
Unsupervised Point Cloud Completion and
Segmentation by Generative Adversarial

Autoencoding Network

Changfeng Ma
Nanjing University

changfengma@smail.nju.edu.cn

Yang Yang
Nanjing University

yyang_nju@outlook.com

Jie Guo
Nanjing University

guojie@nju.edu.cn

Fei Pan
Nanjing University

panfei@smail.nju.edu.cn

Chongjun Wang
Nanjing University

chjwang@nju.edu.cn

Yanwen Guo∗
Nanjing University
ywguo@nju.edu.cn

Abstract

Most existing point cloud completion methods assume the input partial point cloud
is clean, which is not the case in practice, and are generally based on supervised
learning. In this paper, we present an unsupervised generative adversarial au-
toencoding network, named UGAAN, which completes the partial point cloud
contaminated by surroundings from real scenes and cutouts the object simultane-
ously, only using artificial CAD models as assistance. The generator of UGAAN
learns to predict the complete point clouds on real data from both the discriminator
and the autoencoding process of artificial data. The latent codes from generator
are also fed to discriminator which makes encoder only extract object features
rather than noises. We also devise a refiner for generating better complete cloud
with a segmentation module to separate the object from background. We train
our UGAAN with one real scene dataset and evaluate it with the other two. Ex-
tensive experiments and visualization demonstrate our superiority, generalization
and robustness. Comparisons against the previous method show that our method
achieves the state-of-the-art performance on unsupervised point cloud completion
and segmentation on real data.

1 Introduction

In recent years, point clouds have gained more popularity [11] as the standard outputs of 3D scanning
devices [17, 39] and the fundamental data structure to represent and process 3D data [7, 6, 19].
However, clean and complete point clouds of objects, on which the downstream applications such
as reconstruction [13] significantly rely, are hard to obtain in practice due to the nature of scanners
and occlusions. Point cloud completion which infers a complete object model given a partial point
cloud thus has received considerable attention. Recent supervised methods [42, 41, 31, 26, 36, 34]
show remarkable performance on recovering the original shapes from incomplete point clouds, but
generally assume that the input point cloud is clean and does not contain any noises and outliers. Such
an assumption does not always hold in practice, because the surroundings around the target object
will be inevitably seen by the cameras during scanning real scenes. Though semantic or instance
segmentation on point clouds has been investigated in the literature, the state-of-the-art instance
segmentation methods [21, 5] only report around 68% average precision on the public ScanNet [7]
and [1] datasets. That is to say, accurately cutting out the target object from the whole point cloud

∗Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

still remains challenging. Therefore, it is important for the downstream applications to remove noises
from point clouds or directly complete the point clouds with noises.

In this paper, we propose an unsupervised end-to-end network for completing the partial point cloud
with noises from real scenes and outputting the object mask at the same time, dubbed UGAAN.
Previous supervised point cloud completion and segmentation works require the paired clean and
complete point clouds, together with object-level point labels of real scenes, for training, which
are hard and costly to obtain in practice [39, 22]. Most deep-learning-based methods heavily rely
on such training data, which limits their applications in practice. Clearly different from previous
methods, our UGAAN only needs unlabeled real-scene objects and unpaired artificial CAD models
for unsupervised training.

We employ the framework of GAN [10] which is widely used in unsupervised tasks. Traditional
framework of GAN is hard to converge due to the gap between real-scene data and artificial data.
To resolve this problem, we utilize an autoencoding generator to learn the basic shapes of objects
from the artificial data for easier convergence. Usually, the discriminator could easily distinguish
the artificial data as real data and the prediction as fake data, leading to bad performance due to
the data gap between predicted point clouds and artificial data. Our discriminator, by contrast,
accepts the prediction of artificial data rather than the artificial data itself as real data, which can
reduce the negative effect of data gap. Our discriminator also takes latent codes extracted from
real-scene data and artificial data as the criterion, by which the generator can robustly learn a better
latent space for prediction. We employ a refiner to refine and upsample the first prediction result,
and the final complete point clouds thus generated are more accurate and uniform. Finally, the
segmentation module predicts the labels according to the predicted point cloud and input point cloud.
Compared with usual point cloud completion datasets [42] whose objects are aligned by the yaw
angles and scales, real-scene datasets such as ScanNet and S3DIS [1] contain objects that have
different yaw angles and varied scales, making the prediction of complete point clouds challenging.
To accommodate real-scene data, we randomly rotate and scale the artificial point clouds for easier
learning and convergence.

We train our UGAAN on ScanNet with ShapeNet as the artificial dataset without any pre-training or
fine-tuning, and then directly evaluate it on the other two real-scene datasets, including S3DIS and
ScanObjectNN [28]. Comparisons with the state-of-the-art methods [22, 39] show the superiority of
our method.

The main contributions of our work are as follows.

• We propose, for the first time, an unsupervised end-to-end network for completion and
segmentation of point clouds with outliers by combining GAN and an autoencoding network.

• Our method completes the real-scene object with outliers from the background without the
need of any pre-training.

• We conduct extensive experiments for analysis and comparisons on three different real-scene
datasets, the results of which show the superiority and generalization ability of our methods.

The rest of this paper is organized as follows. Section 2 reviews briefly the works on point cloud
completion and segmentation. Section 3 introduces our UGAAN in detail. Dataset generation,
experiments and comparisons are shown in Section 4 and Section 5. Section 6 concludes the whole
paper and highlights future work.

2 Related Work

2.1 Point cloud completion and segmentation.

In the early stage, existing successful works [27, 8] utilize voxels as representations of 3D mod-
els on which 3D convolutional neural networks can be immediately applied. PMP-Net [34] and
PMP-Net++ [33] generate complete point clouds by moving input points to appropriate positions
iteratively with minimum moving distance. SnowflakeNet [36] utilizes transformer and point-wise
feature deconvolutional modules to refine the first-stage point could multiple times. For semantic
segmentation, Jiang et al. [15] propose a multi-stage ordered convolution module to stack and encode
the information from eight spaces, achieving orientation encoding and scale awareness. Liang et

2

al. [21] split nodes of a pre-trained, intermediate, semantic superpoint tree for proposals of instance
objects. Point Transformer [43] introduces transformer in the encoding process of point cloud to learn
the representation, which can be applied to different point cloud processing such as segmentation and
classification.

2.2 Unsupervised point cloud learning.

Xiao et al. [37] summarize the unsupervised point cloud representation learning works using DNNs.
Some works [20, 38, 30] propose point cloud unsupervised pre-training approaches, Others proposed
unsupervised model [40, 12, 4] achieves excellent results on classification, segmentation and upsam-
pling tasks. Jiang et al. [14] introduce two contrastive losses to respectively facilitate downstream
classification and segmentation. Coseg [22] presents a point cloud object co-segmentation task,
aiming to segment the common 3D objects in a set of point clouds, and fathom a method with
co-contrastive losses to minimize feature discrepancy inside estimated object points and maximize
feature separation between the object and background points, which also leads to a weak general-
ization. Chen et al. [39] propose an unpaired point cloud completion method that can be trained
without requiring explicit correspondence between partial and complete point clouds by employing
an adaptive transform network in GAN, however, the training process of its network is complicated
with several pre-training models.

3 Method

3.1 Problem Formulation

Let Pr ∈ Mn0×3 represent the point cloud from real-scene data with distribution pr and Pa denote
artificial data with distribution pa, respectively. Pr contains points belonging to the object and from
background (noises). Obj(Pr) represents the object points on Pr. Assuming that Obj(Pr) ∼ po, the
goal of unsupervised point cloud completion and segmentation is to train a generator G satisfying the
following two conditions:

1. G(Pr; θg) ∼ pa,

2. G(Pr; θg) ∩ Pr ∼ po,

where G(Pr; θg) represents the point cloud predicted by G with input Pr and parameters θg , and the
operation ∩ denotes the intersection of two point clouds2. The two conditions are utilized to constrain
completion and segmentation processes of point clouds, respectively. Condition 1 encourages the
predicted shapes to be similar to the shapes in the artificial dataset. Condition 2 requires that the
generator should predict shapes according to Pr rather than generating random shapes, and the
segmentation result which is the intersection of prediction and Pr should match the object points.

3.2 Network Architecture

We employ Generative Adversarial Network (GAN) [10] to solve this unsupervised learning problem.
As shown in Figure 1, our UGAAN consists of an autoencoding generator and a discriminator that
plays a minimax game for unsupervised completion and segmentation of real-scene object point cloud.
Furthermore, we also utilize a refiner to refine the predicted complete point cloud and a segmentation
module for label prediction.

Autoencoding Generator. We use PointNet++ [24] as the encoder E of the generator to extract the
latent code z of input point cloud Pi, and a multi-layer perceptron (MLP) as the decoder to predict
the point cloud Po ∈ Mn1×3. The generator takes artificial data as input to learn basic shapes of point
clouds. Then, we employ a lightweight encoder-decoder refiner [42] R on Po to get the refined and
upsampled output Por ∈ Mn2×3. Different from [42], the upsampling module directly refines the
complete point cloud Po. Given an input point cloud Pi, we can obtain the latent code, the complete
prediction and the refinement by z = E(Pi; θg), Po = G(Pi; θg) and Por = R(Po; θr), respectively,
where θg and θr are the parameters of generate G and refiner R.

2A point cloud P ∈ Mn×3 can also be seen as a set containing n points p ∈ M1×3.

3

fake / real ?

real

Encoder Encoder

Encoder

Decoder MLP

Decoder Segmentation
Module

Latent code 𝑧𝑧 Global feature

Global feature

Input point cloud 𝑃𝑃
𝑖𝑖

C
om

plete point cloud 𝑃𝑃𝑜𝑜

R
efined point cloud 𝑃𝑃

𝑜𝑜
𝑟𝑟

Segm
entation label

C

Autoencoding Generator Discriminator

Refiner

UGAAN: Unsupervised Generative Adversarial Autoencoding Network

Generator Discriminator

𝑃𝑃𝑖𝑖 ∼ 𝑝𝑝𝑎𝑎

𝑃𝑃𝑖𝑖 ∼ 𝑝𝑝𝑟𝑟

Figure 1: The overall architecture of our UGAAN. The network contains an autoencoding generator, a
discriminator, a refiner and a segmentation module. The autoencoding generator predicts the complete
point cloud according to the input. The discriminator takes predicted point cloud and latent code
as the criterion and decides whether the input point cloud is from artificial data or not. The refiner
refines the complete point cloud, and the segmentation module predicts labels.

Discriminator. We take advantage of the encoder proposed in [42] to extract the global features f of
Po. Then the global feature f and the latent code z are combined and fed into a MLP for predicting
the probability P:

P(Pi; θg, θd) = D(z, Po; θd) = D
(
E(Pi; θg), G(Pi; θg); θd

)
, (1)

where Pi ∼ pa and θd is the parameters of the discriminator. To reduce the negative effect of the
shape gap between the prediction and artificial data, we feed the predicted shapes rather than the
artificial data into the discriminator. The discriminator also takes latent codes as the criterion by
which the generator can learn better latent codes for prediction.

Segmentation Module. Finally, the segmentation results (i.e. the object points of pr) are obtained
under the guidance of the complete prediction Po. Here, we directly calculate the intersection between
Po and Pr to get the object points, rather than predicting with another network. Due to the discrete
nature of point clouds, the strict intersection between Po and Pr is almost empty. As a consequence,
we make use of general intersection between the point clouds P1 and P2 which is indicated by the
overlapping area:

P1 ∩d P2 = {cdp→P1 < d ∧ cdp→P2 < d|p ∈ M1×3}, (2)

where cdp→P1
will be introduced in Equation 5 with d being the threshold. The predicted segmenta-

tion label of p ∈ Pr conditioned on Po with threshold d can be computed as:

Sd(p;Pr, PO) =

{
1 p ∈ Pr ∩d Po,
0 others,

(3)

Besides, the segmentation label of Pr = [pT
1 , ...,p

T
j , ...,p

T
n]

T can be obtained by Sd(Pr;Po) =

[Sd(p1;Pr, PO), ..., Sd(pj;Pr, PO), ..., Sd(pn;Pr, PO)]
T ∈ Mn×1.

3.3 Optimization

We modify the optimization strategy introduced by GAN [10] to train our UGAAN on the unsuper-
vised point cloud completion and segmentation problem. Specifically, the optimization problem of
the proposed UGAAN is formulated as:

min
θg

max
θd

E
Pi∼pa

[logP(Pi; θg, θd)] + E
Pi∼pr

[log (1− P(Pi; θg, θd))]. (4)

Due to the data gap between artificial data and real-scene data [39] and the limited fitting ability
of the decoder, the terms G(Pr) and Pa often exhibit huge differences as shown in the top left
part of Figure1. It makes D easier to optimize than G which makes network hard to converge
and will result in poor completion performance. Thus, different from the original GAN where the

4

discriminator directly works on G(Pr) and Pa, the discriminator of UGAAN predicts according
to G(Pr) and G(Pa) to reduce the negative effects caused by these gaps for easier convergence.
Besides, if we impose no other constraints on problem 4, the generator may just generate random
points after the optimization process is complete. Thus, we also impose two losses on problem 4 to
restrict the prediction of the generator, namely the autoencoding loss between G(Pa) and Pa, and the
reconstruction loss between G(Pr) and Pr.

We employ the well-known Chamfer Distance(CD) [9] to measure the similarity between point
clouds. For a point cloud P = [pT

1 , ...,p
T
j , ...,p

T
n]

T , where pj ∈ M1×3, and a point p ∈ M1×3, the
Chamfer Distance from p to P is:

cdp→P =
n

min
j=1

||p− pj ||2. (5)

For two point clouds P1 = [pT
1 , ...,p

T
j , ...,p

T
n]

T and P2, the Chamfer Distance from P1 to P2 is:

cdP1→P2 =
1

n1

n∑
j=1

cdpj→P2 . (6)

Besides, the Chamfer Distance between P1 and P2 is defined as:

cdP1↔P2
= cdP1→P2

+ cdP2→P1
. (7)

The point cloud P1 will be a part of the point cloud P2 when the term cdP1→P2
is minimized.

Moreover, the point clouds P1 and P2 will be identical when the term cdP1↔P2
is minimized.

We use the Chamfer Distance between G(Pa) and Pa as the autoencoding loss. Beside, the Chamfer
Distance from G(Pr) to Pr is utilized as the reconstruction loss, which makes the predicted shape
be a part of the input and forces the generator to predict according to the input. We also apply the
Chamfer Distance between R(G(Pa)) and Pa to optimize the refiner R.

In practice, we alternately optimize G with the optimization goal:

minθg,θr E
Pi∼pr

[
− α1 · logP(Pi; θg, θd) + α2 · cdG(Pi;θg)→Pi

]
+

E
Pi∼pa

[α3 · cdG(Pi;θg)↔Pi
+ α4 · cdR(G(Pi;θg);θr)↔Pi

],
(8)

and D with optimization goal:

min
θd

E
Pi∼pr

[
− α5 · log

(
1− P(Pi; θg, θd)

)]
+ E

Pi∼pa

[
− α6 · logP(Pi; θg, θd)

]
, (9)

where α1∼6 are the weights used for balancing the influences between each term.

4 Experiments

4.1 Datasets

We first generate the complete point clouds by sampling CAD models of ShapeNet [3] and Mod-
elNet [35], serving as the artificial data. We randomly rotate and scale them to simulate poses of
real-scene data. Then we follow a similar process as ScanObjectNN [28] to generate the input point
clouds with surrounding points (background points) by cutting out the points in axis-aligned boxes
whose origins are the center of objects in ScanNet [7]. The sizes of these axis-aligned boxes are s
larger than the axis-aligned bounding boxes of objects, where we set s to 50%. We also record labels
of points which are 1 for object points and 0 for background points (noises) for evaluation. We select
four categories to establish four datasets and randomly split the data into train, valid and test sets.
The coordinates of all point clouds are normalized to [−1, 1]. Our UGAAN is trained on the train set,
and evaluated on test set.

4.2 Evaluation Metrics

Generating completion ground truth manually for real-scene data is hard. To overcome this, we utilize
Scan2CAD[2], a dataset containing the alignment information from models of ShapeNet to scenes of

5

Table 1: Comparison (mIOU) of segmentation results by our method (trained with train set of
ScanNet) and previous methods on test sets of ScanNet and S3DIS.

Dataset Setting Model Avg. Bookcase Chair Sofa Table

ScanNet

Full Sup. PointTransformer [43] 0.679 0.58 0.83 0.69 0.62

Unsup.
K-Means 0.201 0.25 0.23 0.18 0.16
SharinGAN [18] 0.365 0.42 0.47 0.31 0.26
Unpaired [39] 0.422 0.47 0.58 0.34 0.30
Ours 0.448 0.49 0.58 0.38 0.34

S3DIS

Full Sup. DGC [32] 0.722 0.34 0.96 0.69 0.9
PN++ [24] 0.735 0.44 0.92 0.75 0.83

Unsup.

K-Means 0.252 0.36 0.18 0.27 0.2
AdaCoSeg [45] 0.31 0.34 0.24 0.38 0.28
CoSeg [22] 0.465 0.36 0.51 0.50 0.49
Unpaired [39] 0.470 0.39 0.51 0.59 0.39
Ours 0.486 0.46 0.51 0.63 0.34

Table 2: Comparison (CD) of completion results by our method and previous methods on test sets of
ScanNet. The results are the smaller the better.

Model(CD / F0.1%
score) Avg. Chair Table Sofa Bookcase

SharinGAN [18] 0.0322 / 0.091 0.0376 / 0.095 0.0312 / 0.119 0.0224 / 0.111 0.0376 / 0.038
Unpaired [39] 0.0405 / 0.188 0.0549 / 0.158 0.0339 / 0.274 0.0331 / 0.222 0.0403 / 0.100

Ours 0.0274 / 0.217 0.0276 / 0.212 0.0279 / 0.300 0.0211 / 0.233 0.0330 / 0.125

ScanNet, to replace the incomplete objects with complete models, and use [16, 23, 44] to remove the
unseen points caused by occlusion for simulating the real scene data. Then Chamfer Distance(CD)
and F-Score@0.1%(F0.1%

score)[25] is employed to measure the difference between predicted complete
point clouds and ground-truth models. For the evaluation of segmentation, we employ IOU, following
the previous work [22], to measure the difference between prediction and ground truth.

4.3 Implementation details
Our framework is implemented using PyTorch. The point numbers n0∼2 in Section 3 are set to 2048,
512 and 2048, and the weights α1∼6 are set to 1, 100, 5, 100, 0.5 and 0.5. We train four categories
separately with the Adam optimizer. The learning rate of the optimizer and the batch size for our
network are set to 1.0 × 10−5 and 4, separately. We train the model for 240 epochs. Training our
UGAAN takes about 20 hours for convergence with a GTX 2080Ti GPU. We will make our dataset
and codes public in the future.

4.4 Comparison
We compare our UGAAN against existing representative methods on point cloud segmentation includ-
ing unsupervised methods [22, 39, 45, 18] and supervised methods [43, 32, 24] and on unsupervised
point cloud cloud completion [39] both quantitatively and qualitatively. We simply modify [39]
by replacing its reconstruction loss with ours and retrain it to fit our datasets, and then utilize our
segmentation module to get the segmentation results for evaluation. As shown in Table 1, we compare
these methods on ScanNet and S3DIS with four categories, including the chair, table, sofa and
bookshelf. Our method is trained on the training set of ScanNet and tested on the test set of these
two datasets. The results are 6.16% and 4.51% higher than [39] and [22], showing the superiority of
our method. We also test our method trained with ScanNet with more categories on the test set of
ScanObjectNN, and the results are shown in the last second row of Table 3. There are only seven
common categories in these two datasets. Thus, we can only conduct the comparison on these seven
categories. We also train our UGAAN on 15 categories of ScanObjectNN together with ShapeNet
and ModelNet to evaluate the generalization ability across multiple categories. The results are shown
in the last row of Table 3. The results are 8.73% and 4.46% higher than [22] on "Avg. (part)" and
"Avg. (all)". This verifies the generalization ability of our method with different categories. For the
quantitative comparison of completion, we build a test set using the method described in Section 4.2

6

Table 3: Comparison (mIOU) of segmentation results by our and previous methods on test sets of
ScanObjectNN. The last two rows show the results of our mothed trained on train set of ScanNet
and ScanObjectNN, separately. The "Avg. (part)" indicates the mIOU of the first seven categories
(Bookcase ∼ Cabinet) and "Avg. (all)" indicates the mIOU on all the categories.

Setting Model

A
vg. (part)

B
ookcase

C
hair

Sofa

Table

B
ed

Pillow

C
abinet

B
ag

B
in

B
ox

D
esk

D
isplay

D
oor

Sink

Toilet

A
vg. (all)

Full Sup.
DGC [32] 0.757 0.60 0.84 0.79 0.76 0.80 0.78 0.73 0.76 0.81 0.73 0.72 0.76 0.83 0.64 0.82 0.753

PN++ [24] 0.764 0.62 0.84 0.81 0.77 0.81 0.75 0.75 0.75 0.83 0.79 0.77 0.79 0.83 0.68 0.85 0.775

Unsup.

K-Means 0.370 0.34 0.40 0.41 0.31 0.38 0.37 0.38 0.43 0.42 0.41 0.38 0.38 0.45 0.39 0.40 0.389
AdaCoSeg [45] 0.367 0.26 0.55 0.54 0.23 0.37 0.29 0.33 0.38 0.31 0.48 0.37 0.44 0.35 0.43 0.44 0.385

CoSeg [22] 0.561 0.48 0.58 0.64 0.44 0.64 0.60 0.55 0.66 0.70 0.68 0.46 0.62 0.74 0.57 0.68 0.605
Unpaired [39] 0.450 0.40 0.43 0.47 0.41 0.49 0.50 0.47 - - - - - - - - -

Ours (ScanNet) 0.610 0.53 0.73 0.64 0.53 0.66 0.61 0.56 - - - - - - - - -
Ours (ScanObjectNN) 0.587 0.50 0.65 0.64 0.50 0.65 0.60 0.57 0.71 0.73 0.70 0.48 0.63 0.75 0.60 0.73 0.632

Scene Input Ours (Seg.)Unpaired (Seg.) Unpaired (Com.) Ours (Com.)

Figure 2: Point cloud completion and segmentation results by Unparied [39] and our method. The
categories from top to bottom: chair, table, and soda. Red and white in the inputs denote points on
the partial objects and outliers, separately. The real inputs do not have the segmentation labels. The
left columns shows the real-scenes containing input point clouds.

on the categories containing chair, table, bookcase and sofa. Table 2 shows that our UGAAN can
predict more accurate complete point clouds.

Qualitative results on the three categories are shown in Figure 2. The point clouds produced by our
UGAAN exhibit more accurate shapes and details, such as the legs and backrest of the chair and the
legs of the table shown in Figure 2, leading to more accurate segmentation. And the completion results
of ours present more uniform spatial distributions, such as the sofa shown in Figure 2 which contains
less noise, which could be attributed to our refiner. Uniform point distribution would facilitate further
applications including re-construction, simplification, and so on.

4.5 Ablation study
Ablation study on network architecture. We conduct experiments on three ablated models to
evaluate the necessity of important structures and reconstruction loss of our network. The first
model is the basic structure of GAN with a feature extractor and a shape generator. The generator
predicts a complete point cloud according to the input point cloud, and the discriminator distinguishes
between the prediction and the artificial object. The second model replaces the original generator
with the autoencoding generator based on the first model. The third model adds the reconstruction
loss introduced in Section 3.3 to the second model. The discriminator of the fourth model makes a
distinction between the predictions with real-scene data and the artificial object as input separately.
And the discrimination of our full model also takes latent codes as the criterion. As shown in Table 4,

7

we train and test these ablated models with the ScanNet dataset on the chair category. The evaluation
shows the importance of these structures and reconstruction loss. The comparison against the third
and fourth models shows that there is a gap between the predictions and artificial point clouds, which
explains the reason we apply discriminator to the predictions rather than the artificial point clouds
directly.

Table 4: Ablation study of the proposed method.

Model IOU

backbone 0.122
+ autoencoding generator 0.449
+ reconstruction loss 0.474
+ discrimination on predictions 0.544
+ discrimination on latent codes (full) 0.580

Table 5: Ablation study of refiner.

Dataset ScanNet S3DIS ScanObjectNN

Ours (no refiner) 0.447 0.478 0.596
Ours (full) 0.444 0.486 0.610

Refiner. We also evaluate the importance of refiner both quantitatively and qualitatively. As shown
in Figure 3, the refiner can refine the prediction and make the prediction more uniform and reduce
noises. The mIOU of our methods without refiner and with refiner on the test sets of the S3DIS and
ScanObjNN are shown in Table 5. These methods are trained with the train set of ScanNet. The
results show that even though the refiner takes no effect when the method is trained and evaluated on
the same dataset, the refiner makes our method more robust when evaluated on new datasets.

Figure 3: The point clouds before and after refining on chair category.
The noise ratio s. We also set the noise ratio s to 20%, 10%, 5% and 0%, and generate four more
datasets with different noise ratios. Then we repeat the experiments above on the chair category and
the IOUs are shown in Figure 4. The lower the noise ratio is, the easier the problem is, making the
model perform better. The results also show our generalization performance.

0.5 0.2 0.1 0.05 0
Noise Ratio

0.58

0.60

0.62

0.64

0.66

0.68

0.70

IO
U

Figure 4: The IOU of our
method on chair category with
different noises ratio.

0.005
0.010

0.015
0.020

0.025
0.030

0.035
0.040

0.045

Threshold

0.50

0.52

0.54

0.56

0.58

0.60

IO
U

[0.025 0.597]

(a) Chair

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Threshold

0.64

0.65

0.66

0.67

0.68

0.69

0.70

0.71

IO
U

[0.2 0.7128]

(b) Bag

Figure 5: The IOU of our method with different threshold of inter-
section on chair and bag categories.

The threshold d of intersection. We also evaluate the influence of different threshold d of intersection
on the IOU during the evaluation. As Figure 5 shows, we apply different d to the categories chair and
bag. The results show that different object has different best d, leading to best IOU according to their
volume in practice. Since we normalize the coordinates of point clouds to [−1, 1], the point clouds of
small objects such as bags contain more details in the same space than big objects such as chairs.

Extracted features of object points and background points. We visualize the extracted features of
object points and background points from the encoder for analysis. As Figure 6(a) shows, every line
indicates the feature of a point. The lighter the pixel is, the larger the value of this channel is. The
figure shows that object points have larger values on some channels which can be passed to the latent
code by max-pooling operation. Figure 6(b) shows the visualization of the features of artificial points
clouds, whose pattern is similar to Figure 6(a), since all the points of artificial data are object points.

8

Figure 6: Visualization of the extracted features of real-scene data and
artificial data. The bar on the left indicates the type (object or noise) of
this line.

Visualization of latent
codes. We use t-SNE [29]
to visualize the latent code
distribution of real-scene
data and artificial data. As
shown in Figure 7 (c), the
blue points represent the
artificial data and red points
indicate the real-scene data,
and Figure 7 (e) shows
the detailed point clouds
of an area. The real-scene
data that contains the same
shape as the artificial data
are grouped together, which

shows the robustness of our method with input contaminated by noises. The point clouds having
similar yaw angles are grouped together showing that our method could learn reasonable latent codes.
This could be attributed to the fact that our discriminator also takes latent codes as the criterion.
Visualization of the latent codes extracted from the method whose discriminator only takes predicted
point cloud as the criterion is shown in Figure 7 (d). It is obviously observed that these two kinds of
data are separated clearly. We also train our method with the dataset that mix up the real-scene data
with different noise ratios. As shown in Figure 7 (a) and (b), similar object with different noise ratios
are grouped together, which shows the robustness of our method on real-scene data with different
noise ratios.

a b

c d

e

Figure 7: Visualization of t-SNE results with details. The same object with different noise ratio have
the same color in Figure (b). Red and blue points are indicate the real-scene data and artificial data,
respectively.

5 Conclusion, Discussion, and Future Work
We have presented UGAAN, an end-to-end network specifically designed for unsupervised completion
and segmentation of point clouds contaminated by noises or containing outliers. Benefiting from our
proposed autoencoding generator and latent-code-based discriminator, our method is able to generate
complete point cloud accurately and segment the input real-scene point cloud in the meanwhile.
Extensive experiments show the superiority and generalization of our method on different categories
of different datasets. We also conduct experiments verifying the robustness of our method on noises.
Our method needs artificial datasets during the unsupervised training, which limits our method to
apply to those categories without artificial correspondences. The encoder and decoder of our generator
and the overall structure of GAN can be improved for better prediction and the segmentation module
can be replaced with a learning-based module, which are the future work of our method.

Acknowledgments and Disclosure of Funding

This work was supported in part by the National Natural Science Foundation of China under Grant
numbers 62032011, 61972194 and Natural Science Foundation of Jiangsu Province award numbers
BK20211147.

9

References
[1] Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer, and

Silvio Savarese. 3d semantic parsing of large-scale indoor spaces. In Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition, 2016.

[2] Armen Avetisyan, Manuel Dahnert, Angela Dai, Manolis Savva, Angel X. Chang, and Matthias
Niessner. Scan2cad: Learning cad model alignment in rgb-d scans. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

[3] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

[4] Haolan Chen, Shitong Luo, Xiang Gao, and Wei Hu. Unsupervised learning of geometric
sampling invariant representations for 3d point clouds. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 893–903, 2021.

[5] Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, and Xinggang Wang. Hierarchical
aggregation for 3d instance segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 15467–15476, October 2021.

[6] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3d object detection
network for autonomous driving. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1907–1915, 2017.

[7] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 5828–5839, 2017.

[8] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner. Shape completion using 3d-encoder-
predictor cnns and shape synthesis. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5868–5877, 2017.

[9] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3d object
reconstruction from a single image. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 605–613, 2017.

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 27. Curran Associates, Inc., 2014.

[11] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Bennamoun. Deep
learning for 3d point clouds: A survey. IEEE transactions on pattern analysis and machine
intelligence, 2020.

[12] Z. Han, X. Wang, Y. S. Liu, and M. Zwicker. Multi-angle point cloud-vae: Unsupervised feature
learning for 3d point clouds from multiple angles by joint self-reconstruction and half-to-half
prediction. IEEE, 2019.

[13] Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-Or. Point2mesh. ACM Transactions
on Graphics (TOG), 39:126:1 – 126:12, 2020.

[14] Jincen Jiang, Xuequan Lu, Wanli Ouyang, and Meili Wang. Unsupervised representation
learning for 3d point cloud data. arXiv preprint arXiv:2110.06632, 2021.

[15] M. Jiang, Y. Wu, T. Zhao, Z. Zhao, and C. Lu. Pointsift: A sift-like network module for 3d
point cloud semantic segmentation. 2018.

[16] Ayellet Tal Katz Sagi and Ronen Basri. Direct visibility of point sets. ACM Transactions on
Graphics (TOG), page 24, July 2007.

10

[17] Giseop Kim and Ayoung Kim. Scan context: Egocentric spatial descriptor for place recognition
within 3d point cloud map. In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 4802–4809. IEEE, 2018.

[18] P. N. V. R. Koutilya, Hao Zhou, and David Jacobs. Sharingan: Combining synthetic and real
data for unsupervised geometry estimation. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 13971–13980, 2020.

[19] Bo Li. 3d fully convolutional network for vehicle detection in point cloud. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1513–1518. IEEE,
2017.

[20] Z. Li, Z. Chen, A. Li, L. Fang, Q. Jiang, X. Liu, J. Jiang, B. Zhou, and H. Zhao. Simipu: Simple
2d image and 3d point cloud unsupervised pre-training for spatial-aware visual representations.
2021.

[21] Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, and Kui Jia. Instance segmentation in 3d
scenes using semantic superpoint tree networks. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 2783–2792, October 2021.

[22] Cheng-Kun Yang; Yung-Yu Chuang; Yen-Yu Lin. Unsupervised point cloud object co-
segmentation by co-contrastive learning and mutual attention sampling. In 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), 2021.

[23] Ravish Mehra, Pushkar Tripathi, Alla Sheffer, and Niloy J. Mitra. Visibility of noisy point cloud
data. Computers and Graphics, In Press, Accepted Manuscript:–, 2010.

[24] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, 2017 Advances in Neural
Information Processing Systems (NIPS), volume 30. Curran Associates, Inc., 2017.

[25] Maxim Tatarchenko, Stephan R Richter, René Ranftl, Zhuwen Li, Vladlen Koltun, and Thomas
Brox. What do single-view 3d reconstruction networks learn? In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3405–3414, 2019.

[26] Lyne P Tchapmi, Vineet Kosaraju, Hamid Rezatofighi, Ian Reid, and Silvio Savarese. Topnet:
Structural point cloud decoder. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 383–392, 2019.

[27] Duc Thanh Nguyen, Binh-Son Hua, Khoi Tran, Quang-Hieu Pham, and Sai-Kit Yeung. A field
model for repairing 3d shapes. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5676–5684, 2016.

[28] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Duc Thanh Nguyen, and Sai-Kit
Yeung. Revisiting point cloud classification: A new benchmark dataset and classification model
on real-world data. In International Conference on Computer Vision (ICCV), 2019.

[29] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605, 2008.

[30] H. Wang, Q. Liu, X. Yue, J. Lasenby, and M. J. Kusner. Unsupervised point cloud pre-training
via occlusion completion. 2020.

[31] Xiaogang Wang, Marcelo H Ang Jr, and Gim Hee Lee. Cascaded refinement network for point
cloud completion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 790–799, 2020.

[32] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M.
Solomon. Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics
(TOG), 2019.

[33] X. Wen, P. Xiang, Z. Han, Y. P. Cao, P. Wan, W. Zheng, and Y. S. Liu. Pmp-net++: Point cloud
completion by transformer-enhanced multi-step point moving paths. 2022.

11

[34] Xin Wen, Peng Xiang, Zhizhong Han, Yan-Pei Cao, Pengfei Wan, Wen Zheng, and Yu-Shen Liu.
Pmp-net: Point cloud completion by learning multi-step point moving paths. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[35] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. Proceedings of
28th IEEE Conference on Computer Vision and Pattern Recognition (CVPR2015), 2015.

[36] Peng Xiang, Xin Wen, Yu-Shen Liu, Yan-Pei Cao, Pengfei Wan, Wen Zheng, and Zhizhong Han.
SnowflakeNet: Point cloud completion by snowflake point deconvolution with skip-transformer.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2021.

[37] A. Xiao, J Huang, D. Guan, and S. Lu. Unsupervised representation learning for point clouds:
A survey. 2022.

[38] S. Xie, J. Gu, D. Guo, C. R. Qi, L. J. Guibas, and O. Litany. Pointcontrast: Unsupervised
pre-training for 3d point cloud understanding. 2020.

[39] Niloy J. Mitra Xuelin Chen, Baoquan Chen. Unpaired point cloud completion on real scans
using adversarial training. In 2020 International Conference on Learning Representations 2020
(ICLR), 2020.

[40] J. Yang, P. Ahn, D. Kim, H Lee, and J. Kim. Progressive seed generation auto-encoder for
unsupervised point cloud learning. arXiv e-prints, 2021.

[41] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Point cloud auto-encoder
via deep grid deformation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 206–215, 2018.

[42] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and Martial Hebert. Pcn: Point
completion network. In 2018 International Conference on 3D Vision (3DV), pages 728–737.
IEEE, 2018.

[43] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 16259–
16268, 2021.

[44] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern library for 3D data
processing. arXiv:1801.09847, 2018.

[45] Chenyang Zhu, Kai Xu, Siddhartha Chaudhuri, Li Yi, Leonidas J. Guibas, and Hao Zhang.
Adacoseg: Adaptive shape co-segmentation with group consistency loss. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 8540–8549, 2020.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [No] There is no
theoretical results in this paper.

(b) Did you include complete proofs of all theoretical results? [No] There is no theoretical
results in this paper.

3. If you ran experiments...

12

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We include the
pseudo code of our method in our supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4.3.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See our supplementary material.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4.3.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] See the supplemental material.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] See the supplemental material.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots,
if applicable? [No] There is no crowdsourcing or conducted research with human
subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [No] There is no crowdsourcing or conducted
research with human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [No] There is no crowdsourcing or conducted
research with human subjects.

13

	Introduction
	Related Work
	Point cloud completion and segmentation.
	Unsupervised point cloud learning.

	Method
	Problem Formulation
	Network Architecture
	Optimization

	Experiments
	Datasets
	Evaluation Metrics
	Implementation details
	Comparison
	Ablation study

	Conclusion, Discussion, and Future Work

