt,Qt+1)]� ⌘.

Proof of Lemma C.7. The analysis is similar to the proof of Lemma C.3. In fact, an intermediate step
of Lemma C.3 gives

E
ht⇠Qt

[L(ht, st)] + RelT (H | s1:t)� RelT (H | s1:t�1) E
ht⇠Qt

[L(ht, st)]� E
ht+1⇠Qt+1

[L(ht+1, st)]� ⌘.

Now using |EX⇠P [f(X)] � EX⇠Q[f(X)]| TV(P,Q) for every measurable function f with
kfk1 1, the RHS is further upper bounded by TV(Qt,Qt+1) � ⌘. The proof of Lemma C.7 is
completed by taking the expectation over st ⇠ Dt.

Note that in Lemma C.7, the expectation is outside the TV distance and no smaller than the TV
distance when the mixture distribution is inside the expectation compared with Lemma C.3. We can
simply upper bound this expected TV distance, with the worst case choice of st and apply the data
processing inequality, i.e.,

E
st⇠Dt

[TV(Qt,Qt+1)] sup
st

TV(Pt�1,Pt).

Using the similar independence property of Poissonization in Appendix C.4, the target TV distance is
at most TV(P,Q), where P ⇠ Poi(n/2|X |), and Q is a right-translation of P by one. Consequently,

TV(P,Q)

r
�2(Q,P)

2
=

vuuut1

2

0

@ E
X⇠P

"✓
X

n/2|X |

◆2
#
� 1

1

A =

r
|X |

n
,

so the choice of ⌘ =
p
|X |/n and Lemma C.7 again makes the relaxation in Equation (10) admissible,

and we complete the proof of Theorem 3.2.

C.7 Proof of Lemma C.6

The proof is essentially similar to [BDGR22, Lemma 12], and we include it here for completeness.
For each i 2 [m], compute the value pi = � dP

dQ (Xi), which lies in [0, 1] due to the likelihood ratio
upper bound. Now we draw an independent Bernoulli random variable Yi ⇠ Bern(pi), and define the
random index I and success event E as follows:

E , [mi=1{Yi = 1},

I , a uniformly random element of {i 2 [m] : Yi = 1}.

Note that Y1, · · · , Ym are mutually independent, and for each i 2 [m],

Pr[Yi = 1] = E
Xi⇠Q

[pi] = E
Xi⇠Q

�
dP

dQ
(Xi)

�
= �,

25

we conclude that Pr[E] = 1 � (1 � �)m. For the second statement, we denote by ri the external
randomness used in drawing Yi ⇠ Bern(pi), and by r the external randomness used in the definition
of I . Then for any measurable set A ✓ X ,

Pr[XI 2 A | E,X\I]

=
X

i,r\i,r

Pr[XI 2 A | E,X\I , I = i, r\i, r] · Pr[I = i, r\i, r | E,X\I]

=
X

i,r\i,r

Pr[Xi 2 A | E,X\i, I = i, r\i, r] · Pr[I = i, r\i, r | E,X\I]

(a)
=

X

i,r\i,r

Pr[Xi 2 A | Yi = 1, X\i, r\i, r] · Pr[I = i, r\i, r | E,X\I]

(b)
=

X

i,r\i,r

Pr[Xi 2 A | Yi = 1] · Pr[I = i, r\i, r | E,X\I]

(c)
=

X

i,r\i,r

P (A) · Pr[I = i, r\i, r | E,X\I]

= P (A),

where (a) is due to the event {E, I = i,X\i, r\i, r} is the same as {Yi = 1, X\i, r\i, r} as long as
the former event {E, I = i,X\i, r\i, r} is non-empty (note that empty events do not contribute to
the sum), (b) follows from the mutual independence of (Xi, ri, Yi)i2[m] and r, (c) is due to

Pr[Xi 2 A | Yi = 1] =
Pr[Xi 2 A, Yi = 1]

Pr[Yi = 1]
=

1

�
E

Xi⇠Q

1(Xi 2 A)�

dP

dQ
(Xi)

�
= P (A).

The above identity shows that the conditional distribution of XI conditioned on (E,X\I) is always
P , as desired.

D Unknown Smoothness Parameters

Suppose we have upper and lower bounds �max and �min on the exact value of �, i.e., �min �
�max. In this section, we introduce a meta algorithm that uses a geometric doubling approach to
incorporate knowledge of �max and �min into the algorithms introduced in Section 3.

We start by constructing log(�max/�min) experts, where each expert i runs a local version of our
algorithm (can be either Algorithm 1 for the real-valued case or Algorithm 2 for the binary case) with
parameter �i = 2i · �min. We then run Hedge on these experts. Note that the parameter i? of the best
expert satisfies �

2 �i? �, so the expected regret of this expert matches the expected regret of the
same algorithm running on true � up to a constant factor. Therefore, the expected regret of this meta
algorithm is comparable to the bound in Theorem 3.1 and 3.2, with an additive term of order at most
O
⇣p

T log log(�max/�min)
⌘

. The number of oracle calls also blows up only by log(�max/�min)

per round. This could potentially be improved using a more aggressive step size for the Hedge meta
algorithm.

E Proof of Lower Bounds (Theorem E.1 and Theorem 5.1)

Theorem E.1 (Limitations of Algorithms). For any choice of the parameter n in Algorithm 2
(or Algorithm 1), there exists a �-smoothed online learning instance such that Algorithm 2 (or
Algorithm 1) suffers from at least ⌦(min{T,

p

dT��1/2,
p
T (d|X |)1/2}) expected regret.

E.1 Proof of Theorem E.1

This section proves the regret lower bounds for Algorithm 2 and Algorithm 1 stated in Theorem E.1.
We split the analysis into two subsections, and in each subsection we prove a large regret both when
the sample size parameter n is large and small.

26

E.1.1 Lower Bound Analysis for Algorithm 2

We shall only prove the regret lower bound ⌦(
p

dT��1/2) under the assumption � �

max{d/|X |, (d/T)2}, for a smaller � only makes the worst-case regret larger, and the other lower
bounds follow from this case by taking � = d/|X | and � = (d/T)2, respectively. We split the
analysis into two cases depending on the choice of parameter n.

Case I: Large n. When n is large, or more specifically, when n � T/
p
�, consider the behavior of

Algorithm 2 on the following instance. Consider any domain X where |X | is an integral multiple
of d, and partition X = [dj=1Xj into d sets {Xj}j2[d] with an equal size. Consider the following
hypothesis class:

H = {h : X ! {±1} | h is a constant on Xi, 8i 2 [d]}.

Clearly H has VC dimension d. The adversary chooses a hypothesis h?
2 H uniformly at random,

and sets xt to be uniformly distributed on X . As for the label yt, the adversary sets yt = h?(xt). This
adversary is 1-smooth, and the best expert in H incurs a zero loss under this realizable setting. We
claim that for each of the first min{T, c

p
nd} time steps, for an absolute constant c > 0 sufficiently

small, Algorithm 2 makes a mistake with ⌦(1) probability. Summing over these steps, the expected
regret of Algorithm 2 is then ⌦(min{T, c

p
nd}), which gives Theorem E.1 by our assumption

n � T/
p
�.

To prove this claim, we need the following lemma.
Lemma E.2 (Minimum Error on Hallucinated Samples). For N ⇠ Poi(n) hallucinated samples
(x1, y1), · · · , (xN , yN), if n � d, it holds that

P

0

@
NX

i=1

yi · 1(xi 2 Xj) �

r
n

d

1

A = ⌦(1), 8j 2 [d].

Proof. For j 2 [d], let nj,+, nj,� denote the number of hallucinate samples (xi, yi) with xi 2 Xj and
yi = ±1, respectively. By the Poisson subsampling property, {nj,±}j2[d] are mutually independent
Poi(n/(2d)) random variables. By definition of H, we have

nj,+ � nj,� =
NX

i=1

yi · 1(xi 2 Xj).

Consequently, the quantity of interest is nj,+ � nj,�. As n/d � 1, by the Poisson tail property, both
events nj,+ � n/(2d)+

p
n/d/2 and nj,� n/(2d)�

p
n/d/2 happen with ⌦(1) probability, and

their independence gives the claimed result.

Since (d/T)2 � 1, we have T � d and thus n � T/
p
� � d, the premise of Lemma E.2 holds.

Consequently, at each time step t min{T, c
p
nd} with xt 2 Xj , with ⌦(1) probability there are at

least
p
n/d net positive labels in the hallucinated samples, while the learner has only observed at

most ↵c
p
n/d labels in the history with probability at least 1 � 1/↵, by Markov’s inequality. By

choosing constants c > 0 small and ↵ > 0 large, the perturbed leader will predict +1 depending only
on the hallucination, and this prediction is independent of the choice of h? and thus incurs an error
with probability 1/2. This proves the claim that before time min{T, c

p
nd}, there is always ⌦(1)

probability of error.

Case II: Small n. Now we turn to the scenario where n < T/
p
�. Consider the following learning

instance: choose X0 ✓ X with |X0| = �|X | � d, the adversary always chooses xt ⇠ U(X0), which
is �-smooth. Assuming that |X0| is an integral multiple of d, we partition X0 = [dj=1Xj into d
subsets with equal size. Condition on each Xj , consider an alternating label sequence:

(yt : xt 2 Xj)
T
t=1 = (+1,�1,+1,�1, · · ·).

The hypothesis class H consists of 2d functions:

H = {h : X ! {±1} | h is a constant on Xj , 8j 2 [d], and h(x) ⌘ 1, 8x 2 X\X0}.

27

Clearly H has VC dimension d, and the best hypothesis in H incurs a cumulative loss T/2.

Now we examine the performance of Algorithm 2. Let rj be the difference between the number of
+1 and �1 labels in the hallucinated samples with feature in Xj , similar to the proof of Lemma E.2
we have rj = nj,+ � nj,� for independent Poisson random variables nj,+, nj,� ⇠ Poi(n�/2d).
Suppose that ties are broken by always predicting �1 when calling the ERM oracle, we observe that
Algorithm 2 always makes a mistake when x 2 Xj and rj = 0 – this is the same counterexample
where Follow-The-Leader (FTL) makes a mistake at every step. Moreover, when rj 6= 0, Algorithm 2
makes T/2 mistakes, same as the best expert in H. Consequently, the expected regret of Algorithm 2
is at least T · P(rj = 0), where

P(rj = 0) = E
N⇠Poi(n�/d)

"
P
✓

Bin(N,
1

2
) =

N

2

◆#
= E

N⇠Poi(n�/d)

"
⌦

✓
1(N is even)
p
N + 1

◆#

(a)
= ⌦

PN⇠Poi(n�/d)(N is even)

p
n�/d+ 1

!
(b)
= ⌦

1p

n�/d+ 1

!
= ⌦

0

@min

(
1,

r
d

n�

)1

A .

In the above display, (a) follows from the conditional Jensen’s inequality, and (b) is due to

PN⇠Poi(�)(N is even) =
1X

k=0

e�� �2k

(2k)!
= e��

·
e� + e��

2
�

1

2
.

This leads to the claimed regret lower bound in Theorem E.1.

E.1.2 Lower Bound Analysis for Algorithm 1

Similar to the lower bound analysis for Algorithm 2, we also split into the cases where n is large
and n is small, respectively. Recall that for Algorithm 1, the parameter n is the number of random
draws from the uniform distribution for each future time. Our current version of Algorithm 1 sets the
parameter to be n = K = ⇥(log T/�).

Case I: Large n. We first focus on the case where n � 1/
p
�. Consider the same construction of

X ,H and the adversary in Case I of Section E.1.1.

The regret analysis is essentially the same as Section E.1.1. For every t T/2, the learner in
Algorithm 1 essentially generates (T � t)n � T/(4

p
�) uniformly random samples (with replace-

ment) in X . A similar analysis to Lemma E.2 shows that for each j 2 [d], with ⌦(1) probability
there are ⌦(

p
T/(d�1/2)) more +1 labels than �1 labels within Xj in the hallucinated samples.

Consequently, for t min{T/2,⌦((dT)1/2��1/4)}, two calls of the ERM oracle in Algorithm 1
will return the same hypothesis, and the learner’s prediction is always +1. Similar to Section E.1.1,
these time steps lead to an ⌦(min{T, (dT)1/2��1/4

}) regret.

Case II: Small n. Next we turn to the case where n < 1/
p
�.

Consider the same construction as Case II in Appendix E.1.1. For the performance of Algorithm 1,
let rj be the difference between the number of +1 and �1 labels in the hallucinated samples with
input in Xj . One can check that if rj 6= 0, the learner makes half of the mistakes along the alternating
sequence; if rj = 0, the fraction of mistakes becomes 3/4 (Algorithm 1 cyclically predicts a wrong
label and makes a random guess). Consequently, the expected regret of Algorithm 1 is lower bounded
by ⌦(T · P(rj = 0)). To compute the probability P(rj = 0), note that rj = 2M � N , with
N ⇠ Bin(n(T � t),�/d) being the number of observations in Xj in the hallucinated data, and
M | N ⇠ Bin(N, 1/2). Using a similar argument to Section E.1.1, this probability is lower bounded
by ⌦(min{1,

p
d/(n�)}), as desired.

E.2 Proof of Theorem 5.1

Theorem 5.1 (Restated). For 1/� � d, any proper algorithm which only has access to the ERM
oracle and achieves a regret o(min{T,

p
T (d/�)1/2}) for any �-smoothed online learning problem

must have an !(
p
d/�) total running time.

28

We make the following remarks.

1. First, although the lower bound of the regret and running time in Theorem 5.1 does not
match the counterparts of Algorithm 2 in Theorem 3.2, the upper and lower bounds share
the same ⇥(��1/4) dependence on �. This suggests that the improvement from ⇥(��1/2)
to ⇥(��1/4) thanks to Poissonization is not superfluous and might be fundamental. We
also conjecture that for all efficient algorithms with runtime poly(T, d, 1/�), the ⇥(��1/4)
dependence is the best one can hope for in the regret of such algorithms, as opposed to the
⇥(

p
log(1/�)) dependence in the statistical regret.

2. Second, Theorem 5.1 shows a poly(d, 1/�) computational lower bound to achieve the statis-
tical regret eO(

p
Td log(1/�)), while the "-net argument in [HRS22] requires a poly(��d)

computational time. One may wonder whether this exponential dependence on d is in fact
unavoidable, and this is a missing feature not covered in [HK16]. This motivates the open
question in Section 5:

Open Question. For d/� � T 2 in the smoothed setting, does any algorithm achiev-
ing o(T) regret require ⌦(poly(T, 2d, 1/�)) computational time given access to the ERM
oracle?

The proof of Theorem 5.1 uses a similar idea to [HK16]. There are two lower bound arguments
in [HK16]: one reduces the problem to the Aldous’ problem, and the other is based on an explicit
construction of the hard instance. Although both arguments could work for our problem, we adopt
the latter which corresponds to Theorem 25 of [HK16]. In the sequel, we will always take the domain
size |X | = 1/� so that the smooth adversary becomes the usual adaptive adversary. In the next
subsections, we first prove the theorem for the simpler case d = 1, and then generalize our argument
for any VC dimension d.

E.2.1 The case d = 1.

We first show how the argument in [HK16] proves the claimed !(
p

|X |) computational lower bound
when T =

p
|X | =

p
1/�. Assuming that N ,

p
|X | is an integer, we partition the domain X

into disjoint subsets X1, · · · ,XN , each of size N . For each x 2 X , we associate two independent
Rademacher variables "(x) and "?(x), and they are mutually independent across different x 2 X .
For each i 2 [N], the adversary chooses x?

i ⇠ U(Xi), and sets the hypothesis class H = {hx}x2X

with

hx(x
0) =

(
"?(x0) if x = x?

i , x
0 = x?

j , and i � j,
"(x0) otherwise.

At each time t 2 [N], the adversary sets xt = x?
t , and yt = hx?

N
(xt) = "?(x?

t). Under this setting,
[HK16] proved the following lower bound.
Theorem E.3 (Theorem 25 of [HK16], restated). Given access to the ERM oracle, any proper
algorithm achieving an expected regret at most N/4 requires ⌦(N) = ⌦(

p
|X |) running time.

Here by running time, we assume that each oracle call takes unit time, and maintaining each element in
the input {(xi, yi)}i2I to the oracle also takes unit time. We also sketch the proof idea of Theorem E.3
for completeness: the crucial observation is that, when the learner feeds the input {(xi, yi)}i2I to the
ERM oracle, the oracle can always return some h 2 {h0, hx?

1
, · · · , hx?

j
}, where h0 is any hypothesis

in H\{hx?
1
, · · · , hx?

N
}, and j 2 [N] is the largest index such that x?

j 2 {xi}i2I . See Lemma 27 of
[HK16] for a proof. Therefore, the label yt = "?(x?

t) at time t will look random to the learner unless
the learner has seen a function hx?

s
for some s � t. By the above observation, this occurs only if

the learner has set one (or more) of {x?
s}s�t as the input to the ERM oracle, but this requires one to

find a random element in a size-N set and thus take ⌦(N) time (note that a proper algorithm only
observes {x?

1, · · · , x
?
t�1} at time t). Consequently, with o(N) running time, the learner suffers from

an ⌦(N) loss with high probability, while the best expert incurs zero loss - giving the ⌦(N) regret.

Since the restriction of H on any two elements {x, x0
} with x < x0 could only be one of the three

possibilities: {("(x), "(x0)), ("?(x), "(x0)), ("?(x), "?(x0))}, the VC dimension of H is 1. Therefore,
Theorem E.3 gives a valid proof of Theorem 5.1 when d = 1 and T =

p
1/�. For T <

p
1/�, the

29

above construction still gives the ⌦(T) regret lower bound given o(
p

|X |) computational time. For
general T >

p
1/�, we make the following modification to the adversary: partition the time horizon

[T] into N intervals T1, · · · , TN , each of length T/N . For each i 2 [N] and t 2 Ti, the adversary
sets xt = x?

i , and

yt =

(
hx?

N
(xt) with probability 1

2 + �,
�hx?

N
(xt) with probability 1

2 � �.

Consequently, the best expert hx?
N

incurs an expected cumulative loss (1/2��)T . Meanwhile, as long
as the learner cannot distinguish the distributions Bern(1/2 + �)⌦(T/N) and Bern(1/2� �)⌦(T/N),
she is not able to estimate "?(x?

i) based on labels {yt}t2Ti in the i-th interval. This condition is
fulfilled when � ⇣

p
N/T . In addition, a similar argument for Theorem E.3 shows that with an

o(N) computational time, the learner cannot predict future x?
s either. Therefore, any proper learner

with o(N) = o(
p
|X |) computational time must incur a regret ⌦(�T) = ⌦(

p
T |X |1/2), which is

precisely the statement of Theorem 5.1 for d = 1.

E.2.2 General d.

In this section we lift the hypothesis construction for d = 1 to general d. Since 1/� � d, we assume
that 1/(�d) is an integer. Partition X = [dj=1Xj each of size |X |/d, we apply the hypothesis class
H in the previous section to each Xj , and set the entire hypothesis class as

Hd =
n
h = (h1, · · · , hd) 2 H

d : h|Xj = hj , 8j 2 [d]
o
.

Clearly the VC dimension of Hd is d. The adversary is constructed as follows: partition [T] into d
sub-intervals T1, · · · , Td, each of size T/d. For the i-th sub-interval, we run the subroutine in the
previous section independently on Xi. Now suppose that the total runtime is o(

p
d|X |), then for at

least half of the sub-intervals, the runtime during each such interval is o(
p

|X |/d). By the lower
bound for d = 1, the expected regret during each such sub-interval is

⌦

0

B@min

8
<

:
T

d
,

s
T

d
·

✓
|X |

d

◆1/2
9
=

;

1

CA = ⌦

0

B@min

8
<

:
T

d
,

s

T ·

✓
|X |

d3

◆1/2
9
=

;

1

CA .

Summing over at least d/2 such independent sub-problems, the total regret lower bound is then
⌦(min{T,

p
T (d|X |)1/2}), establishing the claim of Theorem 5.1.

F Statistical Upper Bound for Real-valued Labels

In this section, we present a statistical upper bound achieved by a computationally inefficient
algorithm. The Q be the algorithm that runs Hedge on a finite subset H0 on H, where H0 is a ✏-cover
of H with respect to the uniform distribution U(X). The regret upper bound of this algorithm is
bounded as follows.
Theorem F.1 (Statistical Upper Bound). For any �-smooth adversary D� , the algorithm Q described
above has regret upper bound

E[REGRET(T,D�,Q)] 2 eO

0

@
s

Td log

✓
T

d�

◆
+Gd log

✓
T

d�

◆1

A .

Proof. Let H0 be the smallest ✏-cover of H with respect to the uniform distribution, i.e., for any
h 2 H, there exists a proxy h0

2 H
0 such that Ex⇠U(X)

⇥
|h(x)� h0(x)|

⇤
 ✏. By lemma B.2, the

size of H can be upper bounded in terms of the pseudo dimension d:

log(|H0
|) = logN (✏,H, L1(U(X))) O

d log

✓
1

✏

◆!
.

30

Based on the net H0, we also define function class G as follows.

G =
�
gh,h0(x) = |h(x)� h0(x)| : h 2 H, h0

2 H
0 is its proxy.

Letting L(h, s1:T) =
PT

t=1 l(h(xt), yt) for all h 2 H, we now consider the following regret
decomposition:

E[REGRET(T)] =E

2

4
TX

t=1

l(byt, yt)� inf
h2H

L(h, s1:T)

3

5

=E

2

4
TX

t=1

l(byt, yt)� inf
h02H0

L(h0, s1:T)

3

5+ E

inf
h02H0

L(h0, s1:T)� inf
h2H

L(h, s1:T)

�

Note that the first term is precisely the regret of Hedge on the cover H0. It is thus bounded by

E

2

4
TX

t=1

l(byt, yt)� inf
h02H0

L(h0, s1:T)

3

5 O
⇣p

T log |H0|

⌘
2 O

0

@
s

Td log

✓
1

✏

◆1

A .

As for the second term, we reformulate it in terms of class G:

E

inf
h02H0

L(h0, s1:T)� inf
h2H

L(h, s1:T)

�
= E

2

4sup
h2H

inf
h02H0

TX

t=1

l(h0(xt), yt)� l(h(xt), yt)

3

5

(a)
E

2

4sup
h2H

inf
h02H0

TX

t=1

G|h(xt)� h(xt)|

3

5 = G · E
D

2

4sup
g2G

TX

t=1

g(xt)

3

5 , (13)

where (a) is because the loss function l has Lipschitz constant G. Analogous to [HRS22, Claim 3.4],
we apply the coupling argument in Lemma B.1 to replace the adaptive sequence xts by zt,ks that are
sampled independently from the uniform distribution. Thus we obtain

E
D

2

4sup
g2G

TX

t=1

g(xt)

3

5 T 2(1� �)K + E
U(X)

2

4sup
g2G

TX

t=1

KX

i=1

g(zt,k)

3

5 .

The expected supremum can be further bounded in terms of the magnitude of G (i.e., ✏) as well as the
pseudo dimension of the original hypothesis class H. Using the bound in Lemma F.2, and together
with Equation (13), we obtain

E[REGRET(T)] eO

0

B@

s

Td log

✓
1

✏

◆
+G

0

@T 2(1� �)K + TK✏+

s

TK✏d log

✓
1

✏

◆1

A

1

CA .

In order to satisfy the condition on n in lemma F.2 and to make the failure probability of the coupling

argument sufficiently small, we take ↵ = 10 log(T), K = ↵
� , ✏ = ⇥

✓
d�

T log(T) log
⇣

T log(T)
d�

⌘◆
.

With this choice of parameters, we have T 2(1� �)K = o(1) and

E[REGRET(T)] O

0

B@

s

Td log

✓
1

✏

◆
+G

0

@T log(T)

�
✏+

s
T log(T)

�
✏d log

✓
1

✏

◆1

A

1

CA

 eO

0

@
s

Td log

✓
T

d�

◆
+Gd log

✓
T

d�

◆1

A ,

as desired.

31

Lemma F.2 (Concentration for the expected value of supremum). When n � ⌦
⇣

d
✏ log

�
1
✏

�⌘
, we

have

E
x1:n

iid
⇠U(X)

2

4sup
g2G

nX

i=1

g(xi)

3

5 O

0

@n✏+

s

n✏d log

✓
1

✏

◆1

A .

Proof. We will use the bound on expected values of suprema of empirical processes in [GK06,
Theorem 3.1]. To apply their result, the first step is to establish a bound on the L2(P)-covering
number of class G. Let Pn = 1

n

Pn
i=1 �xi be the empirical distribution based on independent samples

x1, · · · , xn. A similar argument to [BKP97, Lemma 2] gives us

N (✏,G, L2(Pn)) N (
✏

2
,H, L2(Pn))

2.

Thus we obtain

logN (✏,G, L2(Pn)) 2 logN (
✏

2
,H, L2(Pn)) 2 logM(

✏

2
,H, L2(Pn)) O

✓
d log(

1

✏
)

◆
,

where M denotes the packing number and the last inequality is due to [Bar06, Theorem 3.1].
Therefore, for the function H(x) = O(d log x), we can guarantee that for any ✏ > 1,

logN (✏,G, L2(Pn)) H(1/✏),

satisfying the condition of [GK06, Theorem 3.1]. Therefore, when n � ⌦

✓
H(1/✏)

✏

◆
=

⌦
⇣

d
✏ log

�
1
✏

�⌘
, [GK06] gives us

E
U

2

4sup
g2G

nX

i=1

�
g(xt)� E[g(xt)]

�
3

5 O
⇣p

n✏H(1/✏)
⌘
= O

0

@
s

n✏d log

✓
1

✏

◆1

A .

Finally, since EU g(x) ✏ for any g 2 G, we obtain

E

2

4sup
g2G

nX

i=1

g(xt)

3

5 O

0

@n✏+

s

n✏d log

✓
1

✏

◆1

A ,

and the proof is complete.

G Proof of the Admissible Relaxation Framework

Proposition 4.1 (Restated). In the smoothed online learning setting, let Q = (Q1, · · · ,QT) be an
algorithm that is admissible with respect to relaxations RelT (H), then the following bound on the
expected regret holds regardless of the strategies D� of the adversary:

E[REGRET(T,Q,D�)] RelT (H | ;) +O(
p

T).

Proof of proposition 4.1. To prove this lemma we break the expected regret into two parts:

E[REGRET(T)] = E
D,Q

2

4
TX

t=1

E
byt⇠Qt

[l(byt, yt)]� inf
h2H

L(h, s1:T)

3

5+ E
D,Q

2

4
TX

t=1

l(byt, yt)� E
byt⇠Qt

[l(byt, yt)]

3

5 .

For the first part, we use an inductive argument to show that

E
D,Q

2

4
TX

t=1

E
byt⇠Qt

[l(byt, yt)]� inf
h2H

TX

t=1

l(h(xt), yt)

3

5 RelT (H | ;). (14)

32

According to the definition of admissibility, we have

E
D,Q

2

666664

TX

t=1

E
byt⇠Qt

[l(byt, yt)] � inf
h2H

TX

t=1

l(h(xt), yt)

| {z }
RelT (H|s1:T) by 2nd condition of admissibility

3

777775

 E
D,Q

2

6666664
E

2

666664

T�1X

t=1

E
byt⇠Qt

[l(byt, yt)] + E
xT⇠DT

h
E

byT⇠QT

[l(byT , yT)] + RelT (H | s1:T)
i

| {z }
RelT (H|s1:T�1) by 1st condition of admissibility

����������

s1:T�1

3

777775

3

7777775

 E
D,Q

2

664E

2

64
T�1X

t=1

E
byt⇠Qt

[l(byt, yt)] + RelT (H | s1:T�1)

������
s1:T�1

3

75

3

775

= E
D,Q

2

4
T�1X

t=1

E
byt⇠Qt

[l(byt, yt)] + RelT (H | s1:T�1)

3

5 ,

where the last step uses the tower property of conditional expectations.

Repeat this process for (T � 1) times and note that RelT (H | ;) is a constant that does not dependent
on D proves Equation (14).

Since the second part is the expected sum of a martingale difference sequence, we apply the Azuma-
Hoeffding inequality and obtain

E
D,Q

2

4
TX

t=1

l(byt, yt)� E
byt⇠Qt

[l(byt, yt)]

3

5
Z

1

0
exp

�
2t2

T

!
dt 2 O(

p

T). (15)

Combining Equation (14) and Equation (15) completes the proof.

H Transductive Learning with K Hints

H.1 Model

In the traditional transductive setting, the adversary releases the sequence of unlabeled instances
{xt}

T
t=1 to the learner before the game starts. We generalize this setting and introduce a K-hint

version of transductive learning. In this setting, the exact sequence of instances is replaced with a
sequence of K hints per time step such that the set of hints at each time step includes the instance at
that time step. More formally, before the interaction starts, the adversary releases T sets (multisets)
of size K to the learner. We denote these sets by {Zt = {zt,1, · · · , zt,K}}

T
t=1. On releasing these

sets, the adversary promises to always pick Dt supported only on the elements of Zt. The regret
of a learner with prediction rules Q on the adaptive sequence D = (D1, · · · ,DT) following above
restrictions is defined as:

E[REGRET(T,D ,Q)] = E
D,Q

2

4
TX

t=1

l(byt, yt)� inf
h2H

TX

t=1

l(h(xt), yt)

3

5 .

H.2 Efficient Algorithm for Transductive Online Learning with K Hints

We will show an oracle-efficient regret upper bound of O(
p
dTK) by constructing an oracle-efficient

algorithm based on the random playout technique. We consider the optimization oracle defined in
Definition 2.3 with the loss functions specified by lr(ŷ, y) = 1

2G l(ŷ, y) and lb(ŷ, y) = 1{by 6= y}� 1
2 .

33

Similar to Algorithm 1, at each time step t, our algorithm applies the offline optimization oracle
to two input sequences: One where the real history s1:t�1 is mixed with two copies5 of randomly
labeled set of all hints corresponding to future time steps and the current instance is labled +1, and
another, where the current instance is labeled �1.

More specifically, with E
(t) = {✏(t)i,k}i=t+1:T ,k=1:K denoting the set of random labels and S(t) =

(Zt+1:T , E(t)) denoting the set of hints labeled by E
(t), we consider

byt =OPT

⇣
s1:t�1;S

(t)
[S(t)

[{(xt,�1)}
⌘
� OPT

⇣
s1:t�1;S

(t)
[S(t)

[{(xt,+1)}
⌘
. (16)

See Algorithm 3 for a formal description of the algorithm.

Algorithm 3: Oracle-Efficient Online Transductive Learning with K Hints
Input: T,K, {Zt}

T
t=1

1 for t 1 to T do
2 Receive xt. Assert that xt 2 Zt

3 for i = t+1, · · · , T ; k = 1, · · · ,K do
4 Draw new ✏(t)i,k ⇠ U({�1,+1}).
5 end
6 S(t)

1

n
(z(t)i,k, ✏

(t)
i,k), (z

(t)
i,k, ✏

(t)
i,k)

o
i=t+1:T
k=1:K

// Two copies of each tuple

7 S(t)
2 {(x⌧ , y⌧)}

t�1
⌧=1

8 pt
1
2 + OPTH,l(S

(1)
t [S(2)

t [{(xt,+1)})�OPTH,l(S
(1)
t [S(2)

t [{(xt,�1)})
2 .

9 With probability pt, predict byt = �1; otherwise predict byt = +1
10 Receive yt, suffer loss l(byt, yt).
11 end

Theorem H.1 (Regret Bound for Efficient K-Hint Transductive Learning). In the setting of transduc-
tive learning with K-hints, Algorithm 3 achieve expected regret bound of O(

p
dTK). The algorithm

can be implemented using two calls to the optimization oracle per round.

The proof of Theorem H.1 follows a similar approach to that in [RSS12] and uses the admissible
relaxation framework. This proof is also very similar to the proof of Theorem 3.1 for the case of
smoothed adversaries. We include the proof of this Theorem for completeness.

Specifically, we will show that the algorithm is admissible with respect to the following relaxation:

RelT (H | s1:t) = E
E(t)

2

664sup
h2H

8
><

>:
2G

X

i=t+1:T
k=1:K

✏(t)i,kh(zi,k)�
tX

i=1

l(h(xi), yi))

9
>=

>;

3

775 , t = 0, · · · , T.

Using the language of regularized Rademacher complexity introduced in Section 4.3, the relaxation
at the end of time step t can be written as the Rademacher complexity for the union of future hints,
regularized by the past total loss. That is,

RelT (H | s1:t) = 2G ·R(�Lr(·, s1:t), Zt+1:T), (17)

where Lr(h, s1:t) =
Pt

i=1 l
r(h(xi), yi) =

1
2G

Pt
i=1 l(h(xi), yi) for h 2 H.

To use the relaxation framework and Proposition 4.1, it suffices to establish two claims: 1) the
relaxation in Equation (17) is admissible in the K-hint setting, 2) the value of this relaxation at the
beginning of the game is not too large.

For the second claim, we notice that RelT (H | ;) is equal to the unregularized Rademacher com-
plexity for the dataset that includes all the hints. Since there are at most TK hints, the Rademacher

5We use two copies to scale the loss appropriately.

34

complexity is at most eO(
p
dTK) according to Lemma B.3. That’s where we get the extra

p
K in the

bounds compared to the standard transductive setting.

The first claim is the more technically interesting one. For admissibility, here we will focus on
proving the following bound

sup
xt2Zt

sup
yt2Y

�
E

byt⇠Qt

[lr(byt, yt)]+R(�Lr
t, Zt+1:T)

| {z }
(a)

 sup
xt2Zt

R(�Lr
t�1, Zt+1:T [{xt})R(�Lr

t�1, Zt:T),

(18)

where Lr
t(h) abbreviates for Lr(h, s1:t).

Let us consider the L.H.S of the above inequality and note that for any fixed xt, the term (a) captures
the standard transductive learning setting with Zt+1:T being the set of unlabeled instances for the
future. In this case, the convexity of loss function lr together with the min-max theorem can be used to
show that the learner’s strategy Qt, which makes the two values inside the supremum over Y equalize
as yt takes value �1 and +1, is indeed the optimal strategy. At a high level, this technique which is
also used by [RSS12], gives rise to the algorithm in Equation (16) and proves the first inequality in
inequality (18). We refer the readers to [RSS12, Lemma 12] for more details about the proof.

The second transition in Inequality (18) can be established using the fact that regularized Rademacher
complexity is monotone in the dataset, as shown in Lemma 4.1. Therefore, we have proved that
the relaxation given by Equation (17) is admissible, and the final regret upper bound follows from
Proposition 4.1.

35

	Introduction
	Main Results
	Technical Overview
	Related works

	Preliminaries
	Smoothed Online Learning
	Offline Optimization Oracle

	Oracle-Efficient Online Learning
	Learning with Real-Valued Functions
	Improved Bounds for Binary Classification

	Proof Sketches for Main Regret Bounds
	Relaxations and Admissibility
	Follow the Perturbed Leader
	Proof Sketch of thm:regret-real
	Proof Sketch of thm:FTPL

	Discussion, Additional Results, and Open Problems
	Check List
	Additional Related Work
	 Oracle-Efficient Learning with Real-valued Functions
	Coupling Lemma
	Monotonicity of the Regularized Rademacher Complexity
	Notions for Real-Valued Functions
	Proof of thm:regret-real
	Admissibility of the Relaxation
	Upper and Lower Bounds on the Relaxation
	Remark on the Requirement of Fresh Dataset

	 Oracle-Efficient Online Binary Classification
	Information Theoretic Lemmas
	Proof of thm:FTPL
	Proof of lemma:stabilityadmiss
	Upper Bounding TV Distance: Proof of lemma:stability
	Upper Bounding Generalization Error: Proof of lemma:generror
	Proof of thm:FTPL for Small Domain
	Proof of lemma:couplingstrong

	Unknown Smoothness Parameters
	Proof of Lower Bounds (thm:lowerbound and thm:complowerbound)
	Proof of thm:lowerbound
	Lower Bound Analysis for alg:FTPL
	Lower Bound Analysis for alg:real-valued

	Proof of thm:complowerbound
	The case d=1.
	General d.

	Statistical Upper Bound for Real-valued Labels
	Proof of the Admissible Relaxation Framework
	Transductive Learning with K Hints
	Model
	Efficient Algorithm for Transductive Online Learning with K Hints

