
A Notation and Preliminaries

We use the notation G = (V,E) to represent unweighted graphs, and G = (V,E,w) for weighted graphs. We
use lowercase letters u, v to refer to vertices in V , and given a vertex v, we use dG(v) to refer to its degree in
graph G. We use capital letters S, T to represent subsets of vertices, and given a vertex set S ⊂ V , we use |S| to
refer to its cardinality, S := V \ S to refer to its complement, and G[S] to refer to the subgraph of G induced by
vertex set S. Furthermore, given two disjoint vertex sets S, T , we use wG(S, T) :=

∑
(u,v)∈E:u∈S,v∈T w(u, v)

to represent the total weight of the edges in graph G with one endpoint in S and the other in T . In the case of an
unweighted graph, this is equivalent to the number of edges going from S to T . For ease of notation, we use
wG(S) := wG(S, S), and when the implied graph is clear from context, we to refer to the weight of an edge
e ∈ E in that graph.

Given a graphG = (V,E), we use T to refer to a hierarchical clustering (tree) of the vertex set V , and costG(T)
to refer to the cost of this clustering in graph G. Without loss of generality, we restrict our attention to just full
binary hierarchical clustering trees, since the optimal tree is binary [20]. Any internal node S of a hierarchical
clustering tree corresponds to a binary split (S`, Sr) (the left and right children of S in T) of the set of leaves
in the subtree rooted at S. With some overload of notation, we let S represent both, the internal node of the
clustering tree as well as the set of leaves S ⊆ V in the subtree rooted at internal node S. Furthermore, since
(the leaves in the subtree rooted at) an internal node S can correspond to an arbitrary subset of V , we use the
term split to refer to a partition (S`, Sr) of S to disambiguate it from cuts, which are a partition of the entire
vertex set V .

We conclude the preliminaries by presenting two useful facts from [20]; the first is an equivalent reformulation
of the similarity based hierarchical clustering cost function defined earlier in the introduction, and the second is
the cost of any hierarchical clustering in an unweighted clique.

Fact 1. The hierarchical clustering cost of any tree T with each internal node S corresponding to a binary split
(S`, Sr) of the subset S ⊆ V of vertices is equivalent to the sum

costG(T) =
∑

splits S→(S`,Sr) in T
|S| · wG(S`, Sr) .

Fact 2. The cost of any hierarchical clustering in an unweighted n-vertex clique is (n3 − n)/3.

B Hierarchical Clustering using (ε, δ)-Cut Sparsification

In this section, we shall present the key insight behind all our results: the hierarchical clustering cost function
can equivalently be viewed as a linear combination of global cuts in the graph. As a consequence, approximately
preserving cuts in the graph also approximately preserves the cost of hierarchies in the graph, effectively reducing
the sublinear-resource hierarchical clustering problem to a cut-sparsification problem. However, there are some
hard lower bounds that refute an efficient (sublinear) computation of traditional cut-sparsifiers in certain models
of interest. Therefore, we begin by introducing a weaker notion of cut sparsification, which we call (ε, δ)-cut
sparsification.

Definition 1 ((ε, δ)-cut sparsifier). Given a weighted graph G = (V,E,w) and parameters ε, δ ≥ 0, we say
that a weighted graph G̃ = (V, Ẽ, w̃) is an (ε, δ)-cut sparsifier of G if for all cuts S ⊂ V ,

(1− ε)wG(S) ≤ wG̃(S) ≤ (1 + ε)wG(S) + δmin{|S|, |S|}

The above is a generalization of the usual notion of cut-sparsifiers (which are (ε, 0)-cut sparsifiers as per the
above definition) that allows for an additive error in addition to the usual multiplicative error in any cut of the
graph. A variant of this idea has been proposed before under the term probabilistic (ε, δ)-spectral sparsifiers
in [36] which was similarly motivated by designing sublinear time algorithms for (single) cut problems on
unweighted graphs. However, as the name might suggest, the key difference between the prior work and ours
is that the above bounds on the cut-values hold only in expectation (or any given constant probability) for any
fixed cut in the former. Due to this limitation, we cannot use this previous work in a blackbox, and new ideas are
needed.

We now show that for any two graphs that are close in this ε, δ sense, the cost of any hierarchy in these two
graphs is also close as a function of these parameters, effectively allowing the use of (ε, δ)-cut sparsifiers in a
blackbox.

Lemma 1. Given any input weighted graph G = (V,E,w) on n vertices, and an (ε, δ)-cut sparsifier G̃ of G,
then for any hierarchy T over the vertex set V , we have

(1− ε)costG(T) ≤ costG̃(T) ≤ (1 + ε)costG(T) +
n(n+ 1)δ

2
.

15

Therefore, running a φ-approximate hierarchical clustering oracleA with input as the sparsifier G̃ with ε ≤ 1/2
produces a hierarchical clustering TA whose cost in G is at most

costG(TA) ≤ (1 + 4ε)φ · costG(T ∗) + n(n+ 1)δφ,

where T ∗ is an optimal hierarchical clustering of G.

Proof. Consider any graph H (not necessarily G or G̃) over vertex set V . Given any hierarchy T over the vertex
set V , let S0 be the root node with left and right children S0

` , S
0
r , respectively. Then we have the the cost of this

hierarchy in H is given by

costH(T) =
∑

S→(S`,Sr)∈T
|S| · wH(S`, Sr)

= |S0| · wH(S0
` , S

0
r) +

∑

S→(S`,Sr)∈T ,S 6=S0

|S| · wH(S`, Sr).

Now observe that since the split at the root S0 is a partition of the entire vertex set V into S0
` , S

0
r , we have

wH(S0
` , S

0
r) = wH(S0

`) = wH(S0
r). Furthermore, observe that for any split of S, S` ∪ Sr = S, and therefore,

we can represent the total weight of the edges crossing the split wH(S`, Sr) = (1/2) · (wH(S`) + wH(Sr)−
wH(S)). Therefore,

costH(T) =
|S0|

2
(wH(S0

`) + wH(S0
r)) +

∑

S→(S`,Sr)∈T ,S 6=S0

|S|
2

(wH(S`) + wH(Sr)− wH(S))

=
∑

S→(S`,Sr)∈T

(|S| − |S`|
2

wH(S`) +
|S| − |Sr|

2
wH(Sr)

)
+
∑

v∈V

1

2
wH(v)

=
1

2
·

 ∑

S→(S`,Sr)∈T
(|Sr| · wH(S`) + |S`| · wH(Sr)) +

∑

v∈V
wH(v)

 ,

Therefore, the hierarchical clustering cost function can equivalently be represented as a non-negative weighted
sum of cuts in a graph. We shall now use this reformulation of the clustering cost function to bound the error in
the cost of any hierarchy T over a graph G and its (ε, δ)-sparsifier G̃ as a function of the error in the cuts in
these two graphs, which is parameterized by ε, δ. Our claimed lower bound is easy to see since for every cut
(S, S), wG̃(S) ≥ (1− ε)wG(S), and therefore,

costG̃(T) ≥ (1− ε)
2
·

 ∑

S→(S`,Sr)∈T
(|Sr| · wG(S`) + |S`| · wG(Sr)) +

∑

v∈V
wG(v)

 = (1−ε)costG(T).

To show the upper bound, we have

costG̃(T) ≤ (1 + ε)

2
·

 ∑

S→(S`,Sr)∈T
(|Sr| · wG(S`) + |S`| · wG(Sr)) +

∑

v∈V
wG(v)

+
δ

2
·

 ∑

S→(S`,Sr)∈T

(
|Sr| ·min{|S`|, |S`|}+ |S`| ·min{|Sr|, |Sr|}

)
+ n

≤ (1 + ε)costG(T) + δ ·

n

2
+

∑

S→(S`,Sr)∈T
|S`| · |Sr|

 .

Finally, we claim that for any binary hierarchical clustering tree T over n vertices (leaves),

∑

S→(S`,Sr)∈T
|S`| · |Sr| ≤ n2

2

We shall prove this claim by induction on the number of leaves of T . The base case is easy to see, which is a
binary tree on 2 leaves. Assuming this claim holds for all binary trees on n′ < n leaves, consider any binary tree
T with n leaves. Suppose the split at the root partitions the set of n leaves S0 into sets S0

` and S0
r . Let T`, Tr be

the subtrees of T rooted at S0
` , S

0
r , respectively. Then we have

∑

S→(S`,Sr)∈T
|S`| · |Sr| = |S0

` | · |S0
r |+

∑

S→(S`,Sr)∈T`

|S`| · |Sr|+
∑

S→(S`,Sr)∈Tr

|S`| · |Sr|.

16

Since both |S0
` |, |S0

r | < n, applying our induction hypothesis on the subtrees T`, Tr gives us that

∑

S→(S`,Sr)∈T`

|S`| · |Sr| ≤ |S
0
` |2
2

, and
∑

S→(S`,Sr)∈Tr

|S`| · |Sr| ≤ |S
0
r |2
2

.

Substituting these bounds on the above sum proves our claim as

∑

S→(S`,Sr)∈T
|S`| · |Sr| ≤ |S0

` | · |S0
r |+

|S0
` |2 + |S0

r |2
2

=
|S0
` + S0

r |2
2

=
|S0|2

2
=
n2

2
.

Finally, observe that the φ-approximate hierarchical clustering oracle on input G̃ finds a tree TA such that

costG̃(TA) ≤ φ · costG̃(T), ∀ hierarchies T . (2)

Applying the above bound with T = T ∗, an optimal hierarchical clustering of G gives us that

(1− ε)costG(TA)
Lem 1

≤ costG̃(TA)
Eq 2

≤ φ · costG̃(T ∗)
Lem 1

≤ (1 + ε)φ · costG(T ∗) +
n(n+ 1)δφ

2
.

Therefore, for ε ≤ 1/2, we have that

costG(TA) ≤ 1 + ε

1− εφ · costG(T ∗) +
n(n+ 1)

2(1− ε) δφ ≤ (1 + 4ε)φ · costG(T ∗) + n(n+ 1)δφ.

The above result shows that these weaker cut sparsifiers also approximately preserve the cost of any hierarchical
clustering, but only up to an additive O(δn2) factor. Therefore, supposing we could efficiently estimate a lower
bound OPT on the cost of an optimal hierarchical clustering in a graph G, we could then set the additive error
δ = εOPT/n2, giving us that any φ-approximate hierarchical clustering for G̃ is a (1 + 5ε)φ-approximate
hierarchical clustering for G. This implies that hierarchical clustering is effectively equivalent to efficiently
computing an (ε, δ)-cut sparsifier with a sufficiently small additive error δ.

The following result fills in the final missing link in our chain of ideas by establishing a general-purpose lower
bound on the cost of any hierarchical clustering in an unweighted graph as a function of the number of vertices
and edges in the graph.

Lemma 2. Let G be any unweighted graph on n vertices and m edges. Then the cost of any hierarchical
clustering in G is at least 4m2/(3n).

Proof. Given any unweighted graph G = (V,E) over n vertices and m edges, fix any hierarchy T of the
vertices V . In order to lower bound the cost of T , we shall iteratively modify the “base graph” graph G by
moving edges, strictly reducing the cost of T with each modification such that the final graph has a structure that
makes the hierarchical clustering cost of T easy to analyze. In particular, the final graph would be such that each
connected component is either a clique or two cliques connected together by some number of edges.

This is done as follows: given any hierarchy T of V , we perform a level order traversal over the internal nodes
of T , and at each node S, we modify the graph by pushing edges crossing the split (S`, Sr) down to lower
level splits. Formally, let S1, · · · , Sn−1 be a level-order traversal over internal nodes of T . We denote by
Gt = (V,Et) the modified graph after visiting internal node St, with G0 = G. Given Gt, we visit St+1

and modify the graph as follows: if the subgraphs Gt[St+1
`], Gt[St+1

`] induced by vertex sets St+1
` , St+1

r

respectively, are both cliques, then Gt+1 = Gt; else move a maximal number of (arbitrary) edges crossing the
split (St+1

` , St+1
r) to any (arbitrary) edge slots that are available in subgraphs Gt[St+1

`], Gt[St+1
r] until either

(a) the split (St+1
` , St+1

r) has no more edges going across in which case the two subgraphs become disconnected,
or (b) both of the subgraphs become cliques with the edges remaining going across these cliques. We call the
resulting graph Gt+1. Observe that the cost of T in Gt+1 is at most the cost of T in Gt.

Let the final graph obtained after this traversal be Gn−1. It is easy to see that Gn−1 is a collection of connected
components, with each connected component being either a clique or two cliques with edges going across them,
and that costGn−1(T) ≤ costG(T). In this graph Gn−1, (1) let k1, . . . , kr be the cliques, with kj being the
number of vertices in clique j, and (2) let t1, . . . ts be the connected components that are two cliques connecting
by edges, where each ti = {ki,1, ki,2, ci} with ki,1, ki,2 being the number of vertices in the two cliques of
component ti, and ci < ki,1 · ki,2 being the number of edges going across the two cliques. Then the cost of T
on Gn−1 is given by

costGn−1(T) =

r∑

j=1

k3
j − kj

3
+

s∑

i=1

(
k3
i,1 − ki,1

3
+
k3
i,2 − ki,2

3
+ (ki,1 + ki,2)ci

)
, (3)

17

which follows by construction of Gn−1 and Fact 2. We also observe that

n =

r∑

j=1

kj +

s∑

i=1

(ki,1 + ki,2), and

m =

r∑

j=1

(
kj
2

)
+

s∑

i=1

((
ki,1
2

)
+

(
ki,2
2

)
+ ci

)
.

(4)

With these three observations, we shall now prove our claimed lower bound. We have that

m2 =

[
r∑

j=1

(
kj
2

)
+

s∑

i=1

((
ki,1
2

)
+

(
ki,2
2

)
+ ci

)]2

=

[
r∑

j=1

k
1/2
j

[
k
−1/2
j

(
kj
2

)]
+

s∑

i=1

k
1/2
i,1

[
k
−1/2
i,1

((
ki,1
2

)
+
ci
2

)]
+

s∑

i=1

k
1/2
i,2

[
k
−1/2
i,2

((
ki,2
2

)
+
ci
2

)]]2

(a)

≤
[

r∑

j=1

kj +

s∑

i=1

ki,1 +

s∑

i=1

ki,2

][
r∑

j=1

1

kj

(
kj
2

)2

+

s∑

i=1

1

ki,1

((
ki,1
2

)
+
ci
2

)2

+

s∑

i=1

1

ki,2

((
ki,2
2

)
+
ci
2

)2]

(b)
=
n

4

[
r∑

j=1

kj(kj − 1)2 +

s∑

i=1

(
ki,1(ki,1 − 1)2 + ki,2(ki,2 − 1)2 + 2ci(ki,1 + ki,2 − 2) + c2i (k

−1
i,1 + k−1

i,2)
)
]

(c)
<
n

4

[
r∑

j=1

kj(kj − 1)2 +

s∑

i=1

(
ki,1(ki,1 − 1)2 + ki,2(ki,2 − 1)2 + 3ci(ki,1 + ki,2)

)
]

<
3n

4

[
r∑

j=1

kj(kj − 1)(kj + 1)

3
+

s∑

i=1

(
ki,1(ki,1 − 1)(ki,1 + 1)

3
+
ki,2(ki,2 − 1)(ki,2 + 1)

3
+ ci(ki,1 + ki,2)

)]

(d)
=

3n

4
costGn−1(T),

where (a) follows by Cauchy-Schwarz inequality, (b) follows by Eq. (4), (c) follows by observing ci < ki,1 ·ki,2
due to which c2i (k

−1
i,1 + k−1

i,2) < ci(ki,1 + ki,2), and (d) follows from the cost of hierarchical clustering T in
Gn−1 established in Eq. (3). Therefore, we have that

4m2

3n
< costGn−1(T) ≤ costG(T),

for any hierarchical clustering T in any graph G on n vertices and m edges.

We conclude this section with a remark about one particular instantiation of a φ-approximation oracle for
hierarchical clustering. Specifically, [19] showed that the recursive sparsest cut algorithm, i.e. recursively
splitting the vertices using either the uniform sparsest cut or the balanced cut (sparsest cut that breaks the
graph into two roughly equal parts) in the subgraph induced by the vertices, is a 6.75γ-approximation to
hierarchical clustering given access to a γ-approximation algorithm for sparsest cut or balanced cut. The best
known polynomial time approximation for either is O(

√
logn), a celebrated result due to [4]. These results in

combination give us the following corollary.

Corollary 1. Given any input weighted graph G = (V,E) on n vertices, and an (ε, δ)-cut sparsifier G̃ of G
for any constant 0 ≤ ε ≤ 1/2 and a sufficiently small 0 ≤ δ, there exists a polynomial time algorithm that given
sparsifier G̃ as the input, finds a hierarchical clustering T whose cost in G is at most O(

√
logn) · costG(T ∗),

where T ∗ is the optimal hierarchical clustering in G.

In the following sections, we use this idea of constructing (ε, δ)-cut sparsifiers in three well-studied models for
sublinear computation: the streaming model for sublinear space, the query model for sublinear time, and the
MPC model for sublinear communication.

C Sublinear Space Algorithms in the Streaming Model

We first consider the space bounded setting in the dynamic streaming model, where the input graph is presented
as an arbitrary sequence of edge insertions and deletions. The objective is to compute a good hierarchical
clustering of the input graph given O(n polylog(n)) memory, which is sublinear in the number of edges in the
graph (referred to as a semi-streaming setting). The following theorem describes the main result of this setting.

18

Theorem 10. Given any weighted graph G = (V,E,w) with n vertices and the edges of the graph presented
in a dynamic stream, a parameter 0 < ε ≤ 1/2, and a φ-approximation oracle for hierarchical clustering, there
exists a single-pass semi-streaming algorithm that finds a (1 + ε)φ-approximate hierarchical clustering of G
with high probability using Õ(ε−2n) space.

This result is a direct consequence of Lemma 1 and known results [29, 1] for constructing an (ε, 0)-cut sparsifiers
in single-pass dynamic streams using polynomial time and Õ(ε−2n) space. Lastly, Corollary 1 gives us a
complete polynomial time single-pass semi-streaming algorithm that finds an Õ(1)-approximate hierarchical
clustering of the input graph in Õ(n) space in a dynamic stream.

D Sublinear Time Algorithms in the Query Model

We now move our attention to the bounded time setting in the general graph (query) model [31], where the
input graph is accessible via the following two7 queries: (a) Degree queries: given v ∈ V , returns the degree
dG(v), and (b) Neighbour queries: given v ∈ V , i ≤ dG(v), returns the ith neighbour of v (neighbours are
ordered arbitrarily). The objective is to compute a good hierarchical clustering of the input graph in time and
queries sublinear in the number of edges in the graph. This problem becomes substantially more interesting
in this setting, as finding an (ε, 0)-cut sparsifier necessarily takes linear Ω(n+m) queries. Therefore, the key
to achieving such a result crucially depends upon being able to efficiently construct these weaker (ε, δ)-cut
sparsifiers with a small additive error δ, which is the backbone of our sublinear time result. For simplicity, we
begin by presenting our result for unweighted graphs, and then extend it to weighted graphs in subsection D.2.

Theorem 11. Given any unweighted graph G = (V,E) with n vertices and m = αn4/3 edges accessible via
queries in the general graph model, and any parameter 0 < ε ≤ 1/2, there exists an algorithm that

(a) given a φ-approximate hierarchical clustering oracle, finds a (1 + ε)φ-approximate hierarchical
clustering of G with high probability using f(n, α, ε) queries, and

(b) given any arbitrarily small parameter 0 < τ < 1/2, finds an O(
√
τ−1 logn)-approximate hierarchi-

cal clustering of G with high probability using Õ(f(n, α, ε) + n1+τ) time and queries, where

f(n, α, ε) =

O
(
αn4/3

)
α < 1

Õ
(
ε−3(α−2n4/3 + n)

)
α ≥ 1.

Note that unlike the sublinear space and communication settings, we cannot directly give a sublinear time
(1 + ε)φ-approximation guarantee here; even though the rest of our algorithm (that constructs the (ε, δ)-cut
sparsifier) has a sublinear time and query complexity, the running time of the φ-approximate hierarchical
clustering oracle to which we are given access can be arbitrarily large8. Therefore in this setting, we give a
two-part result - the first is a sublinear query, (1 + ε)φ-approximation result, and the second is a sublinear time
and query, O(

√
logn)-approximation result, which follows from a specific sublinear time implementation of a

φ-approximate hierarchical clustering oracle with φ = O(
√

logn).

The query (and time) complexity in the above result is linear in the number of edges for sparse graphs with fewer
than n 3

√
n edges, decays as Õ(α−2n4/3) for moderately dense graphs when the number of edges is in the range

n 3
√
n and n

√
n, and is Õ(n) for dense graphs with more than n

√
n edges. As we will see in our lower bounds,

this complexity is essentially optimal for achieving a Õ(1)-approximation in each of these three regimes.

Proof of Theorem 11. The proof of both parts of Theorem 11 relies on (ε, δ)-cut sparsifiers, which we show
in Theorem 12, can be constructed with high probability in Õ(ε−2δ−1n) time and queries. Assuming this
construction, the sublinear query, (1 + ε)φ-approximation claim (Theorem 11 (a)) is relatively straightforward
to see: we first determine the number of edges m = αn4/3 in the input graph by performing n degree queries. If
the graph is sufficiently sparse (m ≤ n4/3), then we simply read the entire graph, which takes O(m) neighbour
queries. If not, then the lower bound established in Lemma 2 implies that the cost OPT of any hierarchical

7As mentioned earlier, this model further allows for a third type of queries: (c) Pair queries: given u, v ∈ V ,
returns whether (u, v) ∈ E. This is equivalent to assuming the query oracle having internal access to both, an
adjacency list representation (for degree and neighbour queries) as well as an adjacency matrix representation (for
pair queries) of the input graph. However, our algorithm does not need pair queries, which further strengthens
our algorithmic result in this model.

8Our sublinear query result more generally implies faster algorithms for hierarchical clustering without much
loss in solution quality.

19

clustering in the input graph is at least α2n5/3. As a consequence, the additive error δ = εOPT/n2 ≥ εα2n−1/3

we can tolerate in our (ε, δ)-sparsifier is also relatively large. Such a sparsifier can then be constructed with high
probability in Õ(ε−3 max{α−2n4/3, n}) time and queries. The rest of the proof follows directly by Lemma 1,
since the φ-approximate hierarchical clustering oracle uses only the (ε, δ)-cut sparsifier as input, and therefore,
makes no additional queries to the input graph.

To prove the sublinear time, O(
√
τ−1 logn)-approximation claim (Theorem 11 (b)) where τ ∈ (0, 1/2) is

any arbitrarily small parameter, we complement the above proof with an instantiation of a sublinear time,
φ-approximate hierarchical clustering oracle with φ = O(

√
τ−1 logn). As discussed in Corollary 1, this

essentially reduces to a sublinear time, O(
√
τ−1 logn)-approximation algorithm for balanced cuts (also called

balanced separators in the literature). However, the algorithm of [4] cannot be used here due to its quadratic
running time. Therefore, we instead refer to another result of [44] that achieves O(

√
τ−1 logn)-approximation

for balanced separators by reducing this problem to Õ(nτ) single-commodity max-flow computations for
any given τ ∈ (0, 1/2). While [44] could only achieve this in Õ(m + n3/2+τ) time, the bottleneck being
the Õ(m3/2) time flow-computation algorithm of [30] (with the sparsification result of [7] being used to
improve this complexity to Õ(n3/2)), we can leverage a very recent breakthrough [14] that gives an Õ(m1+o(1))
algorithm for exact single-commodity max-flows. This improves the running time of the algorithm of [44] from
Õ(m+ n3/2+τ) to Õ(m+ n1+τ) without any loss in the approximation factor. Since our (ε, δ)-cut sparsifier
G̃ is very sparse with f(n, α, ε) edges, we can find a O(

√
τ−1 logn)-approximate balanced separator in G̃ in

sublinear Õ(f(n, α, ε) + n1+τ)-time, for any given τ ∈ (0, 1/2). Although we use this subroutine repeatedly
(at each split of the graph until we are left with singleton vertices), observe that at any level of the hierarchical
clustering tree, the splits at that level together form a disjoint partition of G̃. Now let the set of all internal
nodes (splits) of the resultant hierarchical clustering tree at level i ∈ [d] be Si, where d is the depth of the
tree. Furthermore, for any internal node S in this tree, let mS be the number of edges in the subgraph G̃[S]

induced by the set of vertices S. Therefore, the running time of the recursive sparsest cut algorithm on G̃ with
the aforementioned O(

√
τ−1 logn)-approximate oracle for balanced separators is given by

Õ

∑

i∈[d]

∑

S∈Si

(mS + |S|1+τ)

 ≤ Õ

∑

i∈[d]

f(n, α, ε) + n1+τ

 .

Finally, observe that since the splits in the tree are balanced, i.e. a split S → (S`, Sr) is such that
min{|S`|, |Sr|} ≥ |S|/3, the depth of this hierarchical clustering tree produced d = O(logn), which gives the
total running time of the recursive sparsest cut algorithm on G̃ as Õ(f(n, α, ε) + n1+τ), proving our sublinear
time claim.

We shall now present our sublinear time construction of (ε, δ)-cut sparsifiers for unweighted graphs.

D.1 A Sublinear Time (ε, δ)-Cut Sparsification Algorithm for Unweighted Graphs

We note that the computation of graph sparsifiers in sublinear time was also studied previously for hyper-
graphs [16, 17].

Theorem 12. There exists an algorithm that given a query access to an unweighted graph G = (V,E) and
parameters 0 < δ ≤ 1, 0 < ε ≤ 1/2, can find a (ε, δ)-cut sparsifier of G with high probability in Õ(nδ−1ε−2)
time and queries.

Our (ε, δ)-cut sparsifier construction broadly builds upon ideas developed in [36] for probabilistic spectral
sparsifiers. At a high level, to achieve an additive error of δ, we embed a constant-degree expanderGx = (V,Ex)
with edge weights δ ≤ 1 on all n vertices in the input graph G = (V,E). This trick gives a tight (and very
friendly) bound on the effective resistance of every edge in the resultant composite graph H = (V,E ∪ Ex, w),
which is a weighted graph with edge set consisting of the union of edges E in the input graph G, each having
weight 1, and edges Ex in the constant-degree expander Gx, each with weight δ (edges in E ∩ Ex are assumed
to be two parallel edges, one with weight 1 and the other with weight δ). This is useful as it allows for efficient
sparsification of this composite graph using effective resistance sampling of [45], with the sources of error being
the usual multiplicative error due to sparsification itself, and a small additive error due to the few extra edges
introduced by the expander. There are several well known Õ(n) time constructions of constant degree expanders,
for example, a random d-regular graph is an expander with high probability [26]. This roughly outlines the
sparsification algorithm and proof of the above theorem.

A similar idea was used in [36], with the key difference being that they embed an unweighted constant degree
expander in a random δn subset of vertices. Since the set of vertices where the expander is embedded is
random, it is easy to see why this gives a small additive error in expectation for any fixed cut, but could be

20

very large for some cuts in the graph. Our construction on the other hand provides a sparsifier with stronger
guarantees that hold for every cut. As outlined above, we start by showing that the effective resistance of any
edge (u, v) ∈ E ∪ Ex is tightly bounded.

Lemma 3. Given parameter δ ∈ (0, 1), and a composite graph H = (V,E ∪ Ex, w) where G = (V,E) is
an arbitrary input graph with edges of weight 1, and Gx = (V,Ex) is a constant-degree expander graph with
edges of weight δ, then for any edge (u, v) ∈ E ∪ Ex, we have

1

2

(
1

dG(u) + δdGx(u)
+

1

dE(v) + δdGx(v)

)
≤ RH(u, v) ≤ O

(
logn

δ

(
1

dG(u) + δdGx(u)
+

1

dE(v) + δdGx(v)

))
,

where RH(u, v) is the effective resistance of edge (u, v) in graph H , and for any vertex u ∈ V , dG(u), dGx(u)
are the degrees of vertex u in graphs G and Gx, respectively.

Proof. For any edge (u, v) ∈ E ∪Ex, let us assume without loss of generality that k := dH(u) ≤ dH(v). The
proof of our upper bound on the effective resistance RH(u, v) relies on a basic property of expander graphs:
there are Ω(k) edge-disjoint paths, each of length at most O(logn) connecting u to v. Since each edge on these
paths has weight at least δ, by Rayleigh’s monotonicity principle, the effective resistance between (u, v) can be
no more than a graph containing exactly k edge-disjoint paths, each of length O(logn) with each edge on this
path having resistance 1/δ, which gives us that

RH(u, v) ≤ O
(

logn

δk

)
≤ O

(
logn

δ

(
1

dH(u)
+

1

dH(v)

))

≤ O
(

logn

δ

(
1

dG(u) + δdGx(u)
+

1

dG(v) + δdGx(v)

))

To show this many edge-disjoint, short paths property of expanders, we consider two possibilities: either
k < n/ logn, in which case let {ui}ki=1 be the neighbours of u, and let {vi}ki=1 be a set of k neighbours of v,
chosen and ordered arbitrarily. Then the well known multicommodity flow result of [27] already guarantees the
existence of these short edge-disjoint paths connecting every ui to vi. In the case that k ≥ n/ logn, consider the
(unweighted) subgraph Hx = (V,Ex ∪ Eu ∪ Ev) induced by the expander edges Ex and edges Eu, Ev ⊆ E
incident on vertices u, v in G, respectively. We first claim that the min u-v cut in Hx contains at least k/2 edges;
let (S, S) be the min u-v cut, with |S| ≤ n/2 and s ∈ {u, v} being the vertex in S. Furthermore, let ks ≥ k be
the number of neighbours of s, with k′s ≤ ks of them being contained in S. Now there are two possibilities,
either (a) k′s < ks/2 in which case the cut (S, S) already contains the ks − k′s ≥ ks/2 edges connecting s to
its remaining neighbours in S, or (b) k′s ≥ ks/2 in which case (S, S) must necessarily cut at least |S| ≥ ks/2
edges in Ex due to expansion. Therefore, by the (integral) min-cut max-flow theorem, there are at least k/2
edge-disjoint paths from u to v. Moreover, we claim that at least half of these paths must be short, specifically, of
length O(logn). To see this, observe that graph Hx contains just Cn edges for some constant C, which follows
from that fact that u, v each can have at most n neighbours and Gx is a constant degree expander. Now let the
integral flow which is of size f ≥ k/2 ≥ n/(2 logn) be routed along arbitrary edge-disjoint paths P1, . . . , Pf .
It is easy to see why at least f/2 of these paths must be of length at most 2C logn, because otherwise, the
number of edges contained in just the long paths alone would exceed (f/2) · (2C logn) > Cn, the total number
of edges in Hx which is a contradiction. Therefore, there are at least k/4 edge disjoint paths between u, v in
Hx ⊆ H , each of length O(logn).

Now to prove the lower bound on the effective resistance of any edge (u, v) ∈ E ∪ Ex, we add an extra vertex
w and replace the edge (u, v) with two edges (u,w) and (w, v), each with weight/capacitance 2wuv (doing this
twice if edge (u, v) ∈ E ∩ Ex, once for the edge (u, v) with wuv = 1 and again for the edge with wuv = δ).
We then apply Rayleigh’s monotonicity principle by shorting all vertices other than u, v in the graph, which
gives us that

RH(u, v) ≥ 1

dG(u) + δdGx(u) + wuv
+

1

dG(v) + δdGx(v) + wuv

≥ 1

2

(
1

dG(u) + δdGx(u)
+

1

dG(v) + δdGx(v)

)
,

where the final inequality follows from the fact that wuv < mins∈{u,v}{dG(s) + δdGx(s)}, which proves our
claimed lower bound.

This tight bound of the order (dG(u) + δdGx(u))−1 + (dG(v) + δdGx(v))−1 on the effective resistances
directly allows us to apply the effective resistance sampling scheme of [45] outlined in Algorithm 1 to construct a
spectral sparsifier of H , which is even stronger than the simple cut sparsifier we require. The following theorem
then establishes the properties of the resulting sparsifier G̃.

21

Algorithm 1 Sparsify
Input. Weighted graph G = (V,E,w), edge sampling probabilities p such that

∑
e∈E pe = 1,

repetitions q.
Output. Sparsifier G̃ = (V, Ẽ, w̃).
for t = 1, . . . , q do

Sample a random edge e ∈ E according to p. Add e to Ẽ (if it does not already exist) and
increase its weight w̃e by we/(qpe).

end for

Theorem 13 (Theorem 1 + Corollary 6 of [45]). Given any weighted graph G = (V,E,w) on n vertices with
Laplacian L, let Ze be numbers satisfying Ze ≥ Re/α for some α ≥ 1 and

∑
e∈E weZe ≤

∑
e∈E weRe.

Then given any parameter 0 ≤ ε ≤ 1, the subroutine Sparsify(G, p, q) with sampling probabilities pe =

weZe/(
∑
e∈E weZe) and q = Cn logn/ε2 for some sufficiently large constant C returns a graph G̃ whose

Laplacian L̃, with high probability, satisfies

∀x ∈ Rn (1− ε√α)x>Lx ≤ x>L̃x ≤ (1 + ε
√
α)x>Lx.

From the effective resistance bound established in Lemma 3, it is easy to see that sampling edges with parameter
Zuv = (dG(u) + δdGx(u))−1/2 + (dG(v) + δdGx(v))−1/2 satisfies the condition in Theorem 13 with
α = O(logn/δ) for the graph H = (V,E ∪ Ex, w). Given this choice of parameters Ze, it is easy to see that∑
e∈E∪Ex weZe = n/2, which gives us that the sampling probability for any edge e ∈ E ∪ Ex is given by

pe =
we
n

(
1

dG(u) + δdGx(u)
+

1

dG(v) + δdGx(v)

)
, (5)

for which there is a very simple sublinear time rejection sampling scheme given query access to G: sample a
uniformly at random vertex u ∈ V , and toss a coin with bias dG(u)/(dG(u) + δdGx(u)) (degree query). If
heads, sample a uniformly at random edge incident on u in G (neighbour query). Otherwise, sample a uniformly
at random edge incident on u in Gx. The complete algorithm is given below.

Algorithm 2 (ε, δ)-Sparsify
Input. Unweighted graph G = (V,E), parameters 0 < δ ≤ 1, 0 < ε ≤ 1.
Output. Sparsifier G̃ = (V, Ẽ, w̃).
Construct a constant degree expander Gx = (V,Ex).
Let H = (V,E ∪ Ex, w) be the composite weighted graph with edge weights we = 1 for e ∈ E
and we = δ for e ∈ Ex.
Set ε′ = ε

√
δ/(C1 log n) for a sufficiently large constant C1, repetitions q = C2n log n/(ε′)2 for

a sufficiently large constant C2.
Set sampling probabilities p, where for each edge e ∈ E ∪ Ex, pe is as defined in Eq. (5).
Sparsifier G̃ = Sparsify(H, p, q)

It is easy to see that the above algorithm produces a graph G̃ withO(n logn/(ε′)2) = O(n log2 n/(δε2)) edges,
and runs in time O(n logn/(ε′)2) = O(n log2 n/(δε2)). We shall now prove that G̃ is an (ε, δ)-sparsifier of G
as claimed in Theorem 12.

Proof of Theorem 12. We start by observing that Theorem 13, by restricting to vectors x ∈ {0, 1}n (correspond-
ing to partitions of V) and choice of ε′ = ε

√
δ/(C1 logn) with a sufficiently large constant C1, implies that

with high probability, the sparsifier G̃ produced by Algorithm 2 is such that

∀S ⊂ V, (1− ε)wH(S) ≤ wG̃(S) ≤ (1 + ε)wH(S). (6)

Now observe that for any cut (S, S) in the composite graph H ,

wG(S) ≤ wH(S) = wG(S) + wGx(S) ≤ wG(S) + δΘ(min{|S|, |S|}),
where the final inequality follows by observing that the weight of any edge e ∈ Ex is δ, and since the degree of
any vertex in Gx is Θ(1), the number of edges in Gx that cross any cut (S, S) is Θ(min{|S|, |S|}). Combining
the above bounds with Eq. (6) gives us the (ε, δ)-cut sparsification guarantees for G̃ as

∀S ⊂ V, (1− ε)wG(S) ≤ wG̃(S) ≤ (1 + ε)wG(S) + Θ(δ) ·min{|S|, |S|}.

22

D.2 Extension to Weighted Graphs

In this section, we extend our sublinear time results to weighted graphs G = (V,E,w), where edges e ∈ E take
weights 1 ≤ we ≤W , where W is an upper bound on the maximum edge weight. Since there is no universally
accepted query model for weighted graphs, we propose the following generalization where the algorithm can
make (a) Degree queries: given v ∈ V , returns the degree dG(v), and (b) Neighbour queries: given v ∈ V ,
i ≤ dG(v), returns both the ith neighbour of v and the connecting edge weight, with the additional constraint
that the neighbours are ordered by increasing edge weights (neighbours connected by equal weight edges are
ordered arbitrarily). Note that this generalization reduces to the general graph model when all edge weights are
equal. The following theorem describes our upper bound in this more general setting.

Theorem 14. Let G = (V,E,w) be any weighted graph with n vertices and edge weights taking values in a
bounded range [1,W]. Given any parameter 0 < ε ≤ 1/3, let mi = αin

4/3 be the number of edges in G with
weights in the interval [(1 + ε)i−1, (1 + ε)i). Then given query access to G, there exists an algorithm that

(a) given a φ-approximate hierarchical clustering oracle, finds a (1 + ε)φ-approximate hierarchical
clustering of G with high probability using Õ

(
(ε−1 logW) · (n+ maxi f(n, αi, ε))

)
queries, and

(b) given any arbitrarily small parameter 0 < τ < 1/2, finds an O(
√
τ−1 logn)-approximate hierarchi-

cal clustering of G with high probability using Õ
(
n1+τ + (ε−1 logW) · (n+ maxi f(n, αi, ε))

)
time and queries, where

f(n, α, ε) =

O
(
αn4/3

)
α < 1

Õ
(
ε−3(α−2n4/3 + n)

)
α ≥ 1.

Before discussing this result, one might naturally ask whether this stricter requirement of ordering neighbours
by weight is really necessary or whether it is possible to achieve a similar result for arbitrary or even random
orderings. Towards the end of this section, we will show that this is unfortunately necessary; without the ordering
constraint, no non-trivial approximation for hierarchical clustering is possible unless a constant fraction of the
edges in the graph are queried, and this holds even if we were to additionally allow pair queries: given u, v ∈ V ,
return whether (u, v) ∈ E (and edge weight wuv if affirmative).

At a high level, our sublinear time upper bound for weighted graphs is morally the same as that achieved
in the unweighted case, with a O(ε−1 logW) hit to query and time complexity. Algorithmically, we build
upon the ideas developed for the unweighted case. We begin by partitioning the edge set E of the input graph
G = (V,E,w) into weight classes, where the ith weight class consists of all edges Ei with weights in the
interval [(1+ε)i−1, (1+ε)i). By construction, there are log(1+ε) W ≤ 2ε−1 logW weight classes in total, with

the edge sets {Ei}
log(1+ε)W

i=1 being a disjoint partition of E. We then approximately sparsify each unweighted
subgraph G′i = (V,Ei) using our sublinear time (ε, δ)-Sparsify routine outlined in the previous section, and
scale up all the edge weights of the resultant sparsifier G̃′i by the maximum edge weight Wi = (1 + ε)i of that
class. Since for every weight class i, the weights of all the edges Ei in that class are within a (1 + ε) factor
of each other, the resultant scaled sparsifier G̃i is a good approximate sparsifier for the weighted subgraph
Gi = (V,Ei, w). Finally, since the input graph G = (V,E,w) is partitioned into subgraphs Gi = (V,Ei, w),
the sum of the scaled sparsifiers G̃i is a good sparsifier for the input graph. Given this sparsifier, the proof of
(both claims of) Theorem 14 then follows identically as that of Theorem 11.

An important point to note here is that we do not need to explicitly construct the subgraphs G′i corresponding to
each of the weight classes i ∈ [log1+εW] (which would naively take O(m) time) as our (ε, δ)-sparsification
subroutine only requires query access to G′i. This is easy to do in Õ(n) time for any weight class assuming
the edges incident on vertices are sorted by weights. For any weight class i and any vertex v, the set of
edges incident on v in subgraph Gi lie in the range of indices [xi−1(v), xi(v)− 1] where for any weight class
j ∈ [log1+εW], vertex u ∈ V , xj(u) is the first occurrence of an edge incident on u with weight at least
(1 + ε)j . Both indices xi(v), xi−1(v) can be found in O(logn) time and queries using binary search; the degree
dG′i(v) = xi(v)− xi−1(v), and the jth neighbour of v in G′i is simply the (xi−1(v) + j − 1)th neighbour of
v in G. Therefore, the total time and query complexity of setting up query access to G′i is O(n logn). We now
present a formal proof of Theorem 14, which is achieved by Algorithm 3.

Proof of Theorem 14. As with the analysis for unweighted graphs, we begin by establishing a lower bound on
the cost of any hierarchical clustering for weighted graphs. Given any weighted graph G = (V,E,w) and a
parameter 0 < ε ≤ 1/3, we begin by partitioning the edge set into weight classes, where the ith weight class
consists of all edges Ei with weights in the interval [(1 + ε)i−1, (1 + ε)i). Therefore, we have that the clustering

23

Algorithm 3 Weighted Sparsify
Input. Weighted graph G = (V,E,w), parameter 0 < ε ≤ 1/3.
Output. Sparsifier G̃ = (V, Ẽ, w̃).
For every vertex v ∈ V , x0(v) = 1
for i = 1, . . . , log(1+ε)W do

For every vertex v ∈ V , binary search for xi(v), the first occurrence of an edge incident on v
with weight at least (1 + ε)i.
Establish query access to G′i ← (V,Ei), where Ei := {e ∈ E : (1 + ε)i−1 ≤ we < (1 + ε)i}
using {(xi−1(v), xi(v))}v∈V . Let |Ei| = mi = αin

4/3.
if αi ≤ 1 then

Read Gi = (V,Ei, w) entirely, and let this graph be G̃i.
else

Set additive error δi ← ε ·min{α2
i /n

1/3, 1}, and Wi = (1 + ε)i.
G̃′i ← (ε, δi)-Sparsify(G′i), where G̃′i = (V, Ẽi, w̃

′
i)

Construct sparsifier G̃i = (V, Ẽi, w̃i = Wi · w̃′i) with edge weights scaled by Wi.
end if

end for
G̃ = G̃1 + . . .+ G̃log(1+ε)W

cost of any hierarchy T on the weighted graph G is

costG(T) =

log(1+ε)W∑

i=1

costGi(T) ≥
log(1+ε)W∑

i=1

(1 + ε)i−1costG′i(T)
Lem 2

≥
log(1+ε)W∑

i=1

Wi · |Ei|2
n

, (7)

where the first inequality follows from the fact that the clustering cost function is monotone in edge weights, and
every edge in Gi = (V,Ei, w) has weight at least (1 + ε)i−1. We now claim that for every weight class i, the
scaled sparsifier G̃i is a (O(ε), O(Wiδi))-sparsifier of the subgraph Gi = (V,Ei, w). To see the lower bound,
observe that for any cut (S, S)

wG̃i(S) = Wi · wG̃′i(S)
Thm 12

≥ Wi · (1− ε)wG′i(S) ≥ (1− ε)wGi(S), (8)

where the final inequality follows from the fact that every edge in Gi has weight at most Wi. To see the upper
bound, observe that for any cut (S, S),

wG̃i(S) = Wi · wG̃′i(S)
Thm 12

≤ Wi · (1 + ε)wG′i(S) +O(Wiδi) ·min{|S|, |S|}
≤ (1 + ε)2wGi(S) +O(Wiδi) ·min{|S|, |S|}
≤ (1 + 3ε)wGi(S) +O(Wiδi) ·min{|S|, |S|},

(9)

where the second inequality follows from the fact that every edge in Gi has weight at least Wi/(1 + ε). Since
we have that the edge set E = E1 + . . .+ Elog(1+ε)W , this directly gives us that the scaled sparsifier returned

G̃ = G̃1 + . . .+ G̃log(1+ε)W is a
(
O(ε), O(

∑
iWiδi)

)
-cut sparsifier of G, where for any cut (S, S),

(1− ε)wG(S)
Eq. 8

≤ wG̃(S)
Eq. 9

≤ (1 + 3ε)wG(S) +O

log(1+ε)W∑

i=1

Wiδi

 ·min{|S|, |S|}. (10)

By choice of each δi ≤ ε|Ei|2/n3, we further have that

log(1+ε)W∑

i=1

Wiδi ≤ ε

n2

log(1+ε)W∑

i=1

Wi · |Ei|
2

n

Eqn 7

≤ ε

n2
· costG(T), ∀ hierarchies T .

Given this guarantee, the bound on the hierarchical clustering cost claimed in Theorem 14 (a) follows by a
straightforward application of Lemma 1.

To complete this proof, the last thing we need to verify is the time and query complexity of Algorithm 3. We shall
break down the complexity of this algorithm across the weight classes i ∈ [log1+εW]. As described earlier,
for any weight class i, establishing query access to the subgraph G′i = (V,Ei) requires at most Õ(n) time.

24

Let |Ei| = αin
4/3 be the number of edges in this subgraph. In the case αi ≤ 1, this subgraph is sufficiently

sparse and Gi is read entirely which takes O(αin
4/3) time and queries. Otherwise (αi > 1), in which case it

is sparsified in Õ(ε−3 max{α−2
i n4/3, n}) time and queries as established in Theorem 12. Therefore, the total

complexity of processing a weight class i is Õ(n+ f(n, αi, ε)), where f(n, α, ε) = Õ(αn4/3) if α ≤ 1, and
Õ(ε−3 max{α−2n4/3, n}) otherwise. Since there are O(ε−1 logW) weight classes in total, Algorithm 3 runs
in time Õ(ε−1n logW +

∑
i f(n, αi, ε)) ≤ Õ((ε−1 logW) · (n+ maxi f(n, αi, ε)).

Lastly, for any given parameter τ ∈ (0, 1/2), the sublinear time, O(
√
τ−1 logn)-approximation claim (The-

orem 14 (b)) follows by the same φ-approximate hierarchical clustering oracle construction described in the
proof of Theorem 11 combined with the fact that our (ε, δ)-cut sparsifier for the weighted graph G now contains
Õ((ε−1 logW) ·maxi f(n, αi, ε)) edges.

D.2.1 Necessity of Ordering Neighbours by Weight

We conclude this section by showing that the assumption that the adjacency list of each vertex u orders the
neighbours of u by weight, is in fact necessary. Otherwise, no non-trivial approximation for hierarchical
clustering is possible even when one is allowed to query a constant fraction of edges in the graph. We shall
naturally consider only sufficiently dense graphs with Ω(n4/3) edges. While this isn’t strictly necessary for our
example, our upper (and lower) bounds allow us to simply read the entire graph otherwise, rendering the sparse
regime uninteresting. While this is straightforward to see when the upper limit on edge weights W = poly(n) is
large, we can even show this for a relatively small W = n1+ε for any constant ε > 0. The example is as follows:
consider an input graph G = (V,E1 ∪E2, w) with n vertices, and an edge set of size m consisting of the union
of two Erdős-Renyi random graphs, where E1 ∼ Gn,p for any p > n−2/3 with all edges having weight 1 and
E2 ∼ Gn,1/3n with all edges having weight W = n1+ε for some constant ε > 0. We can assume that edges in
both E1 and E2 are given the larger weight.

We shall first establish an upper bound on the cost of the optimal hierarchical clustering in G, which we claim
is at most nm+O(nW logn). To prove this, we shall use the fact that with probability at least 1− 1/n, (a)
the subgraph G2 = (V,E2) is a union of connected components, each either a tree or a unicyclic component,
and (b) the degree of every vertex in G2 is at most 3. The former is well known in the random graph literature,
[23] and the latter follows from Bernstein’s concentration inequality. Therefore, hierarchical clustering that first
separates the different connected components of G2, following which each connected component is partitioned
recursively using a balanced sparsest cut, i.e. the sparsest cut with a constant fraction of the remaining vertices
on either side of the cut, will achieve a cost of at most O(nW logn). The remaining edges in E1, regardless of
how they are arranged can cumulatively add no more than n|E1| to the cost of this hierarchical clustering.

Now consider any (randomized) algorithm that performs at most 2m/9 neighbour and pair queries in total,
and let T be the hierarchical clustering returned by this algorithm. Consider a balanced cut (S, S) in this
tree, i.e. an internal node S with min{|S|, |S|} ≥ n/3. Since the number of queries made is bounded
by 2m/9, there necessarily are at least 2n2/9 − 2m/9 ≥ n2/9 unqueried edge pairs from the cut (S, S).
Furthermore, there are at least m − 2m/9 = 7m/9 unqueried edges in G. For every unqueried edge, there
is at least a constant (n2/9)/

(
n
2

)
≥ 2/9 probability that it realized into an edge slot from the cut (S, S̄), and

then at least a 1/(3n) marginal probability that it came from E2. Therefore in expectation, there are at least
(7m/9) · (2/9) · (1/3n) ≥ m/(18n) edges from G2, each having weight W that go across the cut (S, S̄).
Since |S| ≥ n/3, the contribution of each heavy edge to the cost of T is at least n/3 ·W , and therefore, the
expected cost of T is at least (m/18n) · (n/3) ·W = mW/54 due to these heavy edges alone. Note that this
argument holds even if the neighbours of every vertex are ordered randomly.

Now by comparing the cost of the optimal clustering, which is at most nm+O(nW logn), to the expected cost
of the hierarchical clustering produced by an algorithm that makes at most 2m/9 queries, which is Ω(mW), it
is easy to see that the approximation ratio in expectation is Ω(nε) when W = n1+ε and m ≥ n1+ε logn.

E Sublinear Communication Algorithms under MPC Model

Finally, we consider the bounded communication setting in the massively parallel computation (MPC) model of
[6], where the edge set of the input graph is partitioned across several machines which are inter-connected via a
communication network. This model naturally captures certain distributed computing settings [34, 50, 49]. The
communication proceeds in synchronous rounds. During each round of communication, any machine can send
any information to an arbitrary subset of other machines. However, the total number of bits a machine is allowed
to send or receive is limited by the memory of the machine. Between two successive rounds, each machine is
allowed to perform an arbitrary computation over their inputs and any other bits received in the previous rounds.
At the end, a machine designated as the coordinator is required to output a solution based on its initial input

25

and the communication it receives. The objective is to study the trade-off between the number of rounds and
communication required by each machine, or as alternatively stated, minimize the number of rounds given a
fixed communication budget for each machine. Note that the communication budget of each machine is same as
the memory given to the machine.

E.1 A 2-Round Õ(n) Communication Algorithm

We first give a 2 round algorithm that requires Õ(n) communication per machine. The following is the main
result of this section.
Theorem 15. There exists a randomized MPC algorithm that, given a weighted graph G = (V,E,w) over n
vertices where edge weights are O(poly(n)), and a φ-approximate hierarchical clustering oracle, can compute
with high probability a (1 + ε)φ-approximate hierarchical of G in 2 rounds using Õ(ε−2n) communication per
machine and access to public randomness.

In order to prove this theorem we will utilize a result from [1] for constructing (ε, 0)-cut sparsifiers using linear
graph sketches. Given L : Rd → Rd

′
and x ∈ Rd, we say that L(x) is a sketch of x. In order to sketch a

graph, we represent each vertex in the graph using a
(
n
2

)
-dimensional vector and then compute a sketch for

each vertex. Let the vertices in the graph be indexed as 1, · · · , n. For each i ∈ [n], we will define a vector
x(i) ∈ {−1, 0, 1}(n2) as follows: we first compute a matrix M of size n× n with

Mij =

−1 (i, j) ∈ E and i < j

+1 (i, j) ∈ E and i > j

0 otherwise
.

The vector xi is then obtained by flattening M after removing all the diagonal entries. The following theorem
summarizes the result of [1] for computing cut-sparsifiers using linear sketches.

Theorem 16 ([1]). For any ε > 0, there exists a (random) linear functionL : R(n2) → RO(ε−2poly logn) such that,
given any graph G = (V,E,w) over n vertices with edge weights that are O(poly(n)), a (ε, 0)-cut sparsifier
can be constructed with high probability using the sketches L(x(1)), · · · , L(x(n)) of each vertex. Moreover,
each of these sketches can by computed using O(ε−2poly logn) space given access to fully independent random
hash functions.

Note that an important property of this sketch is that it is linear, which means that (partial) independently
computed sketches L(x(i,1)), · · · , L(x(i,t)) for a vertex i can be added together to get a sketch L(x(i)) =

L(x(i,1)) + · · ·+ L(x(i,t)). We will now use this result for computing a cut-sparsifier using 2 rounds of MPC
computation. We will use the same construction of linear sketches for each vertex as in this result.

2-round MPC Algorithm:

1. Input: Parameter ε ∈ (0, 1/2], graph G = (V,E,w) such that edges are partitioned over k machines.

2. Let each machine be responsible for constructing the sketch for n/k (arbitrarily chosen) vertices.

3. Divide the weights into O(logn) weight classes similar to [1].

4. Each machine locally constructs a (random) linear sketch of sizeO(ε−2poly logn) for each vertex and
weight class. Each machine computes the sketches according to the same function L using Theorem 16
by computing the same random hash functions through public randomness.

5. Round 1: Each machine sends its local linear sketches of a vertex to the machine that is responsible
for this vertex.

6. For each weight class, each machine constructs the linear sketches for each of its responsible vertices
by adding the corresponding partial linear sketches.

7. Round 2: Each machine sends its n/k linear sketches to the coordinator.

8. The coordinator constructs a (ε, 0)-cut sparsifier using the algorithm of [1] and outputs a ψ-
approximate hierarchical clustering over the cut sparsifier.

The above pseudo-code outlines the 2-round algorithm for hierarchical clustering in the MPC model. Here, we
arbitrarily partition vertices into k sets of size (n/k) each, and designate each machine to be responsible for
constructing the sketch for n/k (arbitrarily chosen) vertices. Since, the edges are partitioned over k machines, a
given machine might not have all the edges incident on a vertex. Hence, in the first round each machine will

26

locally construct a linear sketch for each vertex based on its edges. Note that each machine will construct linear
sketches using the same function L by sampling the same random hash functions. Then each machine sends
their local linear sketches for each vertex to the responsible machines. Each machine can send Õ(ε−2n) bits in
total as the sketch of each vertex is of size O(ε−2poly logn). Moreover, each machine can receive Õ(ε−2n)

bits as it can receive at most Õ(ε−2n/k) bits from k − 1 other machines. Each machine then constructs the
linear sketches for its vertices by adding the corresponding sketches. Note that these sketches are valid due to
linearity and the fact that the random hash functions are shared across all machines. Finally, each machine will
send its sketches to the coordinator. The coordinator will then compute a cut sparsifier using these sketches
and run a φ-approximate hierarchical clustering algorithm over the sparsified graph. Using Theorem 16 and
Lemma 1, we can easily argue that the coordinator’s hierarchical clustering will be (1 +O(ε)) · φ-approximate
with high probability.

E.2 A 1-Round Õ(n4/3) Communication Algorithm

We next consider the possibility of computing a good hierarchical clustering in just a single round in the MPC
model. However, as we will show in Section G, computing in one round requires Ω(n4/3) communication (and
hence, machine memory) requirement, even for unweighted graphs. In this setting, give a 1-round Õ(n4/3)
communication MPC algorithm for hierarchical clustering of unweighted graphs assuming knowledge of the
number of edges in the input graph, and the number of machines being bounded by m/n4/3.

Theorem 17. There exists a randomized MPC algorithm that, given an unweighted graph G = (V,E) over
n vertices and m edges, a parameter 0 < ε ≤ 1/2, and a φ-approximate hierarchical clustering oracle, can
compute with high probability a (1+ε)φ-approximate hierarchical clustering ofG in 1 round using Õ(ε−2n4/3)

communication per machine and k ≤ m/n4/3machines with access to public randomness.

The following pseudo-code outlines the 1-round algorithm.

1-round MPC Algorithm:

1. Input: Parameter ε ∈ (0, 1/2], graph G = (V,E) with m edges such that edges are partitioned over
k ≤ m/n4/3 machines each with memory Ω̃(ε−2n4/3).

2. If m = βn4/3 for β ≥ n1/3 then

(a) Each machine samples its each of its local edges independently with probability p =
C(ε2β)−1 logn for some sufficiently large constant C and sends all the sampled edges with
weight 1/p to the coordinator.

(b) Let δ := m2/n3 = β2/n1/3, and let H = (V,Eh, wh) be the weighted graph induced by the
sampled edges received from all machines. The coordinator constructs a constant degree expander
Gx = (V,Ex, wx) with all edges having weight εδ, and embeds this weighted expander in H .
Let G̃ = (V,Eh ∪ Ex, wh + wx) be the resultant composite graph.

(c) The coordinator runs a φ-approximate hierarchical clustering on G̃ and returns the answer.

3. Else if m = αn for α < n2/3 then

(a) Each machine computes a (random) linear sketch of size O(ε−2poly logn) for all vertices using
the local edges. Each machine computes the sketches according to the same function L using
Theorem 16 by computing the same random hash functions through public randomness.

(b) Each machine sends its local linear sketches to the coordinator.
(c) The coordinator adds the partial linear sketches corresponding to each vertex to get one linear

sketch per vertex. It then runs the algorithm of [1] for computing a (ε, 0)-cut sparsifier. Finally,
it runs a φ-approximate hierarchical clustering over the cut sparsifier and returns the answer.

The execution of the above algorithm is divided into two cases based on the number of edges in the graph. We
analyze these two cases separately below.

Analysis for Case 1: We first observe that in this case, since the total number of edges in the graph G that
is distributed across all machines is βn4/3, and each machine samples its local edges with probability p =
C(ε2β)−1 logn, the total number of edges sampled across all machine, and therefore, the total communication
to the coordinator is Õ(ε−2n4/3).

We shall now bound the cost of the hierarchical clustering returned by our scheme. We begin by lower bounding
the cost of any hierarchical clustering T of G, which by Lemma 2 is at least β2n5/3, which implies that

27

δ := β2/n1/3 ≤ costG(T)/n2 for any hierarchy T . We shall argue that in the weighted sampled graph
H = (V,Eh, wh) received by the coordinator, with probability at least 1− 1/poly(n), the weight of any cut
(S, S) is such that

(1− ε)wG(S)− εδmin{|S|, |S|} ≤ wH(S) ≤ (1 + ε)wG(S) + εδmin{|S|, |S|}. (11)

Assuming this bound, it is relatively straightforward to prove that running the φ-approximate hierarchical
clustering algorithm on the composite graph G̃ = (V,Eh ∪ Ex, wh + wx) would produce a (1 + O(ε))φ-
approximate clustering. This follows by observing that the composite graph G̃ is an (ε,Θ(εδ))-sparsifier of the
input graph G, as the weight of any cut (S, S) in G̃ is

(1− ε)wG(S) ≤ wG̃(S) = wH(S) + wGx(S) ≤ (1 + ε)wG(S) + Θ(εδ) min{|S|, |S|},

where both inequalities follow by substituting the bounds in Eq. (11), and observing that for any cut (S, S), the
weight wGx(S) = εδ ·Θ(min{|S|, |S|}) due to expansion and choice of edge weights in Gx. This guarantee
together with Lemma 1 proves our claimed bound on the cost of the hierarchical clustering computed by our
algorithm.

We shall now prove the bounds claimed in Eq. (11). Consider any cut (S, S), and let us assume that |S| =

k ≤ n/2. Let ES be the edges that cross the cut (S, S) in graph G. For every edge e ∈ ES , we define a
random variable Xe that is Bernoulli with parameter p = C(ε2β)−1 logn, taking value 1 if edge e is sampled.
Therefore, the weight of this cut in H is the random variable wH(S) = p−1∑

e∈ES Xe. We shall now bound
the probability of the bad event where the value of this cut wH(S) > (1 + ε)wG(S) + εδk as

Pr(wH(S) > (1 + ε)wG(S) + εδk) = Pr

∑

e∈ES

Xe > (1 + ε)E[wG(S)] + εδpk

= Pr

∑

e∈ES

(Xe − p) > εE[wG(S)] + εδpk

= Pr

∑

e∈ES

Ye > εE[wG(S)] + εδpk

 ,

where for any edge e ∈ ES , random variable Ye = Xe − p is such that E[Ye] = 0, |Ye| ≤ 1 − p, and
E[Y 2

e] = p(1− p). Therefore, by Bernstein’s inequality,

Pr

∑

e∈ES

Ye > εE(wG(S)) + εδpk

 ≤ exp

(
− 3

2(1− p) ·
ε2 (E[wG(S)] + δpk)2

(3 + ε)E[wG(S)] + εδpk

)
. (12)

Now there are two cases, either the cut (S, S) is such that (a) E[wG(S)] ≥ δpk or (b) E[wG(S)] < δpk. In the
first case, we have the upper bound in Eq. (12) is at most

Pr

∑

e∈ES

Ye > εE(wG(S)) + εδpk

 ≤ exp

(
− 3ε2 E[wG(S)]

2(1− p)(4 + ε)

)

≤ exp

(
− 3ε2δpk

2(1− p)(4 + ε)

)

(a)

≤ exp

(
− 3Cβk logn

2(1− p)(4 + ε)n1/3

)
(b)

≤ exp
(
−C′k logn

)
,

where C′ is a constant, with (a) following by choice of p and δ, and (b) following by observing that β ≥ n1/3.
In the second case, we have the upper bound in Eq. (12) is at most

Pr

∑

e∈ES

Ye > εE(wG(S)) + εδpk

 ≤ exp

(
− 3ε2δpk

2(1− p)(3 + 2ε)

)
(a)

≤ exp
(
−C′k logn

)
,

where (a) follows by the same calculation as the previous case. Therefore, by taking a union bound over all cuts
(S, S) with |S| = k ≤ n/2, we have that

Pr(∃ S : |S| = k, and wH(S) > (1+ε)wG(S)+εδk) ≤
(
n

k

)
exp

(
−C′k logn

)
≤ exp

(
−(C′ − 1)k logn

)
,

28

and therefore, a union bound over all choices of 1 ≤ k ≤ n/2 gives us that for a sufficiently large constant C,
with probability at least 1− 1/poly(n), we have for all cuts (S, S)

wH(S) ≤ (1 + ε)wG(S) + εδmin{|S|, |S|}.
Following an identical analysis for Ye = p−Xe gives us that with probability at least 1− 1/poly(n), we have
for all cuts (S, S)

wH(S) ≥ (1− ε)wG(S)− εδmin{|S|, |S|},
proving the bound claimed in Eq. (11), completing the analysis for this case where β ≥ n1/3.

Analysis for Case 2: In this case the number of edges in the graph is at most n5/3. Since the memory of each
machine is Ω̃(ε−2n4/3), the number of machines can be at most n1/3. Each machine constructs linear sketches
over its input and sends these to the coordinator similar to the 2-round algorithm in Section E.1. Note that the
total communication is at most n1/3 × Õ(ε−2n) = Õ(ε−2n4/3) as each machine can only send Õ(ε−2n) bits
to the coordinator. The coordinator then adds all the sketches corresponding to each vertex and computes a
cut sparsifier using the algorithm of [1]. Using Theorem 16, we can again argue that these linear sketches are
such that one can recover a (ε, 0)-cut sparsifier with high probability. The claimed bound on the cost of the
hierarchical clustering recovered then follows by a direct application of Lemma 1.

F Tight Query Lower Bounds for Õ(1)-approximation

We note that, for unweighted graphs, our sublinear time algorithm requires only 2 rounds of adaptive queries,
where the first round only needs to query vertex degrees. Thus if one assumes prior knowledge of vertex degrees,
our algorithm is in fact non-adaptive. For weighted graphs, our algorithm requires at most O(logn) rounds of
adaptive queries due to the binary searches. In any case, our algorithm makes at most Õ(n4/3) queries, where
the worst-case input is an unweighted graph of about ≈ n4/3 edges.

We now show that, in a sharp contrast, even with unlimited adaptivity, our algorithm’s query complexity is
essentially the best possible for any randomized algorithm that computes a polylog(n)-approximate hierarchical
clustering tree with high probability. In particular, we establish below tight query lower bounds when the input
is an unweighted graph with m = Θ(nζ) edges for any constant ζ ∈ [0, 2]. By plugging in ζ = 4/3 in Case 4,
we get a matching lower bound for the worst-case input graph.

Case 1: ζ = 2. Any binary hierarchical clustering tree has cost O(n3) (Fact 2), and by Lemma 2, the
optimal cost is at least Ω(n3). Thus trivially 0 queries are sufficient for O(1)-approximation.

Case 2: ζ ∈ [0, 1]. It is not hard to show an Ω(n) query lower bound even for o(n)-approximation.
Specifically, consider using a random matching of size Θ(nζ) as a hard distribution, whose
optimal hierarchical clustering cost is Θ(nζ). However, any o(n)-query algorithm can only
discover an o(1)-fraction of the matching edges, and with an Ω(1) fraction of the matching edges
having high entropy, any balanced cut of the graph has nontrivial probability of cutting Ω(nζ)
matching edges, incurring a cost of Ω(n1+ζ).
On the algorithmic side, one can simply probe all edges with O(n) queries and then run any
hierarchical clustering algorithm on the entire graph. Thus the query complexity for Õ(1)-
approximation is settled at Θ(n).

Case 3: ζ ∈ [3/2, 2). One can show an Ω(n) query lower bound for Õ(1)-approximation, by considering
an input graph obtained by randomly permuting the vertices of a union of vertex-disjoint cliques.
We include a proof of this lower bound in Section F.1.
On the algorithmic side, our sublinear time algorithm obtains an O(

√
logn)-approximation

using Õ(n) queries in this case, which is nearly optimal.

Case 4: ζ ∈ (1, 3/2). Let γ := ζ − 1 ∈ (0, 1/2). Our sublinear time algorithm obtains an O(
√

logn)-
approximation using Õ(nmin{1+γ,2−2γ}) queries. We show in Section F.2 that this is nearly
optimal even for Õ(1)-approximation.

F.1 Lower bound for m between n3/2 and n2

Theorem 18 (Lower bound for m between n3/2 and n2). Let γ ∈ [1/2, 1) be an arbitrary constant. Let A be
a randomized algorithm that, on an input unweighted graph G = (V,E) with |V | = n and |E| = Θ(n1+γ),
outputs a polylog(n)-approximate hierarchical clustering tree with probability Ω(1). Then A necessarily uses
Ω(n) queries.

29

We will show that there exists a distribution D over graphs with n vertices and Θ(n1+γ) edges, on which no
deterministic algorithm using o(n) queries can output a polylog(n)-approximate hierarchical clustering tree
with probability ≥ .99. This coupled with Yao’s minimax principle [47] will prove Theorem 18.

We define D such that a graph G ∼ D is generated by first taking a union of n1−γ vertex-disjoint cliques of size
nγ , and then permuting the n vertices uniformly at random. More formally, we first pick a uniformly random
permutation π : [n]→ [n], and then let G be a union of vertex-disjoint cliques C1, . . . , Cn1−γ each of size nγ

such that Ci is supported on vertices

Si := {π((i− 1)nγ + 1), . . . , π(inγ)} .

By Fact 2, we know that the optimal hierarchical clustering cost of each clique is O(n3γ). Therefore, summing
this cost over all cliques, we have:

Proposition 1. The optimal hierarchical clustering tree of G has cost O(n1+2γ).

We now describe a process that interacts with any given deterministic algorithm A using o(n) queries while
generating a uniformly random permutation π : [n] → [n] along with its inverse function π−1 : [n] → [n].
Specifically, we will generate π, π−1 by realizing them entry by entry adaptively based on the queries made be
the algorithm. Thus, when realizing an entry of π or π−1, we will always do so by conditioning on their already
realized entries. Also note that since the degree of each vertex is the same (namely nγ − 1), we will give the
degree information to A for free at the start. The process then proceeds by the following two principles:

Principle 1: Upon a pair query between i, j, realize π−1(i), π−1(j) and then answer the query accord-
ingly.

Principle 2: Upon a neighbor query about the `th neighbor of i, first realize π−1(i). Let k be such that
the `th neighbor of i is π(k). Then realize π(k) and answer the query accordingly.

Clearly, each query triggers the realization of O(1) entries of π and π−1. Thus, after A terminates, the number
of realized entries of π and π−1 is at most o(n). Let U ⊂ [n] with |U | ≥ (1 − o(1))n be the set of indices
whose π values are not realized, and similarly let W ⊂ [n] with |W | = |U | ≥ (1− o(1))n be the set of indices
whose π−1 values are not realized.

Let T be the hierarchical clustering tree output by A, which we suppose for the sake of contradiction is
polylog(n)-approximate. We first make T a full binary tree such that the bi-partition of each internal node is
[1/3, 2/3]-balanced, during which we increase the cost of the tree by at most an O(1) factor. We next consider
the bi-partition of the root, which is a cut (S, S̄) with |S| ∈ [n/3, 2n/3].

Let S′ := S ∩W and T ′ := S̄ ∩W , and thus (S′, T ′) is a bi-partition of W . Since |W | ≥ (1− o(1))n, we
have |S′| ∈ [|W |/6, 5|W |/6]. Since also |U | ≥ (1 − o(1))n, we have that for at least Ω(1) fraction of the
cliques Ci’s (which are supported on Si’s), we have

| {(i− 1)nγ + 1, . . . , inγ} ∩ U | ≥ nγ/2.

For each such clique Ci, the number of edges within Ci that are across (S′, T ′) is Ω(n2γ) with high probability.
Therefore, the size of the cut (S, S̄) is at least Ω(n1+γ) with high probability. This means that the cost of T is
at least Ω(n2+γ), which together with γ < 1 contradicts T being polylog(n)-approximate.

F.2 Lower bound for m between n and n3/2

Theorem 19 (Lower bound for m between n and n3/2). Let γ ∈ (0, 1/2) be an arbitrary constant. Let A be
a randomized algorithm that, on an input unweighted graph G = (V,E) with |V | = n and |E| = Θ(n1+γ),
outputs with Ω(1) probability a polylog(n)-approximate hierarchical clustering tree. Then A necessarily uses
at least nmin{1+γ,2−2γ}−o(1) queries.

By Yao’s minimax principle [47], to prove Theorem 19, it suffices to exhibit a hard input distribution on which
every deterministic algorithm using a small number of queries fails with nontrivial probability. Specifically, we
will show that there exists a distribution D over graphs with n vertices and Θ(n1+γ) edges such that, on an
input graph drawn from D, any deterministic algorithm using nmin{1+γ,2−2γ}−δ queries for any constant δ > 0
can only output a polylog(n)-approximate hierarchical clustering tree with o(1) probability.

The hard distribution. We start by defining the hard distribution D over graphs with n vertices and
Θ(n1+γ) edges. Roughly speaking, we will generate an input graph G by first taking the union of a certain
number of cliques C1, . . . , Ck of equal size n/k, and then adding some artificially structured edges between
them. We will then show that even the edges between the cliques are relatively tiny compared to those within, it
is necessary to discover them in order to output a good hierarchical clustering solution.

30

More specifically, we will decide what edges to add between cliques based on the structure of a randomly
generated “meta graph” H on k supernodes, with supernode i in H representing the clique Ci. We generate
the meta graph H by picking a uniformly random perfect matching between the k supernodes (assuming for
simplicity k is even). Then for each matched pair of supernodes i, j in the meta graph H , we will add between
Ci and Cj a random bipartite matching of certain size (note that this matching is in the actual graph G rather
than the meta graph H). Moreover, when adding the latter matching edges in G, we will also delete some edges
inside Ci, Cj to ensure that every vertex has the exact same degree, so that an algorithm cannot tell which
vertices participate in the meta graph’s perfect matching by only looking at the vertex degrees. We will then
show:

1. Any deterministic algorithm using nmin{1+γ,2−2γ}−δ queries for any δ > 0 can only discover an o(1)
fraction of the matching edges in the meta graph H .

2. If Ω(1) fraction of the matching edges have high entropy, an algorithm cannot output a polylog(n)-
approximate hierarchical clustering tree with Ω(1) probability.

We now formally describe how we generate a graph G from D. Let the vertices of G be numbered 1 through n.
We divide the vertices into n1−γ groups S1, . . . , Sn1−γ each of size nγ , where

Si := {(i− 1)nγ + 1, . . . , inγ} .
We then generate the edges of G by the process in Figure 2.

1. Generate a meta graph H on supernodes numbered 1, . . . , n1−γ by picking a uniformly
random perfect matching (of size n1−γ/2) between them.

2. Initially, add a clique Ci of size nγ to each vertex group Si, and insert the clique edges into
the adjacency list of G in an arbitrary order.

3. Let t← n
max{0,3γ−1}+ 1√

logn . In what follows, we will add a matching of size 2t between
each matched clique pair.

4. For each matched pair of supernodes i, j in the meta graph H:
(a) Add a uniformly random bipartite matching Mi,j of size 2t between Si and Sj , and let

Ti,j denote the vertices matched by Mi,j (thus |Ti,j ∩ Si| = |Ti,j ∩ Sj | = 2t).
(b) Inside Si (resp. Sj), pick a uniformly random perfect matching of size t between

vertices Ti,j ∩ Si (resp. Ti,j ∩ Sj), and delete its edges from clique Ci (resp. Cj).
(c) Modify the adjacency list of the vertices in G by replacing the edges deleted at Step 4b

with the edges added at Step 4a. This modification is valid because the degree of each
vertex is preserved.

Figure 2: Generation of G ∼ D.

Proposition 2. All vertices in G have degree exactly nγ − 1.

Proposition 3. The optimal hierarchical clustering tree of G has cost O(n1+2γ).

Proof. We will construct a hierarchical clustering tree as follows. At the first level, we divide the entire vertex
set into n1−γ/2 clusters where each cluster is a connected component. This step incurs zero cost. We then
construct a binary hierarchical clustering tree of each cluster arbitrarily. Since each cluster has 2nγ vertices, the
hierarchical clustering tree we construct for it has cost bounded by O(n3γ) (Fact 2). Summing this upper bound
over all n1−γ/2 clusters finishes the proof.

Analysis of deterministic algorithms on D. Let A be a deterministic algorithm that makes
nmin{1+γ,2−2γ}−δ queries for some constant δ > 0. Since all vertices have the same degree nγ − 1 in
G, we will give the degree information to A for free at the start. We shall then describe a process that interacts
with the algorithm A while generating a G ∼ D. To that end, we first define the notion of revealed vertex
groups.

Definition 2 (Revealed vertex groups). At any given point of the algorithm, we say a vertex group Si is revealed
by A if at least one of the following is true:

Condition 1: At least n2γ

10000t
pair queries involving vertices in Si are made by A.

Condition 2: At least n2γ

10000t
neighbor queries on vertices in Si are made by A.

31

Condition 3: A pair query by A finds a pair u, v ∈ Si not connected by an edge.

Condition 4: A pair query or a neighbor query by A finds a pair u ∈ Si, w /∈ Si connected by an edge.

We now describe a process that answers queries made by A while adaptively realizing the edge slots and the
adjacency list of G, as well as the perfect matching in the meta graph H . Whenever realizing a part, we will
always do so following the distribution D conditioned on the already realized parts. This means that if a part is
already realized or determined by other realized parts, realizing it again will not change it. The process proceeds
according to the following three principles:

Principle 1: Upon a pair query, realize the corresponding edge slot and answer accordingly.

Principle 2: Upon a neighbor query, realize the corresponding entry of the adjacency list and answer
accordingly.

Principle 3: As soon as a group Si becomes revealed after a query, due to either large query count or
what we have answered by Principle 1 and Principle 2, right away do:

• Realize the supernode j that is matched to i in the meta graph H .
• Realize all edge slots incident on (and hence also all neighbors of) vertices in Si, Sj .

At any given point of this process, we say a vertex group Si is realized if all edge slots incident on Si are
realized. That is, the realized vertex groups are exactly those revealed by A and the ones matched to them. This
in particular implies that a perfect matching has been realized between the realized vertex groups in the meta
graph H , while none of the unrealized vertex group is matched. As a result, one can show that the queries made
so far that involve unrealized vertex groups must have deterministic answers:

Proposition 4. At any point of the algorithm A, for the queries already made, we have:

• Every pair query between an unrealized vertex group and a realized one discovered no edge.

• Every pair query between two unrealized vertex groups discovered no edge.

• Every pair query within a same unrealized vertex group discovered an edge.

• Every neighbor query on a vertex in an unrealized vertex group found a neighbor within the same
group.

In what follows, we will consider the conditional distribution of D on all edge slots incident on realized vertex
groups, which we denote by Drz. Note that G′ ∼ Drz is not necessarily consistent with the answers we gave
to the queries that involve unrealized vertex groups, though these answers are themselves deterministic by
Proposition 4. By definition, a graph G′ ∼ Drz can be generated by the process in Figure 3.

1. Add the edges incident on the realized vertex groups to G′.
2. Add the perfect matching between the realized vertex groups to the meta graph H .
3. Add a clique Ci of size nγ to each unrealized vertex group Si.
4. For each unrealized vertex group Si:

(a) If supernode i is not matched in the meta graph H , then match i to another uniformly
random unmatched j, and change the edges within Si∪Sj using Steps 4a-4c in Figure 2.

Figure 3: Generation of G′ ∼ Drz.

Proposition 5. Consider generating G′ ∼ Drz conditioned on that an unrealized Si is matched to another
unrealized Sj in the meta graph H . Then G′[Si ∪ Sj] is consistent with previous answers with probability at
least .998.

Proof. First note that, when changing the edges within Si ∪ Sj at Step 4a in Figure 3, the edges we delete
from Ci (resp. Cj) distribute as a uniformly random matching of size t in Ci (resp. Cj), and the edges we add
between Si, Sj distribute as a uniformly random bipartite matching of size 2t between Si, Sj , though these
distributions are correlated.

Then note that G′[Si ∪ Sj] is not consistent with previous answers only if (i) the slot of an edge we delete
within Si or Sj was queried by A, or (ii) an edge we add between Si, Sj was queried by A. Since Si, Sj are

32

both unrevealed, they do not satisfy Condition 1 or Condition 2. As a result, we can bound the probability of
G′[Si ∪ Sj] being inconsistent with previous answers via a union bound by

2 · 2n2γ

10000t
· t(

nγ

2

) +
2n2γ

10000t
· 2t

n2γ
≤ .002,

which proves the proposition.

We show that the number of realized vertex groups can be at most a o(1) fraction of the total.

Proposition 6. Upon termination of the algorithmA, the total number of realized vertex groups Si’s is bounded
by o(n1−γ) with probability at least 1− 1/n4.

Proof. The number of vertex groups that satisfy Condition 1 or Condition 2 can be at most

2 · #queries
n2γ

10000t

=
2nmin{1+γ,2−2γ}−δ

n2γ

10000t

=
20000n

max{0,3γ−1}+ 1√
logn nmin{1+γ,2−2γ}−δ

n2γ
(plugging in the value of t)

=20000n
1−γ+ 1√

logn
−δ

≤n1−γ−Ω(1) ≤ o(n1−γ).

This means that the total number of realized vertex groups that satisfy Condition 1 or Condition 2 and those
matched to them is at most o(n1−γ).

We then bound the number of realized vertex groups that do not satisfy Condition 1 or Condition 2 and are
not matched to those who satisfy Condition 1 or Condition 2. Each such vertex group must be (matched to) a
revealed one that satisfies Condition 3 or Condition 4. We thus consider the probability that a query makes an
unrealized vertex group satisfy Condition 3 or Condition 4.

• Pair query: If a pair query involves a vertex in an already realized vertex group, then its answer is
already determined and it does not reveal any unrealized groups.

Otherwise, if a pair query only involves unrealized vertex groups, we show that the probability it
reveals any unrealized groups is at most 8t

n2γ . First consider the case that the query is within a single
unrealized group Si. For a G′ ∼ Drz, the probability that this query discovers a non-edge is at
most t

(n
γ

2)
. By Proposition 5, conditioned on Si being matched to another Sj in the meta graph H ,

the probability that G′[Si ∪ Sj] is consistent with previous answers is ≥ .99. Therefore, this query
discovers a non-edge with probability ≤ 2t

(n
γ

2)
.

Then consider the case that the query is between two unrealized groups Si, Sj . If Si is not matched to
Sj in the meta graph H , then the pair query does not discover an edge, since there is no edge between
Si, Sj . Otherwise, for a G′ ∼ Drz, conditioned on Si being matched to Sj , the pair query discovers
an edge with probability 2t

n2γ . By Proposition 5, the probability that G′[Si ∪ Sj] is consistent with
previous answers with probability ≥ .99. Therefore, this query discovers an edge with probability
≤ 4t

n2γ .

• Neighbor query: Consider a neighbor query on a vertex u in an unrealized vertex group Si. For
a G′ ∼ Drz, the query finds an edge going out of Si with probability t

(n
γ

2)
. By Proposition 5,

conditioned on Si being matched to another Sj in the meta graphH , the probability thatG′[Si∪Sj] is
consistent with previous answers with probability ≥ .99. Therefore, this query discovers an outgoing
edge with probability ≤ 2t

(n
γ

2)
.

Combining the above, a query makes an unrealized vertex group satisfy Condition 3 or Condition 4 with
probability at most 8t

n2γ . Also, by doing so, a query can increase the number of realized vertex groups by at
most 4. As a result, the expected increase in the number of realized groups that do not satisfy Condition 1

33

or Condition 2 over all queries made by A is at most

4 · #queries · 8t

n2γ
=

32nmin{1+γ,2−2γ}−δ · t
n2γ

=
32nmin{1+γ,2−2γ}−δn

max{0,3γ−1}+ 1√
logn

n2γ
(plugging in the value of t)

=32n
1−γ+ 1√

logn
−δ

≤n1−γ−Ω(1) ≤ o(n1−γ).

Then the proposition follows by an application of Chernoff bounds.

Suppose we are now at the end of the algorithm A. Let Drz be D conditioned on all edge slots incident on
realized vertex groups, as defined above. Similarly, G′ ∼ Drz is not necessarily consistent with the answers we
gave toA’s queries that involve unrealized vertex groups, albeit these answers are deterministic by Proposition 4.
Also, let aaa denote the answers we gave to all queries made byA, and letDrz,aaa denote the conditional distribution
of Drz on aaa .

Lemma 4. Let (S, S̄) be any fixed cut with |S| ∈ [n/3, 2n/3]. With probability at least 1− 1/n, the size of the

cut (S, S̄) in G′′ ∼ Drz,aaa is at least n2γ+ 1√
logn /107.

Proof. Suppose after A terminates, the number of realized vertex groups is bounded by o(n1−γ), which by
Proposition 6 happens with high probability. Suppose we generate a G′ ∼ Drz using the process in Figure 3.
Consider an Si that is among the first unmatched n1−γ/13 unrealized vertex groups that we iterate over at
Step 4a in Figure 3. We claim that, with probability at least .1 over the choice of Sj matched to Si and the edges
we add between Si, Sj , t/100 of the latter edges are across the cut (S, S̄).

To prove the claim, note that the number of choices of Sj to be matched to Si is at least 5n1−γ/6. Let U denote
the vertices in these Sj’s, and thus we have |U | ≥ 5n/6. Define T := S ∩ U and T ′ := S̄ ∩ U , which satisfy
|T |+ |T |′ = |U | and |T | ∈ [|U |/6, 5|U |/6]. Then the expected number of edge slots between Si, Sj that are
across the cut (S, S̄) is given by

1

#j’s

∑

j

|Si ∩ S||Sj ∩ S̄|+ |Si ∩ S̄||Sj ∩ S|

=
1

#j’s
(
|Si ∩ S| · |T ′|+ |Si ∩ S̄| · |T |

)
(moving the summation inside)

≥ 1

n1−γ ·
|U |
6

(
|Si ∩ S|+ |Si ∩ S̄|

)
(as |T |, |T ′| ≥ |U |/6)

≥ 1

n1−γ ·
5n/6

6
· nγ (by |U | ≥ 5n/6)

>.13n2γ .

Then the expected number of edges that we add between Si, Sj that fall in these slots is at least

.13n2γ · 2t

n2γ
= .26t.

Since the number of edges between Si, Sj is 2t, by Markov’s inequality, the number such edges across the cut
(S, S̄) is at least t/100 with probability ≥ .1, as desired.

Thus, for a G′ ∈ Drz, in expectation, at least n1−γ/130 of the Si’s satisfy that between Si and the matched
Sj , t/100 edges are across the cut (S, S̄). By a Chernoff bound, with probability at least 1− e−n1−γ/500, the
number of such Si’s is at least n1−γ/1300, in which case the cut size of (S, S̄) in G′ is at least

t

100
· n

1−γ

1300
=130000−1n1−γn

max{0,3γ−1}+ 1√
logn

≥10−7n
2γ+ 1√

logn .

On the other hand, by Proposition 5, G′ is consistent with all answers aaa that we gave to A with probability at
least

.998n
1−γ/2 ≥ e−.0015n1−γ

.

As a result, the cut (S, S̄) in G′′ ∼ Drz,aaa has size at least 10−7n
2γ+ 1√

logn with probability at least 1 −
e−0.0005n1−γ

, which suffices for proving the lemma.

34

We now conclude this section by proving Theorem 19.

Proof of Theorem 19. Let A be a deterministic algorithm that makes nmin{1+γ,2−2γ}−δ queries for some
constant δ > 0. Suppose for the sake of contradiction, on an input graph G ∼ D, A outputs with probability
Ω(1) a polylog(n)-approximate hierarchical clustering tree. First, we turn this tree into a full binary tree such
that the bi-partition of each internal node is [1/3, 2/3]-balanced, while increasing the cost by at most an O(1)
factor. We then consider the bi-partition of the root, which is a cut (S, S̄) with |S| ∈ [n/3, 2n/3]. By Lemma 4,

conditioned on the answers A got, this cut has size at least n2γ+ 1√
logn /107 with high probability. However, by

Proposition 3, the cost of the optimal hierarchical clustering tree of G is at most O(n1+2γ). This means that A
only obtains an no(1)-approximation with high probability, a contradiction.

G A One-Round MPC Lower Bound for Õ(1)-approximation

Theorem 20. Let P be any one-round protocol in the MPC model where each machine has memory O(n4/3−ε)
for any constant ε > 0. Then at the end of the protocol P , no machine can output a polylog(n)-approximate
hierarchical clustering tree with probability better than o(1).

To prove the theorem, we will (i) describe the graph distribution from which we generate an input graph,
(ii) specify how we split the input graph across multiple machines, and (iii) analyze the performance of any
one-round protocol on such input.

The hard graph instance. Let ε ∈ (0, 1/3) be an arbitrary constant. We first define a “base” graph G
of 2n vertices and Θ(n5/3−ε) edges as follows. G consists of two vertex-disjoint parts, each supported on n
vertices:

Part 1: A union of n1/3+ε bipartite cliques, each of size n2/3−ε (with each side having n2/3−ε/2
vertices), supported on vertex set V1 with |V1| = n.

Part 2: A union of n2/3+ε bipartite cliques, each of size n1/3−ε (with each side having n1/3−ε/2
vertices), supported on vertex set V2 with |V2| = n that is disjoint from V1.

We show that the induced subgraph G[V1] can be tiled using edge-disjoint subgraphs that are isomorphic to
G[V2].

Proposition 7. The vertex-induced subgraph G[V1] can be decomposed into n1/3 edge-disjoint subgraphs
G1, . . . ,Gn1/3 , each supported on V1 and consisting of n2/3+ε vertex-disjoint bipartite cliques of size n1/3−ε.

Proof. Consider first arbitrarily partitioning vertices on each side of each bipartite clique in G[V1] into vertex
subsets of size n1/3−ε/2, and then collapsing each vertex subset into a supernode. By further treating the
parallel edges between a same pair of supernodes as a single edge, we have made G[V1] a union of n1/3+ε

bipartite cliques each supported on 2n1/3 supernodes (thus we have 2n2/3+ε supernodes in total). Note that
in this contracted version of G[V1], each perfect matching between the 2n2/3+ε supernodes correspond to an
edge-induced subgraph that is isomorphic to G[V2]. It is now not hard to show that this contracted version of
G[V1] can be decomposed into n1/3 edge-disjoint perfect matchings, which proves the proposition.

In what follows, we will fix an arbitrary such tiling G1, . . . ,Gn1/3 . We next define a distribution D such that
a graph G ∼ D is generated by permuting the vertices of G uniformly at random. Let π : [2n]→ [2n] be the
permutation we use to generate G. We will then let V1, V2 be, respectively, V1,V2 under the vertex permutation
π. We also use G1, . . . , Gn1/3 to denote G1, . . . ,Gn1/3 under the vertex permutation π, where the former form
an edge-disjoint tiling of G[V1], and each Gi is isomorphic to G[V2].

The next proposition bounds the optimal hierarchical clustering cost for any input graph G generated as above.

Proposition 8. The optimal hierarchical clustering tree of G has cost at most O(n7/3−2ε).

Proof. We construct a hierarchical clustering tree by the following steps. At the root of the tree, we divide the
entire vertex set into n1/3+ε + n2/3+ε clusters with each cluster being a connected component. This incurs zero
cost of the tree. We next construct a binary hierarchical clustering tree of each cluster arbitrarily. If a cluster is
a bipartite clique of size n2/3−ε, then we incur a cost of at most O(n2−3ε) (Fact 2). If a cluster is a bipartite
clique of size n1/3−ε, then we incur a cost ofO(n1−3ε). Thus the total cost is O(n2−3ε) ·n1/3+ε+O(n1−3ε) ·
n2/3+ε ≤ O(n7/3−2ε).

35

The MPC input distribution. Consider that in the MPC model each machine has Θ(n4/3−ε logn) bits
of memory, and there are in total Θ(n1/3) machines. We will give G[V2] to a uniformly random machine. We
then give each of G1, . . . , Gn1/3 to a uniformly random remaining machine, while ensuring that each machine
gets at most one subgraph Gi.

Note that, each machine’s input has exactly the same distribution. Namely, each machine has the same probability
of having a non-empty graph. Moreover, for each machine, conditioned on that it gets at least one edge, the
graph it gets is a union of n2/3+ε bipartite cliques of size n1/3−ε plus n isolated vertices, with all vertices
permuted uniformly at random. However, the input distributions of different machines are correlated.

Analysis of one-round protocols on the input distribution. We show that for any one-round protocol
P , no machine can output a polylog(n)-approximate hierarchical clustering tree of G with probability Ω(1).
We will do so by a reduction from a two-party one-way communication problem, which we define next.

We specifically consider the following one-way communication problem in the two-party model, with players
Alice and Bob who have shared randomness. Alice is given as input a graph H on n vertices, which is obtained
by first taking a union of n1−γ bipartite cliques each of size nγ (with each side having nγ/2 vertices), for some
constant γ ∈ (0, 1), and then permuting the n vertices uniformly at random. The goal of this communication
problem is as follows:

For Alice to send Bob a single (possibly randomized) message such that, for some constant
δ > 0, Bob can then output with probability Ω(1) a cut (S, S̄) in H with |S| ∈ [n/3, 2n/3]
and size at most O(n1+γ−δ). (?)

We show that this problem requires Ω(n) communication. In particular, we will prove the following theorem in
Section G.1.

Theorem 21. For any constant γ ∈ (0, 1), Alice needs to send a message of size Ω(n) to achieve goal (?).

To reduce this two-party communication problem to our MPC problem, we prove the following lemma.

Lemma 5. Suppose for ε > 0, there exists a one-round protocol P in the MPC model with Θ(n4/3−ε logn)
bits of memory per machine such that, at the end of P , some machine can output a polylog(n)-approximate
hierarchical clustering tree with probability Ω(1). Then there exists a one-way protocol Q with message size
o(n) in the two-party communication model that achieves goal (?) for γ = 1/3− ε.

Proof. Suppose at the end of protocol P , some machine M∗ can output with probability Ω(1) a polylog(n)-
approximate hierarchical clustering tree. We first show that such a protocol P implies another protocol P ′ in
which M∗ can output a balanced cut of G[V2] with small size.

Claim 1. There is another one-round protocol P ′ in the MPC model in which M∗ can find with probability
≥ Ω(1) a vertex set S ⊂ V2 such that |S| ∈ [n/3, 2n/3] and the number of edges between S and V2 \ S in G
is at most n4/3−2εpolylog(n).

Proof. P ′ proceeds by first simulating P , and then, in parallel, letting each machine M 6= M∗ sample its input
edges with probability 100 logn

n2/3−ε and send the sampled edges to M∗. With high probability, the total number of
edges that M∗ receives is O(n logn), and each bipartite clique of size n2/3−ε in G[V1] is connected by the
sampled edges. Therefore, by looking at the connected components of size n2/3−ε in the subsampled graph,
M∗ can recover V1, V2 exactly.

M∗ then uses the protocol P to output a hierarchical clustering tree T . We first make T a fully binary tree
without increasing the cost. We then look at an internal node of T corresponding to a vertex set T such that
|T ∩ V2| ∈ [n/3, 2n/3]. One can show that such an internal node exists by starting at the root of the tree and
keeping moving to the child that has a larger intersection with V2 until finding a desired node. Let S := T ∩ V2.
If we consider the edges between S and V2 \ S in G, each of them incurs a cost of at least |T | ≥ n/3 in T .
Since the cost of T is at most n7/3−2εpolylog(n) with probability Ω(1), the number of edges between S and
V2 \ S must be bounded by n4/3−2εpolylog(n) with probability Ω(1), as desired.

We now show how to use the protocol P ′ to construct a one-way protocol Q in the two-party communication
model that achieves goal (?) with γ = 1/3−ε. First note that, since the memory per machine is Θ(n4/3−ε logn),
the total message size received byM∗ is at most Θ(n4/3−ε logn). This means that, on average, another machine
sends a message of size Θ(n1−ε logn) to M∗. For each machine Mi, let pi be the success probability of P ′

conditioned on that G[V2] is given to machine Mi. Since P ′ succeeds with probability Ω(1), the average of pi
must be Ω(1). Based on the above two observations, by applying Markov’s inequality twice and then a union

36

bound, we have that there exists a machine Mj 6= M∗ that sends M∗ a message of size O(n1−ε log2 n) and
has pj ≥ Ω(1).

The protocolQ proceeds as follows. Upon receiving the input graph, which is a union of n2/3+ε bipartite cliques
of size n1/3−ε, Alice shall treat its vertices as V2 and add n isolated vertices as V1. Then she uses her shared
randomness with Bob to permute the 2n vertices uniformly at random. Note that now the new graph has the
exact same distribution as the input given to machine Mj in the MPC model conditioned on G[V2] being given
to Mj . Alice then uses the same message generation algorithm as Mj to produce a message and sends it to Bob.

Upon receiving the message from Alice, Bob himself then simulates protocol P ′ for other machines Mi 6= Mj

by generating their inputs conditioned on the realization of V1, V2 and simulating their message generation
algorithms. Finally, Bob runs the recovery algorithm of M∗ to recover a vertex set S ⊂ V2, which satisfies with
probability = pj ≥ Ω(1) that |S| ∈ [n/3, 2n/3] and that the number of edges between S, V2 \ S is at most
n4/3−2εpolylog(n) ≤ O(n4/3−1.5ε). This means that the protocol Q achieves goal (?) for γ = 1/3− ε with
message size O(n1−ε log2 n) ≤ o(n).

Lemma 5 and Theorem 21 together rule out any one-round protocol in the MPC model with O(n4/3−ε) memory
per machine for any constant ε > 0, and thus prove Theorem 20.

G.1 A Lower Bound in the Two-Party Communication Model

In this section we prove Theorem 21, which gives a lower bound on the communication needed to achieve goal
(?). We first show that any cut in the input graph H given to Alice that has size ≤ O(n1+γ−Ω(1)) can be made
into a cut of size 0 by changing the sides of an o(1) fraction of vertices.

Proposition 9. For any cut (S, S̄) in H with size at most O(n1+γ−δ) for any constant δ > 0, one can obtain
from it another cut of size 0 by switching the sides of at most O(n1−δ) vertices.

Proof. Let us call the bipartite cliques in H C1, . . . , Cn1−γ with Ci supported on vertices Si. For each i,
let si := |Si ∩ S| and ti := |Si ∩ S̄|. Then the number of edges of Ci across the cut (S, S̄) is at least
Ω(1) ·min {si, ti} · nγ . This means that we have

Ω(1) ·
∑

i

min {si, ti} · nγ ≤ O(n1+γ−δ)

which by rearranging gives
∑

i

min {si, ti} ≤ O(n1−δ).

Therefore we can obtain a new cut of size 0 from (S, S̄) by switching the sides of the vertices that correspond to
the summation on the LHS of the above inequality, whose total number is at most O(n1−δ).

Using the above lemma, we then show that if one can achieve (?) using o(n) communication, then one can also
output a balanced cut with size 0 using o(n) communication.

Lemma 6. If there is a protocol that achieves goal (?) with message size o(n), then there is another protocol
in which Alice sends Bob a message of size o(n), such that Bob can then output with probability Ω(1) a cut
(S′, S̄′) in H with |S′| ∈ [n/6, 5n/6] and size 0.

Proof. We will design the second protocol by simulating the first protocol. To this end, let us fix a protocol
P that achieves goal (?) for some δ > 0, which consists of a message generation algorithm A for Alice and
a cut recovery algorithm B for Bob. At the start, Alice runs A to generate a message M of size o(n). Then,
Alice and Bob use their shared randomness to generate sufficiently many random bits for running B. Alice first
runs B given the message M on her own and gets a cut (S, S̄). If the cut satisfies |S| ∈ [n/3, 2n/3] and has
size at most O(n1+γ−δ), then Alice sends Bob the message M along with a subset U of O(n1−δ) vertices
whose switching sides makes cut (S, S̄) have zero size (existence guaranteed by Proposition 9). Then Bob, upon
receiving the message M and the subset U of vertices, runs the recovery algorithm B using the shared random
bits with Alice and gets the same cut (S, S̄) with |S| ∈ [n/3, 2n/3] as Alice. By switching the sides of vertices
in U , Bob then gets a cut (S′, S̄′) with |S′| ∈ [n/6, 5n/6] and size 0, as desired.

In light of the above lemma, we now consider another one-way two-party communication problem, where
Alice gets a same input graph H obtained by first taking a union of n1−γ bipartite cliques of size nγ and then
permuting all n vertices uniformly at random, and the goal is

37

For Alice to send Bob a single (possibly randomized) message such that Bob can output with
probability Ω(1) a cut (S, S̄) in H that satisfies |S| ∈ [n/6, 5n/6] and has size 0. (??)

We show that it requires Ω(n) communication to achieve (??).
Lemma 7. For any constant γ ∈ (0, 1), Alice needs to send a message of size Ω(n) to achieve goal (??).

Proof. Let P be a protocol that achieves (??). Then on an input graph H ∼ D, at the end of the protocol P ,
Bob outputs with probability Ω(1) a cut (S, S̄) in H with |S| ∈ [n/6, 5n/6] and size 0. We now analyze the
entropy of the distribution D and that of D conditioned on the message M Bob receives from Alice. First, note
that an input graph H can be determined by first dividing the n vertices into n1−γ groups each of size nγ , and
then picking a balanced bi-partition for each group. Thus the total number of different H’s can be calculated by

N1
def
=

 1

n1−γ !

n1−γ∏

i=1

(
n− (i− 1)nγ

nγ

)
 ·

((
nγ

nγ/2

)
/2

)n1−γ

. (13)

Thus the entropy of D is
H(D) = log2 N1.

On the other hand, by Fano’s inequality, we have
H(D|M) ≤ H(D|(S, S̄)). (14)

We then do a case analysis to calculate H(D|(S, S̄)):

Case 1: The cut (S, S̄) satisfies |S| ∈ [n/6, 5n/6] and has size 0, which happens with probability Ω(1).
Since the cut (S, S̄) does not cut through any cliques, it must be that S contains entirely |S|/nγ
cliques and S̄ contains entirely the remaining |S̄|/nγ cliques. Therefore, the total number of graphs
H that is consistent with this profile is

N2
def
=

 1
|S|
nγ

! |S̄|
nγ

!

|S|/nγ∏

i=1

(
|S| − (i− 1)nγ

nγ

) |S̄|/nγ∏

j=1

(
|S̄| − (j − 1)nγ

nγ

)
 ·

((
nγ

nγ/2

)
/2

)n1−γ

.

Thus the entropy of D conditioned on the cut (S, S̄) is
H(D|(S, S̄)) = log2 N2.

We can then calculate the difference between the entropy H(D) and H(D|(S, S̄)) by
H(D)−H(D|(S, S̄))

= log2

N1

N2

= log2

n!

|S|!|S̄|!
|S|
nγ

! |S̄|
nγ

!

n1−γ !
(plugging in the values of N1, N2)

= log2

(
n

|S|

)(
n1−γ

|S|/nγ

)−1

(rewriting as binomials)

≥ log2

(
n

|S|

)|S|(|S|/nγ
en1−γ

)|S|/nγ
(as
(n
k

)k
≤
(
n

k

)
≤
(en
k

)k
for any n, k)

= log2

(
n

|S|

)|S|(1−1/nγ)

e−|S|/n
γ

≥ log2 1.2(n/6)(1−100/nγ) (as |S| ∈ [n/6, 5n/6])
≥Ω(n).

Case 2: The cut (S, S̄) does not satisfy |S| ∈ [n/6, 5n/6] or has nonzero size, which happens with
probability 1− Ω(1). Since conditioning can only reduce entropy, we have

H(D)−H(D|(S, S̄)) ≥ 0.

Combining the above two cases with (14), we have
H(D)−H(D|M) ≥ Ω(n).

On the other hand, by the chain rule, we have
H(D|M) +H(M) = H(D,M) ≥ H(D).

As a result, H(M) ≥ Ω(n), and therefore M must contain Ω(n) bits.

38

We now prove Theorem 21.

Proof of Theorem 21. Suppose for the sake of contradiction there exists a protocol with message size o(n) that
achieves goal (?). Then by Lemma 6, there also exists a protocol with message size o(n) that achieves goal
(??), contradicting Lemma 7. Therefore Alice needs to send a message of size Ω(n) in order to achieve goal
(?), as desired.

H Experimental Results

We now present our experimental results. The goal of our experiments is to test our data/graph sparsification
framework (Algorithm 3) which forms the basis of all our algorithms under the different models of computation.
We ask the following question: if we run an HC algorithm on the sparsified graph produced by Algorithm 3, then
what will be the loss in the quality of solution compared to the same HC algorithm run on the original graph?
We would also like to understand the tradeoff between the sparsification rate and the solution quality of certain
HC algorithms.

We test our data sparsification algorithm on two large real-world datasets Boston and Newsgroup, which are
both part of the standard Scikit-learn library and were used in previous HC papers [18, 42]. We calculate the
similarity between two data points using the Gaussian kernel as in [42, 37] and only insert an edge if its weight
(i.e. similarity between its two endpoints) is bigger than 10−10.

Since we are not aware of any existing implementation of the recursive sparsest cut algorithm, we choose to
test two linkage algorithms, namely average linkage and complete linkage, which, as shown in [37], are among
the best-performed algorithms on the two datasets we consider. We run these two algorithms both on the entire
graph and on the sparsified graphs obtained by our Algorithm 3, and compare the cost of the HC we get in each
case, where the cost is measured using Dasgupta’s objective function (Eq. (1)). When running our Algorithm 3,
we also try different sampling rates to obtain subgraphs of various edge densities. Note that, we always measure
the cost of an HC in the original graph as opposed to in the subsampled graph.

We present our experimental results in the tables below. Here we write absolute HC cost to denote the cost of the
HC obtained by running the corresponding algorithm on the entire graph, and write relative HC cost to denote
the cost of the HC obtained by running the algorithm on the subsampled graph divided by the absolute HC cost.

For the Boston dataset, one can see that even when we only sample <5% of the edges, we already get a very
good relative HC cost of 1.15; for the Newsgroup dataset, sampling only <0.5% of the edges already gives us a
low relative HC cost of 1.188 for average linkage and 1.05 for complete linkage. As the number of sampled
edges grow, the relative HC cost becomes smaller and gets closer to 1.

Table 2: Performance of average linkage on Boston dataset (506 vertices, 95566 edges), with absolute
HC cost 186085.271.

Number (Percentage) of Sampled Edges Relative HC Cost
4040 (4.23%) 1.146
5861 (6.13%) 1.068
7010 (7.34%) 1.043
9018 (9.44%) 1.016

9756 (10.21%) 1.012
11941 (12.50%) 1.000

Table 3: Performance of complete linkage on Boston dataset (506 vertices, 95566 edges), with
absolute HC cost 226485.146.

Number (Percentage) of Sampled Edges Relative HC Cost
4032 (4.22%) 1.158
5885 (6.16%) 1.135
7002 (7.33%) 1.113
9033 (9.45%) 1.066

9773 (10.23%) 1.037
11900 (12.45%) 1.006

39

Table 4: Performance of average linkage on Newsgroup dataset (3516 vertices, 6178853 edges), with
absolute HC cost 3960145237.881.

Number (Percentage) of Sampled Edges Relative HC Cost
28495 (0.46%) 1.188
55116 (0.89%) 1.169

103804 (1.68%) 1.143
203095 (3.29%) 1.118
358440 (5.80%) 1.111

1029648 (16.66%) 1.068

Table 5: Performance of complete linkage on Newsgroup dataset (3516 vertices, 6178853 edges),
with absolute HC cost 3960674776.482.

Number (Percentage) of Sampled Edges Relative HC Cost
28476 (0.46%) 1.050
55042 (0.89%) 1.010

103756 (1.68%) 1.001
203323 (3.29%) 1.000
358446 (5.80%) 1.000

1029274 (16.66%) 1.000

40

