Appendix

A Supplement for Section 1 (Introduction)

Here, we present details of the user study in Fig. The figure shows that logic rule explanations
achieve higher human precision than linear-regression-based explanations with local stability, while
providing a confidence score that correlates with human precision.

We used a vendor company to recruit three native English speakers for the user study (Sec.[3.3). User
studies can be performed by 1) hiring a large number of labelers from platforms like Prolific and AMT
or 2) hiring a limited number of experienced annotators from a labeling company. While platforms
like Prolific make it easy to find many labelers, they are known to be better suited for cognitively
simple tasks and may suffer from errors [54]. Our task is challenging for ordinary labelers, as we
require them to carefully reason about which features of an adult are useful for predicting his or her
income (the Adult dataset) and compare multiple similar explanations. Thus, we validated the model
with more experienced annotators hired through a labeling company. To ensure the labelers have an
adequate understanding of the task, we provided them with detailed guidelines and examined their
initial labels with feedback when a misunderstanding is detected. Such a close interaction would not
be possible in crowdsourcing platforms, which may lead to errors and unreliable results.

Each participant was provided 1,000 and 500 randomly selected explanations from SELOR and
SENN, respectively. For each explanation, we test whether it can naturally lead to the model
prediction according to human perception. Participants were asked to provide 1) the class label
for the explanation and 2) how confident they were in their decision by using a 5-point likert scale
(HC, i.e., human confidence). For example, given an explanation “awesome, tasty”, the participant
will give the label positive sentiment and a high confidence score “5” out of 5. When labels were
the same to model predictions, human precision was high. We sampled explanations so that their
confidence score from models (MC, i.e., model confidence) was evenly distributed and examined how
explanation quality varies with the confidence score. Fig.[Ib]shows how human precision changes
with different levels of model confidence. As shown in the figure, logic rule explanations achieve
higher human precision than the linear-regression-based explanations, and the model confidence
shows a strong correlation with human precision. Here, human precision is the F1-score of machine
prediction for give logic rules using human prediction as the ground-truth labels. Table [6|provides
more detailed information about our user study. The logic rule with a higher MC level tends to have
higher agreement and HC. Also, the logic rule shows better human precision at most MC levels.

User instruction and labeling detail. We describe the instructions given to participants in the
attached guideline file (Labeling_Guidelines_User_Study_Figurelb.pdf) with detailed description of
the task and labeling examples. Participants received an Excel file containing blank labels, which
they were instructed to fill out and return. The snapshot of the Excel file is also attached as a separate
file (Screenshot_User_Study_Figurelb.PNG). Each participant was paid 22.5% per hour and the total
budget we spent was 937.5$ for this task.

Table 6: User study results for human precision on logic rule- and linear-regression-based explanations.
HC denotes the average human confidence while MC denotes the machine confidence. Avg. denotes
the average number of sentiment agreement, human confidence, and human precision of all data
points. (Lv 1: 0.0~ 0.2,Lv2: 0.2~ 0.4,Lv3: 04 ~ 0.6,Lv4: 0.6 ~0.8,Lv5: 0.8 ~ 1.0)

(a) Logic rule (b) Linear-regression-based explanation

Sentiment vg HC Hur.n'fln Sentiment Avg HC Hur.Ilz?n

Agreement Precision Agreement Precision
MCLv1 82.67 2.72 52.65 MCLv 1 78.79 3.63 47.71
MCLv2 86.00 2.88 53.53 MCLv2 81.56 3.55 48.69
MCLv 3 84.00 3.31 76.19 MCLv3 75.95 3.62 52.83
MC Lv 4 92.67 3.85 89.38 MCLv 4 79.12 3.56 56.82
MCLv5 95.00 4.07 90.41 MCLv5 84.51 3.78 66.17
Avg. 88.07 3.36 73.32 Avg. 79.96 3.63 54.46

15



B Supplement for Section 2 (Deep Logic Rule Reasoning)

B.1 Symbols

Table [7] summarizes the symbols used in this paper.

Table 7: The meaning and detailed explanation of each symbol used in the paper.

Meaning Detailed Explanation
X Input sample Any type of data (e.g. text, tabular)
a Antecedent Condition to apply the rule
b Human belicf Corprpon sense that a human believes when they make a
decision
Y Consequent Model’s prediction output for the given antecedent
. . Atom is the smallest unit of explanation
0; Atom or logical connective - . -
Logical connective combines atoms
o; Embedding of o; Imtlallz'ed as the average embedding of all training samples
that satisfy the atom
O Set of atoms
e Set of candidates for o; Eve}"y candidate should satisfy both global and local con-
straints (Sec.[2.5)
I Length of an antecedent Number of atoms and logical connectives included in an
antecedent
Number of training data
- See detailed explanation Number of data samples in training data that satisfies the
antecedent o
n See detailed explanation Number of data samples in training data that satisfies the
oy p antecedent o and has the consequent y
Vs See detailed explanation Data samples of class y in training data that satisfies the
antecedent o
a®) | s-th sample of o s-th sampled antecedent in deep antecedent generation
S Total number of a.(*) Set as S = 1 by default
Q(a) | Required number of The number of explanation required to explain given input
h; Hidden state of encoder The encoder can be any neural sequence encoder such as
GRU or Transformer
C See detailed explanation Time complexity for computing the consequent of each an-
tecedent
. . Number of all feasible antecedents. Usually exponentially
A See detailed explanation increase with |O] and L (i.e. |O|)
A See detailed explanation Number of sampled antecedents for training of neural conse-

quent estimator

B.2 Extension to Regression Tasks

Although we mainly focused on classification tasks, SELOR can be applied to regression tasks after a
small modification. For regression tasks, we change the modeling of neural consequent estimation
from a categorical to a direct prediction. Our neural consequent estimator for regression predicts the
value y' instead of p(y|a) and coverage c. Then, we maximize ||y’ — y||2.
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B.3 Probability Decomposition

Here we give the proof for Eq. (I):
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There are two assumptions to hold Eq. (I2).

Assumption A. For p(y|x,b) = >, p(y|a)p(a|x,b), we assume that p(y|a) = p(y|e, x, b). This
is decomposed into two assumptions: p(y|a) = p(y|a, x) (A1) and p(y|a, x) = p(y|a, x, b) (A2).

Assumption Al p(y|a) = p(y|a, x) indicates that explanation cx contains all information in input x
that is needed to predict y. This formulation compels the model to pass information from x to y only
via explanations, as opposed to other unexplainable parts. This assumption may limit the prediction
performance, but it is essential for « to be a trustable explanation for predicting y. Otherwise, there
may be a direct connection between y and x that is unrelated to the explanation «c. Thus, & may only
explain a small portion of the model behavior (e.g., only explain 1% of the change in y) and differ
substantially from the ground-truth explanation of the model behavior.

Assumption A2 p(y|a, x) = p(y|a, x,b) means that explanation e and input x contain all of the
information in b (human prior preference for explanations) that is needed to predict y. It is intuitive
that this assumption holds, as human preference for explanations is unrelated to the current class label.

Assumption B. For ) p(y|la)p(ax,b) o< > p(blo)p(y|a)p(a|x), we assume that p(x, b) =
p(b)p(x) and p(x, bler) = p(bla)p(x|a).

It means that x and b are independent no matter which « is given. In other words, seeing input
sample (x) does not change the belief in our prior preference for explanations (b), no matter which
explanations (a) are given, i.e., p(b) = p(b|x) and p(bla) = p(b|x, ). The rationale for this
assumption is that human preferences for explanations are usually fixed and unrelated with the input
x. Even if this assumption is not satisfied, it will not have a significant effect on the framework. Only
the human prior module must be integrated into the antecedent generation module, which changes
from p(a|x) to p(a|x, b).

B.4 Neural Consequent Estimation

The input of the neural consequent estimator is the antecedent embedding, which is obtained by
(01...,01,), where o, is the embedding of 0; in & = (0y...,01,). For each atom, o; is initialized as
the average embedding of all training samples that satisfy the atom, where the sample embedding
can be derived using a pretrained model or f. The embeddings of logical connectives are initialized
at random, and can be omitted when there is only one logical connective (e.g., AND). We use the
Transformer encoder [43]] as the backbone neural network to emphasize the contextual interaction
between atoms and logical connectives.

After encoding o with Transformer, an MLP (Multi-Layer Perceptron) layer reduces the representa-
tion obtained by mean pooling to a logit. Softmax (multi-class) or sigmoid (two classes) is used to
activate the logits to determine the probability for each class p(y|a) and the coverage ¢4, of the an-
tecedent o, which is converted to the number of observations in the training dataset with no, = co V.
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The time complexity of deep logic reasoning is significantly reduced by neural estimation of the
consequence (Sec. [2.6).

The neural consequent estimator is pretrained with A’ = 10, 000 sampled rules for each antecedent
length (Total L x A’), then used to train the deep antecedent generator with frozen parameters. The
following steps are taken to ensure the generality of the rules used in pretraining. To begin, we create
the “true matrix” (fm), that has the size (|O| x N), which indicates whether each input sample satisfies
each atoms. Then, by multiplying #m and its transpose, we can create a matrix of size (|O| x |O])
that indicates the number of samples that satisfy 2-length antecedents ([o;, 0], 4, j € O).

Then, we obtain the list of 2-length antecedents whose frequency is larger than a threshold (i.e.,
min_df). From the 2-length antecedent list, we sample k& x A’ rules while k is a hyper-parameter
larger than 1. We set k to be the same with min_df in the experiment. With these k x A’ rules, we
can make a new true matrix of size ((k x A’) x N) and repeat the steps to obtain the rules whose
frequency is larger than min_df. This sampling process takes linear time to A’ instead of A, which
reduces the time complexity. After the whole process, we can obtain k& x A’ number of antecedents for
each length. Then we randomly choose A’ rules for pretraining of consequent estimator maintaining
the balance of labels. In practice, the time spent in sampling process was 1144s for Yelp, 402s for
Clickbait, and 456s for Adult dataset in our setting. This time can be even reduced with larger min_df.

B.5 Differentiable Learning

In Sec. we sampled one antecedent from p(a(®)|x). Naive selection (e.g., selecting the maximum
value’s index) stops the gradient and prevents differential learning of the neural model. This problem
is solved by sampling o with the Straight-Through Gumbel-Softmax function, as shown in Eq. (7).
For forward propagation, a(*) = (ags)..., oz(Ls)) is represented by L discrete one-hot vectors. To
derive L input embeddings for the neural consequent estimator in Sec. [2.5] each one-hot vector is
multiplied by an embedding matrix of atoms and logical connectives. Differentiable Gumbel-Softmax
distribution is used to approximate the gradients during backpropagation.

B.6 Theoretical Analysis of Explanation Stability

For linear-regression-based models like SENN [11], the explanations for similar inputs may be entirely
different without specific constraints like the robustness loss, because the main optimization goal
for SENN is the local prediction accuracy. Without the robustness loss, the model may find a correct
prediction locally for a single instance, but being “surely no more interpretable than any deep neural
network” (quoted from the SENN paper). However, this is not the case for the logic rule reasoning
framework, because the antecedent generator is trained to optimize two globally consistent rewards
(Eq.[3]and Sec.[2.6): human’s prior belief about which explanation types are good and the explanation
confidence that is measured by the global prediction accuracy over the entire training dataset given
the explanation (logic rule). Thus, explanations for similar inputs may be different only when:

1. The optimal (most confident and human-preferred) rules for the inputs are different.
2. There are multiple explanations that achieve the exact same reward.
3. The model has not been trained sufficiently to achieve the optimal result.

In situation 1), SELOR removes the heuristic constraint regarding the similarity of explanations,
allowing us to identify the optimal explanations for the two inputs. If an instance A is changed to the
instance B by substituting “very disappointing” with “disappointing”, then the best explanation may
change from “very disappointing” in the instance A to “awful” in the instance B. Even if the two in-
stances are similar, their optimal explanations may differ. This is plausible as such a change increases
the explanation’s confidence. In other words, the radius of validity of an explanation corresponds
to inputs that have similar optimal rules. For example, explanation “very disappointing”=-negative
sentiment can generalize to all instances that satisfy the rule and at the same time do not satisfy the
more confident rule. When we want to force the explanations of two inputs to be similar, we can also
incorporate a constraint that mimics the robustness loss in SENN into the soft human prior. Situation
2) rarely occurs, as our explanation confidence reward is a real number, not a discrete value. In rare
cases where this occurs, it is possible to remedy the situation by using the soft human prior. Situation
3) can be avoided by checking the training loss, the classification accuracy, and the explainability.
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C Supplement for Section 3 (Experiment)

C.1 Datasets

We use the following three datasets for experiments. Table [§] reports the number of data points
for each dataset that we used for training, validation, and testing. Yelp classifies reviews of local
businesses into positive or negative sentiment [44]. For Yelp, we use a down-sampled subset (10%)
for training, as per existing work [39]. We split the test dataset and used half of them for the validation
dataset. Clickbait News Detection from Kaggle labels whether a news article is a clickbait [45],
and we use the “news” and “clickbait” classes in the dataset. We split the train data into train and
validation. Adult from the UCI machine learning repository [46] is an imbalanced tabular dataset
that provides labels about whether the annual income of an adult is more than $50K/yr or not. We
split the data points into train, validation, and test datasets.

C.2 Implementation Details

Hyperparameter settings. The backbone models for textual data (i.e., BERT, RoBERTa) follow
the original setting, and the model for tabular data (i.e., DNN) consists of network with three
fully-connected layers with ReLU activation layers (i.e., FC-ReLU-FC-ReLU-FC) with 512 hidden
dimensions. We employ GRU [42] as a sequential encoder for deep antecedent generation, and
Transformer [43] as a neural model for consequent estimation, respectively. For deep antecedent
generation, neural consequent estimation, and other baseline models, we set the hidden dimension
|h| as the default BERT and RoBERTa embedding size (i.e., 768) for textual data and 512 for tabular
data. For training of SELOR, cross-entropy loss is used for optimization on the probability predicted
by the consequent estimator for the antecedents extracted by the antecedent generator. For RCN, we
extract a predefined rule set by following the original work [39]. In particular, the predefined rules are
decision paths in random forests with 100 estimators and a maximum depth of four. After excluding
stopwords, we limit atoms in textual data to only derive from the top-5000 most frequent words.
Tabular data uses both categorical and numerical features for atoms while the threshold of numerical
features is set to the 25th, 50th, 75th percentiles of data. The length of antecedent L (i.e., the number
of atoms from recursive deep antecedent generation) is set to 4. The minimum document frequency
is set to 200, and the number of rules for pretraining the neural consequent estimator is set to 10, 000.

We introduce hyper-parameters in training our model and baselines. Note that the same hyper-
parameters are used for training baselines, the neural consequent estimator, and the deep antecedent
generator for the all datasets. The base backbone network and self-explainable models are trained 10
epochs. The batch size is set to 16, the largest size that can be trained on our GPU. For optimization,
we employ Adam optimizer with a learning rate of le — 5, and ExponentialLR scheduler with
~v 0.95. For the learning rate, the one with the best performance is selected after experiments
on 5e — 5, 4e — 5, 3e — 5, 2e — 5, and le — 5. For SENN, a set of token embeddings from the
pretrained language model (i.e., BERT and RoBERTa) are utilized as inputs and are considered to
be interpretable basic concepts for textual data experiments. In the case of tabular data, raw input
features are used. We follow the implementation and hyper-parameter settings for training as in the
original work [[L1]. Optimizer or scheduler are also set to be the same as other baselines for a fair
comparison. One NVIDIA A100 is used for each experiment.

Details about selecting atom candidates. We ensure that atoms have a consistent form with baselines
for fair comparison. In current implementation, we only consider atoms that contains the information
about existence of a word for given instance (e.g., “awesome > 1) for textual datasets. This enables
a comparison with explainable models that highlights the words based on their importance weight.
We choose top 5000 frequent words in vocabulary set for atom candidates in main experiments in
Sec.[3 The result with other number of atoms is shown in Sec. The result with For tabular

Table 8: Dataset statistics. The labeling ratio shows whether the data is imbalanced between classes.
All data, including training, validation, and test data, is split into the same ratio.

Dataset # for training  # for validation # for test Prediction Labels Label Ratio

Yelp 56000 19000 19000  Negative, Positive 1:1
Clickbait 18330 1312 1312 News, Clickbait 39:1
Adult 39073 4884 4885 <=50K, >50K 32:1
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Table 9: Comparison of classification performance measured in F1. The average results from

five runs are shown. The best results among self-explaining models are marked in bold, and the

highlighted cells indicate a similar or better result compared with the unexplainable backbone
(Base). The numbers in subscript indicates the standard error of the result.

Yelp Clickbait Adult

BERT RoBERTa BERT RoBERTa DNN

Base 96.20 0.0541 97.16 0.0672 72.84 0.9302 74.25 0.7763 76.15 0.2522 83.32

SENN 95.12 0.1995 96.07 0.1180 69.09 0.9550 70.99 0.5076 71.69 0.7681 80.59

RCN 96.38 0.0089 97.36 0.0049 68.80 0.1359 68.64 0.1467 717.35 0.0309 81.77

SELOR  96.26 0.0445 97.13 0.0642 71.12 0.5479 74.20 0.5009 77.37 0.0541 83.34

Average

datasets, we choose different strategies based on feature types. For categorical features, whether the
instance belongs to a certain category or not becomes an atom. For example, in the Adult dataset,
“marital-status == Married” indicates the person in the given instance is married. For numerical
features, we calculate 25th, 50th, 75th percentiles of each feature distribution for the threshold. We
use whether the feature of a given sample is larger or smaller than the threshold as atoms to obtain
thresholds and use those values to determine the over or under presence of each feature in the given
sample. For example, the feature “age” of the Adult dataset has thresholds 28, 37, and 48, which lead
to atoms like “age > 287, “age < 28”, “age > 377, “age < 37", “age > 48”, and “age < 48”. This form
is consistent with the atoms in our baseline RCN [39]], which uses random forests for rule creation.

It is possible that different atoms associated with the same feature appear in the same explanation, for
example, as in our tabular dataset (e.g., “age > 37 and “age > 48 for the feature “age”). In such a
situation, we remove the redundant atoms after the explanation has been generated (e.g., removing
“age > 377). Note that the generated atoms will not be conflicted with each other. For example, “age
> 48” and “age < 37” will not be generated simultaneously in one explanation, because the condition
for generation is that the corresponding instance satisfies both atoms. This is enforced by the local
constraint introduced in Sec. [2.5] We find that such a post-processing step of removing redundant
atoms is easy to implement and has reasonably good explainability and prediction performance. It
is also possible to eliminate redundant atoms during explanation generation. One possible way is
to create the atoms so that they do not overlap (e.g., creating “age > 48”, “48 > age > 377, “37 >
age > 287, “28 > age” for feature “age”). However, this may make it impossible to flexibly combine
different thresholds (e.g., generating “48 > age > 28”). Another way is to apply a mask to the model
so that it assigns zero probability to an already chosen feature or a redundant atom. This can be
implemented by carefully setting the local constraint in Sec.

C.3 Prediction Performance in F1-score

We also provide the prediction performance of SELOR and other self-explainable baselines in Table[9]
The result shows that our method successfully maintains the representation ability of deep learning.

C.4 User Study Details

Explanation generation process. Here, we introduce how we generate the explanations.

* LIME is distributed as a Python package, and we use lime_text and lime_tabular to generate
explanations. The number of disturbances is set to 3,000 for textual data. We choose the words that
are consistent with the prediction having positive weights as explanation. To reduce the incongruity
with other explanations, we hide the score provided by LIME and join chosen the predicates.

* Anchor is initialized with an empty set. For every iteration, multiple candidate anchors are
produced by extending the current anchor by one additional predicate. Then, the model selects the
set of predicates with the highest precision as an anchor while perturbing the other predicates. This
process repeats until it satisfies the precision constraint of probability 0.95.

* SENN defines the interpretable basis concepts h(x) from the input x, and learns the relevance value
6(x) which is an interpretable weight in relation to each concept (i.e., f(x) = >, 6(x); - h(x),).
We choose the set of top-k predicates with the highest positive relevance value as an interpretation

TR TIRT)

for the given input x. k£ is set to 5. We remove meaningless words (such as “-”, “ ) by post-

20



Table 10: User study results on human precision. Nine participants P1-P9 were asked to annotate
whether an explanation is a reasonable rationale for the prediction. For each compared method, we
report the percentage of explanations that are considered good (a, b) or best (c, d). Avg. and Agr.
denote the average and inter-participant agreement, respectively. P-values from t-test indicates the
statistical significance of the experiment. We mark one star (¥*) if the p-value is lower than 0.05.
Best results are highlighted in bold.

(a) Percentage of good (Yelp)
P1 P2 P3 P4 P5 P6 P7 P8 P9 | Avg | Agr P-value
Lime 88 82 96 90 92 90 98 88 84 | 89.8 | 84.4 | 8.68 E-04*
Anchor | 86 74 92 86 84 84 90 78 86 | 844 | 87.7 | 1.12E-07*
SENN 26 22 18 32 26 30 80 32 44 | 344 | 723 | 1.40 E-51*%
RCN 70 32 6 70 62 74 88 76 98 | 64.0 | 77.6 | 7.26 E-13*
SELOR | 90 84 96 98 100 96 100 92 94 | 944 | 939 -

(b) Percentage of good (Adult)
Pl P2 P3 P4 PS5 P6 P7 P8 P9 | Avg. | Agr. P-value
Lime 88 24 88 26 76 2 6 26 48 | 42.7 | 57.1 | 6.09 E-54*
Anchor | 30 38 32 54 30 84 68 94 44 | 527 | 59.9 | 5.56 E-18*
SENN 88 16 90 30 82 4 8 38 58 | 46.0 | 51.5 | 1.18 E-41*
RCN 78 70 8 70 56 4 18 86 80 | 60.9 | 53.2 | 2.83 E-27*
SELOR | 84 88 90 98 84 98 86 100 88 | 90.7 | 85.7 -
(c) Percentage of best (Yelp)
Pl P2 P3 P4 P5 P6 P7 P8 P9 | Avg. | Agr. P-value
Lime 30 36 24 40 44 34 14 48 38 | 342 | 67.6 | 8.87 E-03*
Anchor | 24 20 36 16 8 12 16 10 20| 18.0 | 83.6 | 5.63 E-18*
SENN 2 4 4 2 2 2 4 0 2 24 1963 | 6.84 E-40*
RCN 2 2 2 0 0 0 6 6 0 2.0 | 96.3 | 6.84 E-40*
SELOR | 44 40 36 48 50 54 64 40 44 | 46.7 | 64.8 -
(d) Percentage of best (Adult)
Pl P2 P3 P4 P5 P6 P7 P8 P9 | Avg. | Agr. P-value
Lime 0 2 0 0 8 0 0 0 2 1.3 | 96.7 | 1.72 E-64*
Anchor | 22 18 20 16 2 2 16 2 26| 13.8 | 829 | 1.23 E-35%
SENN 6 10 8 8 34 4 2 2 12| 96 | 833 | 2.30E-36*
RCN 10 10 8 12 10 0 6 10 26| 10.2 | 82.9 | 1.23 E-35*
SELOR | 62 60 64 64 46 94 76 86 34 | 65.1 | 584 -

processing. To reduce incongruity with other explanations, we hide the score provided by SENN
and join the chosen predicates.

* RCN chooses a rule from a predefined rule set made by random forest. As the random forest is
trained with the bag-of-words of training data, the form of the rule also aligns with the frequency
of words.

* SELOR recursive deep antecedent generation chooses atoms with the largest weight sequentially.
All our atoms are existence of a word (e.g., if “good” exists), so a rule becomes the list of words.
We join these words to explain the given sample.

User instruction and labeling detail. We provided instructions for participants in the form of
the guideline file (Labeling_Guidelines_User_Study_Table3.pdf) with detailed description of the
task and labeling examples. Participants received an Excel file with empty labels, which they were
instructed to fill out and return. The snapshot of the Excel file is also attached as a separate file
(Screenshot_User_Study_Table3_1.PNG, Screenshot_User_Study_Table3_2.PNG). We originally
allowed multiple choices as best explanations, but labelers found it unclear how to decide two
explanations are equally good. As this guideline led to confusion and further lower agreement among
labelers, we updated the guideline to allow only one best explanation. We conducted the user study
twice. During the first survey, we hired three participants. For Yelp dataset, each participant was paid
22.5% per hour with the total budget 45$. For Adult dataset, each participant was paid 7.5$ per hour
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Table 11: Performance comparison of SELOR and a fully transparent model, Random Forest. The
backbone model of textual dataset for SELOR is RoBERTa.

Yelp Clickbait Adult
F1 AUC F1 AUC F1 AUC
Random Forest 73.03 80.40 | 4429 60.25 | 65.60 66.15

SELOR 97.13 97.78 | 7420 64.14 | 77.37 70.36
——NE NE-1
Classification performance (F1) Classification performance (F1) Classification performance (F1)
100 100 100
80 80 [ g 80
60 60 60
40 40 40
20 20 20
1 2 3 4 1 2 3 4 1 2 3 4
Rule Length Rule Length Rule Length
(a) Yelp (b) Clickbait (c) Adult

Figure 5: The prediction performance of consequent estimator with varying length of antecedents.
NE-1 denotes the estimator which is only trained with length-1 antecedents.

with total budget 37.53. At the second survey, we hired six participants, and each participant was
paid 7% per hour for both datasets. The total budget we spent in the second survey was 56$.

Results of all participants. Table[I0|provides more detailed result including that of each participant.

Further discussion on user study results. Table shows that participants have a low level of
agreement on RCN. This is because people have varying preferences for the logical connective NOT.
NOT denotes that the prediction is made due to the absence of a particular feature in the text. One
participant (P3) considered most explanations that contained NOT to be noisy because s/he seldomly
made decisions based on the absence of a word.

C.5 Additional Experimental Results

We describe additional experimental results to support the prediction performance and explanation
quality of SELOR.

C.5.1 Comparison with Fully Transparent Model

Tree-based models are popular explainable models because their decision process is fully transpar-
ent. However, fully transparent models such as decision trees and random forests cannot achieve
comparable prediction performance to deep models as shown in Table [T T]

C.5.2 Effectiveness of Neural Consequent Estimator e Yelp Clickbait

The Fig. [5|shows the prediction performance of our neural ~ 100
consequent estimator (NE) for antecedents of varying
length. Our consequent estimator shows reasonable
performance in most cases. NE-1 is the estimator that 60

is only pretrained with length-1 antecedents and hence

cannot learn the relationship among atoms. Its prediction 40 -/
ability dramatically drops for rules longer than 1. 20

80

10! 10% 10° 104

Also, we explore the effect of neural consequent estimator
Number of Samples for Pretraining

to the overall model performance. Fig. [fldemonstrates that
SELOR is not highly sensitive to the number of samples Figure 6: The performance of SELOR
used in pretraining the neural consequent estimator, with varying number of samples used
although it requires a minimum level of prediction ability. in pretraining of the neural consequent
Additionally, a larger number of samples are needed for estimator.

more difficult dataset such as Clickbait.
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C.5.3 Using Different Logical Connectives

We investigate the performance in terms of F1 of different logical connectives on Yelp using BERT
as a base model. First, joining atoms with logical connectives OR leads to a prediction performance
of 96.21, which is similar to the original model using the AND connectives. We also change half
of atoms to non-existence rules, which indicates the non-existence of a word (e.g. “NOT awesome”
means the given instance does not contain the word “awesome’). The performance changes to 94.46,
and this is natural as the information capacity of non-existence is usually smaller than the existence
rules. Additionally, we try ORDERED AND, which considers the order of atoms. For example, “not
BEFORE happy” and “happy BEFORE nor” will be treated as different antecedents although they
have the same words in atoms. Its performance is 96.93, as the amount of information in the rule
increases.

C.5.4 Hyper-Parameter Sensitivity Analysis

We conduct analysis to test sensitivity of two hyper-parameters: antecedent length L and number of
atoms |O)|.

Impact of hyper-parameters on prediction performance. Fig. |7al shows that SELOR is not
sensitive to the length of antecedent although longer antecedents yield better result in general. Fig
shows that the number of atoms required for good performance varied by datasets. The more difficult
dataset, Clickbait, requires a larger number of atoms to get reasonable performance. However, after
certain points, the prediction performance of our method becomes insensitive to number of atoms.

Impact of hyper-parameters on explainability. Table[I2]show how human precision of explanations
change with the antecedent length. Antecedents of all lengths, including short antecedents with
only one atom, offer a certain level of explainability; The average percentage of good for Length 1
antecedent is 79.7%. Meanwhile, longer antecedents tend to improve human precision. This indicates
the longer antecedents contain more useful information for decision making as it has more chances to
find a good atom, resulting in greater precision. Note that the length of antecedent is the maximum
length of the antecedent; our method can automatically generate shorter antecedents than the default
length by electing the NULL atom. Table [I3|shows how human precision of explanations change
with the number of candidate atoms. In particular, 1,000 means that we use the top 1, 000 frequent
words as candidate atoms. The explanation quality increases with increasing number of atoms, up
to a certain points(i.e., 1,000 atoms). After this point, there is no statistically significant gain in
explainability, demonstrating that SELOR requires a reasonable size of approximately 1, 000 atoms
to provide a good explanation. This finding aligns with the observations in [S5]], which shows that
analyzing and explaining text contents such as restaurant reviews and news articles does not require a
large vocabulary.
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Figure 7: The predictive performance of our model with varying antecedent lengths and the number
of atoms.
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Table 12: User study results on human precision with varying antecedent lengths. Participants P1-P6
were asked to annotate whether an explanation is a reasonable rationale for the prediction. For each
length, we report the percentage of explanations that are considered good (a) or best (b). Avg. and
Agr. denote the average and inter-participant agreement, respectively. P-values from t-test indicates
the statistical significance of the experiment. We mark one star (¥) if the p-value is lower than 0.05.
Best results are highlighted in bold.

(a) Percentage of good
P1 P2 P3 P4 PS5 P6 | Avg. | Agr P-value
Lengthl | 76 74 76 76 96 80 | 79.7 | 87.6 | 1.31 E-11*
Length2 | 92 90 86 94 100 84 | 91.0 | 91.3 | 8.93 E-04*
Length3 | 96 94 88 92 100 84 | 92.3 | 89.7 | 3.73 E-03*
Length4 | 100 100 90 98 100 86 | 95.6 | 91.9 -

(b) Percentage of best
Pl P2 P3 P4 P5 P6 | Avg. | Agr. P-value
Length 1 | 8 4 2 6 10 8 6.3 | 943 | 2.38 E-43*
Length2 | 24 26 10 12 14 10 | 16.0 | 81.6 | 6.98 E-23*
Length3 | 20 28 18 28 14 26 | 22.3 | 81.7 | 1.58 E-16*
Length4 | 56 50 68 62 72 58 | 61.0 | 66.5 -

Table 13: User study results on human precision with varying number of atoms. Participants P1-P6
were asked to annotate whether an explanation is a reasonable rationale for the prediction. For each
length, we report the percentage of explanations that are considered good (a) or best (b). Avg. and
Agr. denote the average and inter-participant agreement, respectively. P-values from t-test indicate
the statistical significance of the experiment. We mark one star (*) if the p-value is lower or close
to 0.05. Best results are highlighted in bold.

(a) Percentage of good

#Atoms | Pl P2 P3 P4 P5 P6 | Avg. | Agr. P-value

10 10 12 14 8 26 24| 157 | 945 | 5.86 E-02*
100 34 40 46 34 64 58 | 46.0 | 94.5 | 5.86 E-02*
1000 84 82 8 78 100 80 | 85.0 | 94.1 | 1.58 E-O1

5000 100 98 98 90 100 86 | 953 | 91.7 -
10000 9% 96 94 88 100 90 | 94.0 | 91.7 | 2.06 E-01

(b) Percentage of best
#Atoms | PI P2 P3 P4 P5 P6 | Avg. | Agr. P-value
10 0 2 4 0 0 0 1.0 | 77.1 | 6.25 E-5*%*
100 6 6 4 6 4 2 47 | 76.9 | 8.16 E-5%*
1000 30 38 32 30 44 34 | 347 | 73.5 | 2.45 E-3*%*
5000 54 56 56 52 48 50 | 52.7 | 71.2 -
10000 46 48 52 46 48 46 | 47.7 | 743 2.20E-1

Relation between prediction performance and explainability. Throughout Fig.[7] Table[I2] and
Table[I3] we could not find concrete evidence for a trade-off between explainability and prediction
performance. Rather, we found models with good explainability also produce good prediction
performance (i.e., models with antecedent length 2 to 4, models having number of atoms 1, 000
or more atoms). This is consistent with our framework p(y|x,b) = _ _, p(y|a)p(a|x,b), which
passes information from input to prediction only via explanations, as opposed to other unexplainable
parts. Thus, the expressivity of explanations and the capacity of the model are tightly related. If the
hyperparameter settings significantly constrain the expressivity of the explanations (such as limiting
the number of atoms to 10), both explanation quality and predictive performance will decrease
significantly.
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C.6 Explanation Stability

Do explanations keep the same in different runs? We conduct experiments to confirm that our
model usually generates unique explanations for the same instances in different runs. Comparing the
model explanations trained with 5 seeds reveals that, on average, 90.04% of atoms were shared by
explanations from different seeds, and 71.27% were identical on Yelp. This comparison suggests
that our model generates a unique explanation for the same instance, even in the absence of a direct
controlling factor. The reason why we can generate unique explanations is that we optimize the
explanation generator with two globally consistent rewards in Eq.[2} 1) human’s prior belief about
which explanation types are good and 2) the explanation (rule) confidence that is measured by the
global prediction accuracy over the entire training corpus given the rule. Since the second reward is a
real number instead of a discrete value and has a globally consistent meaning, the optimal explanation
is usually unique and stable, leading to similar results when trained with different random seeds.

Do similar instances lead to similar explanations? Table|14|shows examples of generated expla-
nations for similar inputs. SELOR successfully maintains its explanation when minor changes are
made to input words, but suggests a new explanation when critical changes are made. In case (a),
for example, our method provides the same explanation when the words “pizza” and “waiters” are
changed to “pasta” and “servers”. However, when sentiment-related words such as “cold” and “rude”
are changed, it adapts to the new words and gives a new explanation.

Table 14: Generated explanations of samples and their perturbation. The manually changed words
are highlighted in bold

Case Sample Model Explanation  Prediction
Th¥s place is awful. The pizza was cold, and the awful, cold, rude Negative
waiters were rude.

@) This place is awful. The pasta was cold, and the awful, cold, rude Negative
servers were rude.
This place is awful. The pizza was undercooked, | awful, undercooked, .
. . . Negative
and the waiters were unfriendly. unfriendly
I love here. It was an amazing experience to eat a love, amazing, Positi
- ositive
cheesy macaroni. cheesy
(b) I recommend here. IF was a happy experience to | recommend, happy, Positive
eat a cheesy macaroni. cheesy
I hate here. It was a bad experience to eat a cheesy hate, bad, .
. . Negative
macaroni. experience
I ordered three tacos and all 3 were downright
lousy. Can’t remember the last time I had food
this bad. The shrimp taco was overbreaded and in
a sickly sweet sauce, the shredded beef taco was
very tiny and thankfully, I can’t remember what lousy. bad. waited
the third taco tasted like. To the reviewer who y7f0re\;er > | Negative
posted that these tacos are top notch.... what are
you smoking? I waited forever to get my food
and saw numerous other people who came in after
me get their food. Waiter was MIA. Not coming
back....ever.
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(©)

I ordered three tacos and all 3 were downright
lousy. Can’t remember the last time I had food
this bad. The shrimp taco was overbreaded and in
a sickly sweet sauce, the shredded beef taco was
very tiny and thankfully, I can’t remember what
the third taco tasted like. To the reviewer who
posted that these tacos are top notch.... what are
you smoking? I waited a little to get my food
and saw numerous other people who came in after
me get their food. Waiter was MIA. Not coming
back....ever.

lousy, bad, waited,
not

Negative

I ordered three awful, terrible tacos and all 3 were
downright lousy. Can’t remember the last time
I had food this bad. The shrimp taco was over-
breaded and in a sickly sweet sauce, the shredded
beef taco was very tiny and thankfully, I can’t re-
member what the third taco tasted like. To the re-
viewer who posted that these tacos are top notch....
what are you smoking? I waited forever to get my
food and saw numerous other people who came
in after me get their food. Waiter was MIA. Not
coming back....ever.

awful, terrible,
waited, forever

Negative

(d)

I had an amazing 4 course meal here with my fam-
ily from philadlephia. my father runs a farmers
market there and was very impressed with their use
of seasonal and local foods. We had an amazing
pork belly salad and I had duck wrapped in ba-
con and stuffed with pate, which sounds insanely
heavy, but it was not; the portion was small enough
not to be overwhelmed and it was not overly greasy
at all. It was a fantastic meal. I think 1’etoile is on
par with top restaurants in bigger cities.

amazing, family,
stuffed, fantastic

Positive

I had a great 4 course meal here with my family
from philadlephia. my father runs a farmers market
there and was very impressed with their use of
seasonal and local foods. We had an amazing pork
belly salad and I had duck wrapped in bacon and
stuffed with pate, which sounds insanely heavy,
but it was not; the portion was small enough not
to be overwhelmed and it was not overly greasy at
all. It was a fantastic meal. I think I’etoile is on
par with top restaurants in bigger cities.

great, family,
amazing, fantastic

Positive

I had an awful 4 course meal here with my family
from philadlephia. my father runs a farmers market
there and was very disappointed with their use of
seasonal and local foods. We had a terrible pork
belly salad and I had duck wrapped in bacon and
stuffed with pate, which sounds insanely heavy;
and it was right; the portion was too small to be
full and it was overly greasy at all. It was a bad
meal. I think I’etoile is on par with bad restaurants
in bigger cities.

awful, disappointed,
terrible, bad

Negative
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