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In this supplementary material, we provide details on evaluation metrics, details on our network
architecture, a trade-off between computational cost and depth accuracy, additional qualitative results,
depth accuracy on overlap regions, point cloud results on the DDAD dataset and nuScenes dataset,
and the license of existing assets we used for our paper.

A Evaluation metric

To evaluate the depth accuracy, we use the error metric proposed by Eigen et al. [8]. Given a predicted
depth map d and ground-truth map d∗ with N pixels, it computes:

• Absolute relative error (Abs Rel): 1
|N|

∑
i∈N

|di−d∗i |
d∗i

• Square relative difference (Sq Rel): 1
|N|

∑
i∈N
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• Root mean square error (RMSE):
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• Root mean squared logarithmic error (RMSE log):
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• Accuracy with threshold (δ): % of di s.t max
(

di
d∗i

,
d∗i
di

)
= δ < thr

B Details on the Network Architecture

We provide further details on our network architecture with Table 3. For more information about the
implementation, please refer to our source code. Our model uses only 1D/2D convolutions and MLPs;
we do not use 3D convolution which is computationally heavy and consume extensive memory.

Image encoder. We used pre-trained ResNet-18 [16] for the image encoder. After extracting
a feature pyramid, we upsample and concatenate the last three feature maps, and apply 1 × 1
convolutional layer to reduce the number of channels to 256.

Volumetric encoder. To encode a volumetric feature from an image feature that is concatenated
with a depth value, we use MLPs with two layers where the numbers of nodes are 256 and 128. In
the end, each voxel contains a 128-dimensional feature vector.

∗denotes equal contribution. † This work has been done at 42dot Inc.
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Table 3: Network details.
×2 ↑: upsampling an input to the two times bigger resolution

Module Layer output Layer operation Input Output size

Image
encoder

feat1 ResNet conv2d Input image 64 × H/2 × W/2
feat2 ResNet block1 feat1 64 × H/4 × W/4
feat3 ResNet block2 feat2 128 × H/8 × W/8
feat4 ResNet block3 feat3 256 × H/16 × W/16
feat5 ResNet block4 feat4 512 × H/32 × W/32
feat6 Upsample & concat. [feat3, feat4, feat5] 896 × H/8 × W/8

img_feat conv2d feat6 256 × H/8 × W/8

Volumetric
encoder

backproj_feat1 Back-projection img_feat 256 × Z × Y × X
backproj_feat2 Concat. with depth [backproj_feat1, depth] 257 × Z × Y × X
volumetric_feat MLP backproj_feat2 128 × Z × Y × X

Depth
fusion

proj_img_feat1 Sampling & concat. volumetric_feat (50 ∗ 128) × H/8 × W/8
proj_img_feat2 MLP proj_img_feat1 128 × H/8 × W/8
depth_upconv1 conv2d, ELU, ×2 ↑, conv2d, ELU proj_img_feat2 64 × H/4 × W/4
depth_upconv2 conv2d, ELU, ×2 ↑, conv2d, ELU depth_upconv1 32 × H/2 × W/2
depth_upconv3 conv2d, ELU, ×2 ↑, conv2d, ELU depth_upconv2 16 × H × W

depth output conv2d, sigmoid depth_upconv3 1 × H × W

Canonical
motion

estimation

collapsed_voxel Voxel collapse volumeteric_feat (128 ∗ Z) × Y × X
fused_pose_feat Channel reduction collapsed_voxel 256 × Y × X

squeeze_feat conv2d, ReLU fused_pose_feat 256 × Y × X
pose_feat1 conv2d, ReLU squeeze_feat 256 × Y/2 × X/2
pose_feat2 conv2d, ReLU pose_feat1 256 × Y/4 × X/4
pose output conv2d, avgpool pose_feat2 6 × 1 × 1

Table 4: Effect of the voxel grid size on computational cost and depth accuracy: A choice of voxel grid size
causes a trade-off between computational cost and depth accuracy.

Voxel grid size [x, y, z]
Computational cost Accuracy

Parameters FLOPs GPU memory Abs Rel Sq Rel δ < 1.25

[150, 150, 15] 15.5 M 203 G 6.04 G 0.212 3.899 0.706
[130, 130, 13] 15.5 M 189 G 4.74 G 0.215 4.079 0.706
[80, 80, 8] 15.5 M 169 G 4.41 G 0.223 4.273 0.701

Depth fusion module. We uniformly sample 50 voxel features for each pixel ray, concatenate them,
and use a MLP with two layers whose numbers of nodes are both 128. Then we apply the following
operations for three times in the depth decoder: 3× 3 conv, ELU, upscale (×2 resolution), and 3× 3
conv. Then finally a 3 × 3 convolutional layer with a sigmoid activation is applied to the output
inverse depth map.

Canonical motion estimation module. To construct features for the 2D convolutional layer, we
reduce the Z dimension of the volumetric feature by voxel collapse operation, which concatenates Z
dimension to C dimension. We then apply 1×1 convolutional layer with batch normalization and
ReLU activation to reduce the channel to be C′, where C and C′ indicates 128 and 256, respectively.
The features are then fed into the pose decoder that has the same structure as previous work [13].

C Effect of the voxel grid size on computational cost and depth accuracy

Table 4 shows how the voxel resolution affects the computational cost and depth accuracy, which
causes a trade-off between them. Given a fixed size of voxel space that covers 100(m)× 100(m)×
30(m) range, we vary the voxel unit size (i. e., the length of one side of a voxel cubic) and the number
of voxels along each axis accordingly. For this study, we use the depth-fusion-only model. The depth
accuracy increases with a finer voxel resolution (i. e., smaller unit size with more voxels), along with
the increasing GPU memory consumption. We believe the usage of spherical or cylindrical coordinate
representation will improve the memory efficiency.

Despite more memory consumption than standard monocular depth approaches using 2D representa-
tion, we expect our volumetric representation can also benefit other image-based 3D perception tasks,
such as 3D object detection, 3D semantic segmentation, 6D object pose estimation, or bird’s-eye-view
(BEV) segmentation, in the surround-view camera setup.
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Table 5: Accuracy analysis on overlap region: We compare depth accuracy on overlap regions from nearby
cameras.

Depth fusion Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

(Our reproduced baseline) 0.239 4.299 13.300 0.352 0.658 0.856 0.926
Ours 0.237 4.219 12.782 0.346 0.665 0.858 0.929

Figure 7: Our results on nuScenes dataset: Our method accurately estimates depth under various conditions.

Figure 8: Comparison results on nuScenes dataset: Comparison results with nuScenes dataset using the
baseline model and our model.

D Additional Experimental Results

D.1 Qualitative results on the nuScenes dataset

Fig. 8 visualizes comparison between FSM [15] and our proposed model. The depth results give
evidence that our volumetric feature encoding enhances consistency and connectivity between
different views. Our model gives results that can smoothly transit when FSM model creates holes in
overlap regions.

D.2 Improvement on overlap regions

Our model takes advantage of overlapping regions as the same features are shared with neighboring
cameras by using our volumetric features. Therefore, we have conducted additional experiments to
analyze depth estimation accuracy in overlapping regions. The overlapping regions were extracted
as shown in the Fig. 6 on the main paper. As can be seen with the Table 5 and Fig. 8, our model
demonstrates improved accuracy and consistent depth in the overlapping regions.

D.3 Point cloud visualization using surrounding view cameras

We further demonstrate our contributions using the point cloud reconstruction results. Point cloud
results are evaluated on both DDAD and nuScenes dataset as shown in Fig. 9 and Fig. 10 respectively.
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As we focus on learning to merge features on overlap regions, we’ve obtained results that show
enhanced alignment between different viewpoints in overlap regions, which supports our contribution
towards utilizing overlap regions and global reasoning.

Figure 9: Point cloud reconstruction comparison results on the DDAD dataset
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Figure 10: Point cloud reconstruction comparison results on the nuScenes dataset
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E License of the Existing Assets

For the experiment, we use the DDAD2 [14] and nuScenes3 [2] dataset. Both datasets are under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-
SA 4.0). Our implementation is partially based on PackNet-SfM4 [14] (MIT license) and DGP5 (MIT
license). PyTorch [31] is under BSD License.

2https://github.com/TRI-ML/DDAD
3https://www.nuscenes.org/terms-of-use
4https://github.com/TRI-ML/packnet-sfm
5https://github.com/TRI-ML/dgp
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