
Supplementary Material of Unsupervised Point Cloud
Completion and Segmentation by Generative

Adversarial Autoencoding Network

In the supplementary material, we first answer several questions mentioned in the checklist. We then
show more details about data, training process, network and comparison. Next we conduct more
experiments on the generalization of unpaired, multi-category and multi-noise-ratio. Then more
qualitative comparisons are given to show the advantages of our UGAAN. Finally, we present the
detailed pseudocode of network.

1 Answers for Checklist

The datasets that we use contain ScanNet, S3DIS, ScanObjNN, ShapeNet and ModelNet, which
are public datasets. We obtained these datasets according to the instructions on their websites. And
these datasets are point clouds or meshes data of scenes and objects which contain NO personally
identifiable information or offensive content.

2 More Details

2.1 Data Details

Each entry in our dataset contains an id that identifies the data, an input point cloud with noises, the
labels of input point cloud denoting the ground truth of segmentation and an artificial point cloud.
The ground truth labels are only used during evaluation. The numbers of models in each category of
our generated dataset from ScanNet and coseg’s generated dataset from S3DIS and ScanObjectNN
are shown in Table 1. The data numbers of corresponding artificial data generated from ShapeNet
and ModelNet are also shown in Table 1. As shown in Figure 1(a), the definition of noise ratio is
s = s2

s1
. Figure 1(b) and (c) show the difference between our data and the data generated [1] from

S3DIS the shape of noise of which are box and sphere separately.

Table 1: Data number of different categories in different dataset.

Dataset Bookcase Chair Sofa Table Bed Pillow Cabinet Bag Bin Box Desk Display Door Sink Toilet

ScanNet 1001 5425 501 2581
S3DIS 569 1306 55 455

ScanObjectNN 267 395 254 241 135 105 347 77 201 117 149 181 191 118 82
ShapeNet 452 4000 3173 4000 233 96 1571 83 343
ModelNet 271 286 1092 129 148 444

2.2 Training Details

We use PyTorch to implement our training framework. The generator and the discriminator of our
UGAAN are optimized alternately as shown in Algorithm 2. Since different datasets have different
data numbers, we train our UGAAN on ScanNet with 240 epochs, and 60 epochs for ScanObjectNN.

Algorithm 1 The Pseudocode of training framework in PyTorch-like Style

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Figure 1: Visualization of our generated data from ScanNet and unpaired generated from S3DIS.
Figure (b) is an example generated from ScanNet by us and (c) is an example generated from S3DIS
by unpaired. Figure (a) is the bird’s eye view of Figure (b) explaining the definition of noise ratio.

𝑠𝑠2 𝑠𝑠1a b c𝑠𝑠2

d e f train_one_epoch ():
f o r data_r , data_a i n data:

pc_r , lc_r , pc_r_r = G(data_r)
pc_a , lc_a , pc_a_r = G(data_a)
P_r = D(pc_r , lc_r)
P_a = D(pc_a , lc_a)
loss_g = G.loss(P_r , data_a , pc_a , pc_a_r , data_r , pc_r)
loss_d = D.loss(P_r , P_a)
opt_G.zero_grad ()
loss_g.backward ()
opt_D.zero_grad ()
loss_d.backward ()
opt_G.step()
opt_D.step()

2.3 Network Details

The specific parameters of the weight-shared MLPs 1 used in our CS-Net are clarified in this part.
For a MLP, [c1, c2, ..., cn] means that there are n layers in MLP. The input layer has c1 channels, the
output layers have cn channels, and c2, ..., cn−1 denote the channel numbers of hidden layers.

The parameter of the MLP of the decoder in our generator is [256, 512, 512, 1024, 512× 3], where
256 is the channel number of the latent code extracted by the encoder in generator. And the parameter
of the MLP in our discriminator is [1024 + 256, 64, 64, 1], where 1024 is the channel number of the
feature extracted by the encoder in discriminator and 256 indicates the channel number of the latent
code.

The pseudo code of our network can be found in Section 6.

2.4 Details about Comparison

The original unpaired [3] is designed for incomplete point cloud without any noise, the reconstruction
loss of which makes the input point cloud be a part of the prediction. However, our input is incomplete
point cloud with severe noise, thus, the original reconstruction loss will make the prediction contain
noise. We then compared the original unpaired and its two modified the model with ours as shown in
Table 2. The first modified model is removed the reconstruction loss and the second one is replaced
the reconstruction loss with ours. The comparison shows the importance of our reconstruction loss.
And even so, our UGAAN is still better than Unpaired due to the other carefully designed structures.

1Weight-shared MLP [2] is widely used in deep learning on point cloud to extract the features. The features
of points in a point cloud are generated by the same MLP with the same weight. The MLP is thus called
weight-shared MLP.

2

Table 2: Comparison (mIOU) of results by our method and Unpaired on ScanNet.

Model Avg. Bookcase Chair Sofa Table

Unpaired (original) 0.290 0.33 0.30 0.28 0.24
Unpaired (no reconstruction loss) 0.410 0.43 0.52 0.40 0.30

Unpaired (our reconstruction loss) 0.422 0.47 0.58 0.34 0.30
Ours 0.448 0.49 0.58 0.38 0.34

3 More Experiments

3.1 The generalization of unpaired

We also evaluate the generalization of unpaired [3]. We train it on our train dataset generated from
ScanNet and evaluate on the test set of S3DIS and ScanObjectNN. The comparison are shown in
table 3. The results show that our generalization on other datasets is much better than unpaired.

Table 3: The comparison results of unpaired and ours trained with ScanNet on test set of S3DIS and
ScanObjectNN.

Dataset Model Avg. Bookcase Chair Sofa Table Bed Pillow Cabinet

S3DIS Unpaired 0.470 0.39 0.51 0.59 0.39
Ours 0.486 0.46 0.51 0.63 0.34

ScanObjectNN Unpaired 0.450 0.40 0.43 0.47 0.41 0.49 0.50 0.47
Ours 0.610 0.53 0.73 0.64 0.53 0.66 0.61 0.56

3.2 Multi-category and Multi-noise-ratio

We also train and evaluate our UGAAN on the dataset that contains all categories(bookcase, chair,
sofa and table) with one noise ratio(50%) and all noise ratios (0%, 5%, 10%, 20% and 50%) with one
category(chair). The evaluation results on test set are shown in table 4 and table 5. The results also
show that our refiner can refine the prediction which makes our UGAAN more robust on the data
with different categories and noise ratio.

Table 4: The evaluation results (before and after refining) of our UGAAN trained on the dataset that
contains all categories(bookcase, chair, sofa and table) with one noise ratio(50%) are shown in the
first two lines. The last line is the evaluation results of our model trained on the dataset that contains
a single category.

Model Avg. Bookcase Chair Sofa Table

Ours(multi-category)(before refining) 0.408 0.44 0.48 0.38 0.33
Ours(multi-category)(after refining) 0.418 0.46 0.51 0.37 0.33

Ours 0.448 0.49 0.58 0.38 0.34

3.3 The practicality of inputs with random shifts

As noise and errors cannot be avoided in the object detection and instance segmentation process, to
better show the practicality of the proposed method, we evaluate our UGAAN on the inputs with
random shifts. We add the random shift xs ∈ [−smax, smax]

3 to all the points of inputs. smax

controls the range of the random shift, where we set it to 0, 0.01, 0.02, 0.05, 0.10, 0.20 for different
ranges in the experiments. The mIOUs on the category chair of ScanNet are shown in Table. And
Our UGAAN still shows great performs when the smax < 0.05.

3

Table 5: The evaluation results (before and after refining) of our UGAAN trained on the dataset that
contains all noise ratio(0%, 5%, 10%, 20% and 50%) with one category(chair) are shown in the first
two lines. The last line is the evaluation results of our model trained on the dataset that contains
single noise ratio.

Model Avg. 0.5 0.2 0.1 0.05 0

Ours(multi-noise-ratio)(before refining) 0.556 0.55 0.57 0.56 0.55 0.55
Ours(multi-noise-ratio)(after refining) 0.594 0.56 0.61 0.60 0.60 0.60

Ours 0.654 0.58 0.63 0.66 0.69 0.71

Table 6: The mIOUs on the category chair of ScanNet where the inputs are randomly shifted with
different smax.

smax 0 0.01 0.02 0.05 0.1 0.2

mIOU 57.79 57.58 57.33 54.04 44.41 23.94

4 Error bars of experiments

The error bars of our training experiments are shown in Figure 2(a) and 2(b), which shows that the
performance of our UGAAN is stable and easy to reproduce.

(a) ScanNet (b) ScanObjectNN

Figure 2: The box image of evaluation results of our model trained on ScanNet and ScanObjectNN,
where diamonds indicate the outliers.

5 More Qualitative Comparisons

More qualitative comparisons of our UGAAN that are trained on the train set of ScanNet and
evaluated on ScanNet, S3DIS and ScanObjectNN are shown in Figures 3, 4,5 and 6.

6 Pseudo code

The detailed pseudocodes of our UGAAN written in PyTorch-like style are shown in Algorithms.

Algorithm 2 The Pseudocode of UGAAN in PyTorch-like Style

c l a s s Generator:
d e f __init__(self):

self.encoder = PN2()
self.decoder = MLP()
self.encoder_r = PCNEncoder ()
self.decoder_r = PCNDecoder ()

4

self.loss = G_loss ()
d e f forward(self , p_input):

p_input: Bx3x2048
lc = self.encoder(p_input) # Bx256x1
pc = self.decoder(lc) # Bx3x512
gf = self.encoder_r(pc) # Bx1024x1
pc_r = self.decoder_r(gf, pc) # Bx3x2048
r e t u r n pc , lc , pc_r

c l a s s Discriminator:
d e f __init__(self):

self.encoder = PCNEncoder ()
self.decoder = MLP()
self.loss = D_loss ()

d e f forward(self , pc , lc):
pc: Bx3x512
lc: Bx256x1
f = self.encoder(pc) # Bx1024x1
f = self.cat([f, lc], 1) # Bx (1024+256) x1
P = self.decoder(f) # Bx1x1
r e t u r n P

c l a s s G_loss:
d e f __init__(self):

self.cd = ChamferDistance ()
d e f CD(self , pc1 , pc2):

r e t u r n self.cd(pc1 , pc2) + self.cd(pc2 , pc1)
d e f forward(self , P_r , data_a , pc_a , pc_a_r , data_r , pc_r):

r e t u r n -log(P_r) + 1e2*CD(data_a , pc_a) + 1e2*self.CD(data_a ,
pc_a_r) + 5*self.cd(pc_r , data_r)

c l a s s D_loss:
d e f forward(self , P_r , P_a):

r e t u r n -0.5*(log(1-P_r) + log(P_a))

Figure 3: Visualization of segmentation and completion results of chairs and sofas on ScanNet and
S3DIS.

Input Seg. Com. Input Seg. Com.

5

Figure 4: Visualization of segmentation and completion results of tables on ScanNet and S3DIS.
Input Seg. Com. Input Seg. Com.

Figure 5: Visualization of segmentation and completion results of bookcases on ScanNet and S3DIS.
Input Seg. Com. Input Seg. Com.

References
[1] Cheng-Kun Yang; Yung-Yu Chuang; Yen-Yu Lin. Unsupervised point cloud object co-

segmentation by co-contrastive learning and mutual attention sampling. In 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), 2021.

[2] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, 2017 Advances in Neural Information
Processing Systems (NIPS), volume 30. Curran Associates, Inc., 2017.

[3] Niloy J. Mitra Xuelin Chen, Baoquan Chen. Unpaired point cloud completion on real scans
using adversarial training. In 2020 International Conference on Learning Representations 2020
(ICLR), 2020.

6

Figure 6: Visualization of segmentation and completion results on ScanObjectNN. From top to
bottom, from left to right, the models are chair, sofa, bed, table, cabinet, bookcase, pillow and
bookcase.

Input Seg. Com. Input Seg. Com.

7

	Answers for Checklist
	More Details
	Data Details
	Training Details
	Network Details
	Details about Comparison

	More Experiments
	The generalization of unpaired
	Multi-category and Multi-noise-ratio
	The practicality of inputs with random shifts

	Error bars of experiments
	More Qualitative Comparisons
	Pseudo code

