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This appendix is structured as follows. In Section A, we first provide a list of acronyms used
throughout the paper, followed by further details about our decoder architectures (Section B). In
Section C we detail the parameter setting used in our pre-training and we provide an analysis
about how the overlap between the training image pairs affects the pre-training and downstream
performance (Section C.2) as well as an ablation on the impact of the decoder depth (Section C.3).
Section D then gives further details about monocular tasks, including a set of experiments on a
complementary task, namely absolute pose regression (Section D.4). In Section E, we give more
details and visual examples concerning the binocular tasks as well as a complementary task, namely
stereo matching (Section E.3). Next, we list assets and computing resources in Section F. Finally, we
provide additional reconstruction examples and introduce a video of sample scene reconstructions
(Section G).

A List of acronyms

We provide the list of acronyms used in the paper, excluding acronyms related to papers or datasets
with direct references.

acronym meaning

Acc@X Accuracy at a certain error threshold X
AEPE Average EndPoint Error
CroCo Cross-view Completion
DINO DIstillation with NO labels [6]
DPT Dense Prediction Transformer [24]
FLOPs Floating-Point Operations
IN1K ImageNet-1K [26]
mIoU mean Intersection-over-Union
MAE Masked Auto-Encoder [14]
MIM Masked Image Modeling
MLP Multi-Layer Perceptron
MSE Mean Squared Error
NLP Natural Language Processing
RPR Relative Pose Regression
ViT Vision Transformers [11]
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B Details on the decoder architectures

In this section, we provide detailed equations about the blocks used in the CroCo model architecture.

For the encoder, we use a standard transformer block. Let X ∈ RN×D be the N D-dimensional
tokens as input to the transformer block. The transformer block computes:

X̄ = LayerNorm(X)

X ′ = X + Attention
(
WS

QX̄,WS
KX̄,WS

V X̄
)

(1)

Output = X ′ + MLP(LayerNorm(X ′)),

where WS
Q ,WS

K ,WS
V are learnable parameters. In practice, a bias is also learned and applied to these

3 projections but are omitted in the equations for the sake of clarity. The attention itself is computed
classically as:

Attention(Q,K, V ) = Proj
(

softmax
(
QK⊤
√
D

)
V
)
, (2)

where Proj denotes a projection layer, i.e., a fully-connected layer.

We now provide equations for the two blocks we have tried in the decoder, namely the CrossBlock
and the CatBlock.

In the CrossBlock decoder architecture, self-attention and cross-attention are used one after the
other. Let X,Y ∈ RN×D be the N input tokens to the block from the two views respectively. The
CrossBlock output is computed by:

X̄ = LayerNorm(X)

Ȳ = LayerNorm(Y )

X ′ = X + Attention
(
WS

QX̄,WS
KX̄,WS

V X̄
)

(3)

X ′′ = X ′ + Attention
(
WC

Q LayerNorm(X ′),WC
K Ȳ ,WC

V Ȳ
)

Output = X ′′ + MLP(LayerNorm(X ′′)),

where WS
Q ,WS

K ,WS
V denote learnable parameters for the self-attention and likewise WC

Q ,WC
K ,WC

V
for the cross-attention.

For the CatBlock decoder architecture, and following the same notations, we first concatenate X and
Y to form Z = [X + v1, Y + v2] ∈ R2N×D before the first block, where v1, v2 ∈ RD are learnable
embeddings specifying the input view. The CatBlock output is computed by:

Z̄ = LayerNorm(Z)

Z ′ = Z + Attention
(
WS

QZ̄,WS
KZ̄,WS

V Z̄
)

(4)

Output = Z ′ + MLP(LayerNorm(Z ′)).

C Further details on cross-view completion pre-training

C.1 Detailed pre-training settings

We report below the detailed parameter setting we used in our pre-training.
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Hyperparameters Value

Optimizer AdamW [20]
Base learning rate 1.5e-4
Weight decay 0.05
Adam β (0.9, 0.95)
Batch size 256
Learning rate scheduler Cosine decay
Training epochs 400
Warmup learning rate 1e-6
Warmup epochs 40

Masked tokens 90%
Input resolution 224× 224
Augmentation Homography, Color jitter

C.2 Ablation on overlaps between pre-training pairs

For pre-training, we use synthetic pairs generated using the Habitat simulator, keeping pairs with
a co-visibility ratio over 0.5. Figure 1 presents some statistics about the distribution of viewpoints
considered. Intuitively, the choice of this co-visibility threshold was guided by two important
observations: (a) if two images composing a pair overlap too little, the task boils down to auto-
completion, therefore we set a threshold on the minimal co-visibility ratio of 0.5 in our main
experiments, (b) if two images composing a pair overlap too much, the task becomes trivial, therefore
we encourage large viewpoint changes between images in our training set. In this section, we present
an ablation to better understand what makes good pre-training pairs.

Formally, we define the visibility ratio vi,j of a view i with respect to an other view j as the ratio of
pixels of image i that are visible in image j. We ignore pixels where no geometry is rendered by the
Habitat simulator for this computation. We similarly define the co-visibility ratio between two views
i and j as min(vi,j , vj,i). To study the influence of co-visibility on pre-training, we generate multiple
training sets each composed of 700, 000 image pairs with different co-visibility distributions, and
pre-train CroCo on these sets for a number of steps equivalent to 200 epochs of the original dataset,
while keeping all other parameters fixed. Figure 2 provides examples of such training pairs. We
report in Figure 3 the performance achieved when pre-training with such pairs and then finetuning on
Taskonomy tasks. Overall, we observe better performance for most 3D-related tasks (in particular for
curvature, depth, keypoints3d, normal, reshading) when pre-training with pairs with a co-visibility
ratio close to 0.5, compared to pre-training with pairs of greater or lower co-visibility (blue curve in
Figure 3). We also experimented with pairs chosen to have co-visibility ratios uniformly distributed
over different value ranges and report results in Figure 3. We find that pre-training with co-visibility
ratios uniformly distributed over [0, 1.0] leads to worse results than when exclusively sampling
pairs with a co-visibility ratio within [0.4, 0.5]. This confirms that pairs having an intermediate
co-visibility ratio are the most suitable for pre-training, although more extensive experiments would
be required to strongly support these findings.
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Figure 1: Distribution of viewpoints pairs used for pre-training. Left: 2D position (in meters)
and orientation (arrow) of one view with respect to the other, once projected on the world horizontal
plane. Right: Joint histogram of distances and angles within pairs of views used for training.

Co-visibility ratio between 0 and 0.1

Co-visibility ratio between 0.4 and 0.5

Co-visibility ratio between 0.9 and 1.0

Figure 2: Some pre-training pair examples for various co-visibility ratios.
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Figure 3: Ablation on co-visibility between pre-training pairs. Performance achieved on Taskon-
omy tasks (vertical axis, lower is better) by a CroCo model pre-trained with image pairs of co-visibility
ratio exclusively distributed in the range [x− 0.05, x+ 0.05] (blue) or uniformly distributed in the
range [x, 1.0] (orange), for various values of x (horizontal axis). Dashed lines represent trend curves
obtained by Gaussian smoothing.
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C.3 Ablation on decoder depth

In this section, we report an ablation on the decoder depth, i.e., varying the number of decoder blocks
for a decoder using CrossBlock. The results are shown in Table 1. Note that in the main paper we
used a decoder with 8 blocks. We observe that the decoder depth has overall little impact on the
performance for monocular tasks (semantic segmentation on ADE, depth prediction on NYUv2 or
Taskonomy dense tasks). For the binocular task of optical flow estimation on MPI-Sintel, the error
clearly decreases as the depth is increased, showing the importance of a deeper decoder when the
decoder is also leveraged. Note however that even with a decoder of depth 2, which means that
the network comparing the two images is extremely shallow, a competitive performance can still
be reached for optical flow. In particular, the performance with 2 decoder blocks is still largely
superior to that of a MAE-pre-trained network having a deep decoder (8 blocks) finetuned in the
same conditions.

Table 1: Impact of decoder depth with CrossBlock. We used 8 blocks in the decoder in the main
paper. Best result per column in bold and second best underlined.

Decoder ADE ↑ NYUv2 ↑ Taskonomy ↓ MPI-Sintel ↓ FLOPs Params
Depth segm. depth avg. rank. clean final

2 38.9 84.6 33.83 2.50 3.59 4.35 39.3G 94M
4 40.2 86.7 32.80 1.50 3.15 3.86 42.9G 103M
6 38.7 83.6 34.14 3.25 3.09 3.79 46.6G 111M
8 40.6 85.6 33.00 1.88 3l.00 3.60 50.2G 120M

D Further details and results for the monocular downstream tasks

D.1 Detailed finetuning settings for monocular tasks

We provide in this section details of the finetuning settings used for our monocular tasks
experiments. Linear probing settings are summarized below, Note that they correspond exactly to
the settings presented by the authors of MAE [14] with the LARS [35] optimizer and a large batch size.

Hyperparameters Value

Optimizer LARS [35]
Base learning rate 0.1
Weight decay 0
Optimizer momentum 0.9
Batch size 16,384
Learning rate sched. Cosine decay
Warmup epochs 10
Training epochs 90
Augmentation RandomResizeCrop

We further detail the training settings for semantic segmentation on ADE20k, monocular depth
estimation on NYUv2 and Taskonomy regression tasks. These settings closely match those presented
by the authors of MultiMAE [1].
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Hyperparameters ADE NYUv2 Taskonomy

Optimizer AdamW [20] AdamW [20] AdamW [20]
Learning rate 1e-4 3e-5 2.5e-4
Layer-wise lr decay 0.75 - 0.75
Weight decay 0.05 1e-6 2.5e-2
Adam β (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Batch size 16 16 32
Learning rate sched. Cosine decay Cosine decay Cosine decay
Training epochs 64 1500 300
Warmup learning rate 1e-6 - 1e-6
Warmup epochs 1 100 5

Input resolution 512× 512 256× 256 384× 384

Augmentation Large Scale jittering RandomCrop -Color jittering Color jittering
Drop path 0.1 0.0 0.1

D.2 Leveraging the decoder for monocular tasks

By default, for dense monocular tasks we append a DPT module [24] to the encoder of our CroCo
model; this means that the decoder is discarded when finetuning. We now discuss other possible ways
of finetuning our CroCo model on downstream tasks.

• Using the encoder alone. The simplest and most lightweight option is to use the
encoder alone, without the decoder nor the DPT module, by appending an output linear
prediction head, trained from scratch for the downstream task. In Table 2 we see, by
comparing rows 1 & 2 and rows 5 & 6, that removing the DPT module results in a significant
degradation of performance across all tasks.

• Decoder instead of the DPT module. The decoder of our CroCo model can
be used instead of the DPT module. While it does not fuse information from several layers at
different depths, as the DPT module does, the decoder is trained to output dense predictions,
and as such it should be easy to finetune for dense tasks other than RGB predictions. To
achieve this we initialize the full CroCo model with pre-trained weights, duplicate the
encoded features from the input image to serve as input to the decoder, and simply replace
the prediction head of the network by a new one trained from scratch. In Table 2 we observe
by comparing rows 2 & 3 as well as 6 & 7 that on most tasks, this leads to a very minor
degradation of performance. Furthermore, we found that finetuning the model this way was
one order of magnitude faster than training a DPT module: convergence on NYUv2 requires
approximately 1500 epochs for models without a decoder, against approximately 200 for
models using the decoder.

• Decoder and DPT module. The decoder can be used together with the DPT module,
by extracting the features to be used as input to the DPT module from the CroCo decoder
rather than from the encoder. This increases the cost of running the model. However, in
Table 2 we see that this leads to consistent performance gains, by comparing rows 2 & 4, or
rows 6 & 8.

• Frozen backbones. In all cases, we can choose to freeze the backbone and only train
the new prediction layers (DPT module or output prediction head when no DPT module
is used). Such an experiment is useful to probe what information the pre-trained model
captures. It can also help with over-fitting in cases where very little data is used to train for
the downstream task. Empirically, we observe by comparing the lower half of Table 2 to
the upper part that freezing the backbone degrades the performance in a majority of cases.
On average, however, the performance remains surprisingly high, which demonstrates that
frozen output features produced by the CroCo model are already meaningful representations
for a wide diversity of 3D vision tasks.
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Table 2: Performance of our CroCo model when finetuned for monocular downstream tasks
using different modules, and possibly freezing the backbone network. Note that in the main paper,
performance was reported without the decoder, with DPT and with finetuning of the backbone.

architecture NYUv2 ↑ Taskonomy ↓
dec. DPT frozen depth curv. depth edges kpts2d kpts3d normal occl. reshad. avg.

With finetuned backbone

✗ ✗ ✗ 67.8 45.67 63.56 10.50 0.51 60.20 139.69 0.65 186.6 63.42
✗ ✓ ✗ 86.1 40.91 31.34 1.74 0.08 41.69 54.13 0.55 93.58 33.00
✓ ✗ ✗ 85.9 45.05 33.93 4.18 0.15 44.90 63.02 0.55 103.1 36.86
✓ ✓ ✗ 88.1 39.93 30.88 1.66 0.58 40.87 52.26 0.56 90.77 32.18

With frozen backbone

✗ ✗ ✓ 51.3 49.39 69.25 34.76 0.68 60.15 170.10 0.80 198.2 72.92
✗ ✓ ✓ 85.2 42.01 38.18 2.43 0.09 45.50 64.58 0.55 117.4 38.85
✓ ✗ ✓ 86.4 44.73 75.97 35.16 0.56 60.54 177.12 0.65 220.0 76.84
✓ ✓ ✓ 87.1 41.57 41.27 3.64 0.24 43.49 62.77 0.54 116.9 38.81

D.3 Visualization of monocular depth prediction and Taskonomy results

In Figure 4 we display input images from the NYUv2 dataset (validation set), corresponding depth
predictions, alone and overlayed on the input images.

Figure 4: Qualitative visualization of depth prediction. First row: the input image; second row:
the depth prediction; third row: the depth prediction overlayed over the input image.

Furthermore, in Figure 5 we present results on the Taskonomy dataset for the 8 dense regression
tasks.
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Figure 5: Example results on Taskonomy. For the images in the top row, we show the prediction
made by our finetuned model and the ground truth, for each of the 8 tasks.
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D.4 Application to absolute pose regression from a single image

Task and setting. We apply our pre-trained model to the task of monocular absolute pose regression,
where a model directly predicts the absolute camera pose of a given image in a fixed and given
environment for which it was specifically trained. In contrast to classical structure-based methods,
camera localization methods based on deep neural networks directly regress the absolute pose of a
query image [18, 17, 2, 34] and do not require database images or 3D maps at test time. While these
methods are in general significantly less accurate than structure-based methods [28, 30, 15, 16], they
only require images and their corresponding camera poses as training data.

We use the evaluation code and protocol from AtLoc [34], a recent state-of-the-art improvement of the
seminal PoseNet [18] work, which adds an attention module between the encoder output and the pose
regressor heads to reweigh the encoded features. The pose regressor is composed of two independent
MLP heads: one for predicting the camera pose and one for the camera rotation, represented as a
quaternion. In our experiments we append the same regression head (attention module and pose
regressor heads) on top of the CroCo encoder, with a global average pooling layer inserted in-between
to get a global image representation from the encoder tokens. To finetune the model, we rely on the
loss proposed in [2] and also used in [34]:

L = e−β∥p− p̂∥1 + e−γ∥ log q − log q̂∥1 + β + γ (5)

where β and γ are learned weights that balance the position loss and rotation loss and log q is the
logarithmic form of a unit quaternion (i.e., the corresponding rotation vector). To remove ambiguity
between q and −q, all quaternions are restricted to the same hemisphere. The finetuning parameters
used for the pose regression are the followings:

Hyperparameters Value

Optimizer Adam (Base learning rate = 5e-5; weight decay = 5e-4)
Training epochs 500 (with batch size 64)
dropout rate probability 0.5
weights β and γ initialized with 0 respectively -3

Finetuning dataset 7-Scenes [13]
Input resolution 224× 224 (Input field of view 49°)
Augmentation color jittering and homographies

We benchmark performance on the 7-Scenes dataset [13] on the test split of each scene considered
independently. We considered the RGB camera pose annotations from Kapture [16] and the images
were rescaled and cropped to a 224× 224 resolution with a constant 49° field of view (the largest
value fitting in the original images).

Results. We evaluate the impact of the choice of backbone and pre-training method in Table 3 as a
function of the size of the training set. The first row corresponds to a ResNet34 backbone, as used in
AtLoc, pre-trained with supervision on ImageNet. Other rows correspond to a ViT-Base/16 backbone
with different pre-training methods and datasets (MAE, MultiMAE, CroCo). We observe that when
using the full training set, all models achieve similar performance, except for the model initialized by
MultiMAE which consistently underperforms. Note that CroCo achieves peak validation performance
in approx. 50− 100 epochs, while ResNet34 pre-trained models need approximately 500 epochs to
converge. To better assess the performance of the pre-training model, we significantly reduce the size
of the training set and report results in Table 3 using only 5, 10 and 20% of the full training set. We
observe that the original AtLoc model, a pre-trained ResNet34 encoder, is unable to learn from such
a small amount of data even with data augmentations (random color jittering and homographies
simulating camera rotations). Models pre-trained using MAE/MultiMAE perform better, but Croco
pre-training leads to the best performance. Finally, while a model trained from scratch (two last rows
in Table 3) can achieve decent localization performances using the full training set compared to the
other baselines, it generalizes poorly when trained using a more limited amount of data.
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Table 3: Absolute pose regression results as averaged median errors over the 7 scenes for different
backbones, pre-training methods and datasets. Each column corresponds to different ratios of the
training set. Best result per column on bold and second best underlined.

Architecture pre-training 100% 20% 10% 5%

ResNet34 Supervised (ImageNet) 27.1cm, 9.0° 34.0cm, 10.9° 43.7cm, 130.° 62.3cm, 17.3°
ViT-Base/16 MAE (ImageNet) 27.9cm, 9.0° 28.0cm, 8.5° 30.6cm, 9.2° 34.4cm, 9.4°
ViT-Base/16 MAE (Habitat) 28.3cm, 9.1° 28.0cm, 8.3° 30.7cm, 9.1° 35.3cm, 10.1°
ViT-Base/16 MultiMAE (ImageNet) 33.1cm, 9.8° 32.6cm, 9.7° 36.8cm, 10.8° 44.1cm, 12.2°
ViT-Base/16 CroCo CrossBlock (Habitat) 27.7cm, 8.6° 26.3cm, 7.3° 29.0cm, 8.3° 32.7cm, 9.5°

ResNet34 Random 28.1cm, 8.9° 36.6cm, 11.4° 51.3cm, 14.0° 69.3cm, 17.6°
ViT-Base/16 Random 29.1cm, 9.3° 38.3cm, 11.6° 43.6cm, 12.5° 52.7cm, 14.1°

E Further details and results on the binocular downstream tasks

E.1 Optical Flow estimation

Experimental details. We treat optical flow as a straightforward regression task and do not change
the pre-training architecture except for modifying the regression head to output two flow channels
instead of 3 RGB color channels: the two images are input as such in the Siamese encoders, and
the decoder regresses two flow values (u, v) for each pixel using a simple linear head running
independently for each output token. We use a CrossBlock decoder with 8 layers (similar results are
obtained with a CatBlock decoder). Training details are provided in Table 4.

Qualitative Results. We show in Figure 6 qualitative visualization of the flow predicted by our
method. Overall, we observe that the flow is correctly estimated, even in the case of varied and
fast motion. As a limitation, the estimation gets slightly inaccurate when occlusions happen, and
blurry on extremely fine-grained motion such as hair tips, as for most methods. Again, we wish to
emphasize that the model was finetuned only on 40,000 images without any sort of elaborated data
augmentation.

E.2 Relative pose regression

Model Architecture. We replace the original head of the decoder pre-trained with CroCo by a simple
head regressing a relative pose (R, t) ∈ SO(3) × R3. This head consists of the following layers.
First, a linear projection reduces the dimension of tokens produced by the decoder to 64, in order to
limit the computation costs. Second, these tokens are flattened into a unique feature vector, which is

Table 4: Parameter settings for optical flow, relative pose regression and stereo matching.

Hyperparameters Optical Flow Relative Pose Regression Stereo Matching

Optimizer AdamW [20] AdamW [20] AdamW [20]
Base learning rate 3e-5 1e-7 1e-4
Weight Decay 0.05 - -
Batch size 20 64 8
Adam β (0.9, 0.95) (0.9, 0.95) (0.9, 0.95)
Learning rate sched. Cosine decay Cosine decay 1 cycle
Finetuning epochs 100 30 400
Linear warmup epochs 1 1 1
Translation weight λ - 100m -

Finetuning dataset AutoFlow [32] 7-scenes [13] VKITTI [5]
Input resolution 224× 224 224× 224 1242× 375
Augmentation random crop, homography, random horizontal flip,

color jitter color jitter color jitter
Input field of view - 49° -
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Figure 6: Qualitative visualization of the estimated flow on some examples from the MPI-Sintel
training set, unseen during training. First and third rows: input image pair, second and fourth row:
predicted (left) and ground-truth (right) flows.

processed by a MLP (with a hidden layer of size 1024 and ReLU activations) to regress a 12D output.
It is reshaped into an affine transformation (M , t) ∈ R3×3 × R3. Lastly we use a differentiable
special Procrustes layer [3] to orthonormalize M into a rotation matrix R and to predict the relative
pose (R, t).

Experimental details. The RGB camera pose annotations for the 7-scenes dataset [13] are obtained
from Kapture [16]. To select training pairs, we extract global AP-GeM-18 descriptors [25] for every
image, and match each training image with its 20 closest neighbors according to their descriptor
similarity. Our training set is composed of 26k images and 520k training pairs in total. We rescale and
crop the images to a square 224× 224 resolution with a constant 49° field of view (the largest value
fitting in the original images), and we augment the training image pairs with random permutations,
color jittering and homographies that simulate camera rotation.

In our experiments, we trained models using the AdamW [20] optimizer using settings described in
Table 4. We found the training to be quite sensitive to its initialization, and we had to try multiple
random seeds to achieve decent performances on the training set when training the decoder from
scratch with an encoder pre-trained with MAE on Habitat. Using an encoder pre-trained with MAE
on ImageNet furthermore always led to poor performance on both the training and test sets in our
experiments. We had none of these issues however when using an encoder and decoder pre-trained
using CroCo.

E.3 Stereo image matching

Task and settings. In this section, we experiment on the binocular downstream task of stereo
matching [22]. We finetune a pre-trained CroCo model to predict pixel-wise disparity values, by
simply replacing the linear prediction head. The model takes two rectified images as input and
predicts the disparity of every pixel by matching corresponding pixels in the images. We use a
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Figure 7: Qualitative visualization of the estimated disparity on examples from the VKITTI
validation set. First row: input left image; second row: input right image, third row: ground-truth
(left) disparity, forth row: predicted (left) disparity. The three examples come from “sunset” (left
column), “fog” (center) and “clone” (right column) weather conditions.

MSE-log loss for finetuning and report the error using the 3-pixel 5% discrepancy [7, 8]. We evaluate
the stereo matching downstream task on the Virtual KITTI dataset [5] which consists of 5 synthetic
sequences cloned from the KITTI tracking benchmark [12]. The dataset additionally provides 9
variants of these 5 sequences under different weather conditions (e.g. ‘fog’, ‘rain’, etc.) and modified
camera configurations (e.g. rotation to left or right by 15 or 30 degrees). We downscale VKITTI
images to a resolution of 224 × 742, preserving the aspect ratio and crop to 224 × 736. Additional
details on the finetuning hyper-parameters and settings are described in Table 4.

Results. In Table 5 we report results obtained on all 10 weather condition and camera orientation
variants in the VKITTI dataset. We compare results obtained when finetuning the CroCo model and
the MAE model with a randomly initialized decoder, pre-trained on Habitat. We observe that CroCo
pre-training leads to significantly better results for all scenarios. Next, we compare to the state-of-the-
art methods for stereo matching, in particular, PSMNet [7], LaC-GweNet [19] and LEAStereo [8].
Finetuning a model pre-trained with CroCo achieves results competitive with the state of the art,
without any task-specific model design, such as spatial pyramid pooling [7], hierarchical neural
search in 4D feature volume [8] or local similarity patterns for explicit neighbor relationships [19].
We point out that, in contrast to the other methods, our model is directly finetuned on VKITTI without
pre-training on the large SceneFlow dataset [21]. In Figure 7 we visualize the disparity prediction by
our method, for three different conditions in the VKITTI dataset.

Table 5: Stereo matching results with the average 3-px error for 10 VKITTI variants. We compare
CroCo pre-training with MAE pre-training as well as other state-of-the-art methods. Best result per
column on bold and second best underlined.

Method/ fog sun- clone over- rain mor- 15◦- 15◦- 30◦- 30◦- Ave-
Pre-training set cast ning left right left right rage

MAE (Habitat) 1.80 1.75 1.96 1.89 2.13 2.17 2.93 2.07 4.06 2.25 2.30
CroCo (Habitat) 1.15 1.69 1.72 1.49 1.77 1.68 2.49 1.58 3.43 1.78 1.88

PSMNet [7] 2.36 2.30 2.38 2.45 2.31 2.39 2.36 2.41 2.33 2.25 2.36
LaC-GwcN [19] 1.67 1.41 1.52 1.39 1.30 1.72 1.65 1.51 1.50 1.79 1.54
LEAStereo [8] 1.24 1.42 1.27 1.17 1.05 1.09 1.18 1.65 1.06 1.22 1.23
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F Compute resources, code and dataset assets

F.1 Floating point operations (FLOPs)

We calculate the number of floating point operations (or FLOPs) in the most commonly accepted
manner, i.e., counting additions and multiplications as separate floating-point operations. To that aim,
we borrow and slightly adapt the flops_computation.py code from [9]. Note that most of the
FLOPs comes from matrix-matrix multiplication operations in the attention and feed-forward layers.
For a standard ViT (encoder only), the number of FLOPs can thus be approximated as

#FLOPs ≃ 2L (Fattn−kqv + Fattn−scores + Fattn−avg + Fattn−out + Fff−in + Fff−out)

where

Fattn−kqv = 3ND2

Fattn−scores = DN2

Fattn−avg = DN2

Fattn−out = ND2

Fff−in = 4ND2

Fff−out = 4ND2.

For instance, for ViT-Base/16, setting the number of blocks L = 12, the number of tokens N = 142

and the embedding dimension D = 768, we find 34.7 GFLOPs with the formula above, which is
close to the 35.3 GFLOPs calculated including all other operations (layer norms, patch embeddings,
etc.). Note that we report exact theoretical FLOPs (counting all operations) in the paper.

F.2 Compute resources

Pre-training a CroCo model for 400 epochs takes about 64 GPU-days on NVIDIA V100. For instance
on a 4-GPU server, this is about two weeks.

F.3 Assets used in this submission

We provide below an overview of assets used in our experiments and their licenses.

Asset License

Habitat pre-training
HM3D [23] academic, non-commercial research [hyperlink]
ScanNet [10] non-commercial research and education [hyperlink]
Replica [31] non-commercial research and education [hyperlink]
ReplicaCAD [33] Creative Commons Attribution 4.0 International (CC BY 4.0) [hyperlink]
Habitat simulator [27] MIT [hyperlink]

High-level semantic tasks
ImageNet-1K [26] non-commercial research and education [hyperlink]
ADE [37] images: non-commercial research and education – annotations: Creative Commons BSD-3 [hyperlink]

Monocular 3D vision tasks
NYUv2 [29] public [hyperlink]
Taskonomy [36] non-commercial research and education [hyperlink]

Optical flow
AutoFlow [32] Create Commons Attribution 4.0 International (CC BY 4.0) [hyperlink]
MPI-Sintel [4] images: Creative Commons Attribution 3.0 (CC BY 3.0) – copyright Blender Foundation | www.sintel.org [hyperlink]

Absolute / relative pose regression
7-scenes [13] non-commercial [hyperlink]
Kapture package [16] BSD 3-Clause Revised [hyperlink]

Stereo matching
Virtual KITTI [5] Creative Commons Attribution-NonCommercial-ShareAlike 3.0 [hyperlink]

Code and pre-trained models
MAE [14] Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0) [hyperlink]
MultiMAE [1] Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0) [hyperlink]
DINO [6] Apache License 2.0 [hyperlink]
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https://matterport.com/matterport-end-user-license-agreement-academic-use-model-data
http://kaldir.vc.in.tum.de/scannet/ScanNet_TOS.pdf
https://github.com/facebookresearch/Replica-Dataset/blob/main/LICENSE
https://aihabitat.org/datasets/replica_cad/
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http://sintel.is.tue.mpg.de/
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/7-scenes-msr-la-dataset-7-scenes.rtf
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https://github.com/facebookresearch/mae/blob/main/LICENSE
https://github.com/EPFL-VILAB/MultiMAE/blob/main/LICENSE
https://github.com/facebookresearch/dino/blob/main/LICENSE


G Further visual examples

G.1 Video of sample CroCo reconstructions

We attach a video of reconstruction results obtained using the proposed CroCo model on some
validation scenes from the HM3D dataset [23], unseen at training time (see Figure 8). For each scene,
we consider a constant reference input image and try to reconstruct a sequence of target images from
masked inputs, each frame being processed independently using CroCo. The capability of CroCo to
solve this challenging task suggests that it is somehow able to capture the 3D layout of the scene, as
well as the relative pose of the masked view with respect to the reference view.

Figure 8: Excerpt from the supplementary video. Reconstructions are displayed while varying the
viewpoint, with a fixed reference input.

G.2 Additional reconstruction examples

We provide additional reconstruction examples in Figure 9, where we compare reconstructions
obtained using our CroCo model pre-trained with an RGB loss and a reference input image (CroCo
RGB) with reconstructions obtained after replacing this reference image by an image of random
uniform noise, independent at each pixel (CroCo RGB random noise ref.). Cross-view completion
enables a decent reconstruction of the masked image in general, except for areas non-visible in the
reference image (e.g. CroCo RGB, left part of the painting in the third column). When replacing the
reference image by some random noise, the reconstruction problem becomes similar to inpainting and
some parts of the scene may be wrongly reconstructed due to the lack of available information (e.g.
wrong size for the window in the first column, missing ice maker in the fridge in the second column).

We also compare reconstructions obtained with CroCo and MAE models pre-trained on Habitat to
reconstruct normalized patches (CroCo norm and MAE norm, last two rows). We use patch statistics
from the target image to un-normalize these reconstructions for visualization purposes, which explains
that the mean color of each reconstructed patch is relatively well reconstructed in all cases. Yet, we
observe that CroCo produces more detailed reconstructions than MAE, the latter often appearing
quite tessellated due to an inconsistent reconstruction of normalized patches.
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Figure 9: Additional reconstruction examples for scenes unseen during training. We compare
image reconstructions obtained using our CroCo model pre-trained with an RGB loss using the
reference input image (CroCo RGB) or replacing it by random noise (CroCo RGB random noise ref.).
We also compare reconstructions of CroCo and MAE after a pre-training on Habitat to reconstruct
normalized patches (CroCo norm and MAE norm). Patch un-normalization is performed using patch
statistics from the target image, for visualization purposes.
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