
Supplementary Material for Sketch-GNN: Scalable Graph
Neural Networks with Sublinear Training Complexity

A More Preliminaries

In this appendix, further preliminary information and relevant discussions are provided.

A.1 Common GNNs in the Unified Framework

Here we list the common GNNs that can be re-formulated into the unified framework, which is
introduced in Section 2. The majority of GNNs can be interpreted as performing message passing
on node features, followed by feature transformation and an activation function, a process known
as “generalized graph convolution” (Eq. (1)). Within this common framework, different types of
GNNs differ from each other by their choice of convolution matrices C(q), which can be either fixed
or learnable. A learnable convolution matrix depends on the inputs and learnable parameters and can
be different in each layer (thus denoted as C(l,q)),

C
(l,q)
i,j = C

(q)
i,j︸︷︷︸

fixed

·h(q)

θ(l,q)
(X

(l)
i,: , X

(l)
j,: )︸ ︷︷ ︸

learnable

, (8)

where C(q) denotes the fixed mask of the q-th learnable convolution, which may depend on the
adjacency matrix A and input edge features Ei,j . While h(q)(·, ·) : Rfl × Rfl → R can be any
learnable model parametrized by θ(l,q). Sometimes a learnable convolution matrix may be further row-
wise normalized as C(l,q)

i,j ← C
(l,q)
i,j /

∑
j C

(l,q)
i,j , for example Graph Attention Network (GAT [39]).

According to [15], we list some well-known GNN models that fall inside this framework in Table 5.

Table 5: Summary of GNNs re-formulated as generalized graph convolution [15].

Model Name Design Idea Conv. Matrix Type # of Conv. Convolution Matrix

GCN1 [27] Spatial Conv. Fixed 1 C = D̃−1/2ÃD̃−1/2

GIN1 [44] WL-Test
Fixed +

Learnable
2

{
C(1) = A

C(2) = In and h
(2)

ε(l)
= 1 + ε(l)

SAGE2 [18] Message Passing Fixed 2

{
C(1) = In

C(2) = D−1A

GAT3 [39] Self-Attention Learnable # of heads


C(q) = A+ In and

h
(q)

a(l,q)(X
(l)
i,: , X

(l)
j,: ) = exp

(
LeakyReLU(

(X
(l)
i,: W

(l,q) ‖ X(l)
j,:W

(l,q)) · a(l,q))
)

1 Where Ã = A+ In, D̃ = D + In. 2 C(2) represents mean aggregator. Weight matrix in [18] is W (l) = W (l,1) ‖ W (l,2).
3 Need row-wise normalization. C(l,q)

i,j is non-zero if and only if Ai,j = 1, thus GAT follows direct-neighbor aggregation.

A.2 Definition of Locality Sensitivity Hashing

The definitions of count sketch and tensor sketch are based on the hash table(s) that merely require
data-independent uniformity, i.e., a high likelihood that the hash-buckets are of comparable size. In
contrast, locality sensitive hashing (LSH) is a hashing scheme with a locality-sensitive hash function
H : Rd → [c] that assures close vectors are hashed into the same bucket with a high probability while
distant ones are not. Consider a locality-sensitive hash function H : Rd → [c] that maps vectors in
Rd to the buckets {1, . . . , c}. A family of LSH functionsH is (D, tD, p1, p2)-sensitive if and only if
for any u,v ∈ Rd and any H selected uniformly at random fromH, it satisfies

if Sim (u,v) ≥ D then P [H(u) = H(v)] ≥ p1, (9)
if Sim (u,v) ≤ tD then P [H(u) = H(v)] ≤ p2,

where Sim (·, ·) is a similarity metric defined on Rd.

15



B Polynomial Tensor Sketch and Error Bounds

In this appendix, we provide additional theoretical details regarding the concentration guarantees of
sketching the linear part in each GNN layer (Lemma 1), and the proof of our multi-layer error bound
(Theorem 1).

B.1 Error Bound for Sketching Linear Products

Here, we discuss the problem of approximating the linear product CX(l)W (l) using count/tensor
sketch. Since we rely on count/tensor sketch to compress the individual components C and X(l)W (l)

of the intermediate product CX(l)W (l) before we sketch the nonlinear activation, it is useful to know
how closely sketching approximates the product. We have the following result:
Lemma 1. Given matrices C ∈ Rn×n and (X(l)W (l))T ∈ Rd×n, consider a randomly selected
cuont sketch matrix R ∈ Rc×n (defined in Section 2), where c is the sketch dimension, and it is
formed using r = j

√
n underlying hash functions drawn from a 3-wise independent hash familyH for

some j ≥ 1. If c ≥ (2 + 3j)/(ε2δ), we have

Pr
(∥∥(CRT

k)(RkX
(l)W (l))− CX(l)W (l)

∥∥2

F
> ε2‖C‖2F ‖X(l)W (l)‖2F

)
≤ δ. (10)

Proof. The proof follows immediately from the Theorem 1 of [2].

For j ≥ 1 fulfilling c ≥ (2 + 3j)/(ε2δ), we have j = O(log3 c), and consequently r = (n)1/j =
Ω(3logc n). In practice, when n is not too small, logc n ≈ 1 since c grows sublinearly with respect to
n. In this sense, the dependence of r on n is negligible.

B.2 Proof of Error Bound for Final-Layer Representation (Theorem 1).

Proof. For fixed degree r of a polynomial tensor sketch (PTS), by the Theorem 5 of [19], for
Γ(1) = max

{
5‖X(l)W (l)‖2F , (2 + 3r)

∑
i(
∑
j [X

(l)W (l)]i,j)
r
}

, it holds that

E(‖σ(CX(l)W (l))− X̃(l+1)‖2F ) ≤

(
2

1 + cλ(l)2

nrΓ(l)

)
‖σ(CX(l)W (l))‖2F , (11)

where λ(1) ≥ 0 is the smallest singular value of the matrix Z ∈ Rnd×r, each column, Z:,k, being the
vectorization of (CX(1)W (1))�k. This is the error bound for sketching a single layer, including the
non-linear activation units.

Consider starting from the first layer (l = 1), for simplicity, let us denote the upper bound when l = 1
as E1. The error in the second layer (l − 2), including the propagated error from the first layer E1, is
expressible as ‖σ(CX(2)W (2)) − X̃(3) + E1‖2F , which by sub-multiplicativity and the inequality
(a+ b)2 ≤ 2a2 + 2b2 gives

‖σ(CX(2)W (2))− X̃(3) + E1‖2F ≤ 2‖σ(CX(2)W (2))− X̃(3)‖2F + 2||E1||. (12)

By repeatedly invoking the update rule/recurrence in Eq. (1) and the Theorem 5 in [19] up to the final
layer l = L, we obtain the overall upper bound on the total error as claimed.

C Learnable Sketches and LSH

C.1 Learning of the Polynomial Tensor Sketch Coefficients.

We propose to learn the coefficients {ck}rk=1 using gradient descent with an L2 regularization,
λ
∑r
k=1 c

2
k. For a node classification task, the coefficients in all layers are directly optimized to

minimize the classification loss. Experimentally, the coefficients that obtain the best classification
accuracy do not necessarily correspond to a known activation.

For the proof of concept experiment (Fig. 1a in Section 5), the coefficients {ck}rk=1 in the first layer
are learned to approximate the sigmoid activated hidden embeddings σ(CX(1)W (1)). The relative

16



errors are evaluated relative to the “sigmoid activated ground-truth”. We find in our experiments that
the relative errors are comparable to the coreset-based approach.

C.2 Change the Hash Table of Count Sketches

Here we provide more information regarding the solution to the challenge (2) in Section 3.3. Since
the hash tables utilized by each layer is different, we have to change the underlying hash table of the
sketched representations when propagating through Sketch-GNN.

Consider the Sketch-GNN forward-pass described by Eq. (5), while the count sketch functions are
now different in each layer. We denote the k′-th count sketch function in the l-th layer by CS(l,k′)(·)
(adding the superscript (l)), and denote its underlying hash table by h(l,k). Since the hash table used
to count sketch S(l,k,k′)

C is h(l,k′), what we obtain using Eq. (5) is CS(l,k′)((X(l+1))T). However, we
actually need S(l+1,k′)

X = CS(l+1,k′)((X(l+1))T) as the input to the subsequent layer.

By definition, we can change the underlying hash table like S(l+1,k′)
X = CS(l+1,k′)((X(l+1))T) =

CS(l,k′)((X(l+1))T)R(l,k′)(R(l+1,k′))T, where R(l,k′) is the count sketch matrix of CS(l,k′)(·). In
fact, we only need to right multiply a c× c matrix T (l,k′) := R(l,k′)(R(l+1,k′))T, which is O(c2) and
can be efficiently computed by

[T (l,k′)]i,j =

n∑
a=1

s(l+1,k′)
a s(l,k′)

a 1{h(l,k′)(a) = i}1{h(l+1,k′)(a) = j}. (13)

We can maintain this c × c matrix T (l,k′) as a signature of both hash tables h(l,k′) and h(l+1,k′).
We are able to update T (l,k′) efficiently when we update the hash tables on a subset B of entries
(see Section 3.3). We can also compute the sizes of buckets for both hash functions from T (l,k′),
which is useful to sketch the attention units in GAT; see Appendix D.

C.3 Sparse Forward-Pass and Back-Propagation for Loss Evaluation

Here we provide more details on using the sparse forward-pass and back-propagation technique
in [10] to avoid O(n) complexity in loss evaluation. For a node classification task, we construct an
LSH hash table for each class, which indexes all the labeled nodes in the training split that belong to
this class. These LSH hash tables can be used to select the nodes with bad predictions in constant
time, i.e., nodes whose predicted class scores have a small inner product with respect to the ground
truth (one-hot encoded) label. Consequently, we only evaluate the loss on the selected nodes, avoiding
the O(n) complexity. The LSH hash tables are updated using the same method described in challenge
(1) in Section 3.3.

D Generalize to More GNNs

This appendix briefly describes how to generalizing Sketch-GNN from GCN to some other GNN
architectures, including GraphSAGE [18] and GAT [39].

D.1 Sketch-GraphSAGE: Sketching Multiple Fixed Convolutions

The update rule (Eq. (5)) of Sketch-GNN can be directly applied to GNNs with only one fixed
convolution matrix, such as GCN by setting C = D̃−1/2ÃD̃−1/2. Here we seek to generalize
Sketch-GNN to GNNs with multiple fixed convolutions, for example, GraphSAGE with C(1) = In
and C(2) = D−1A. This can be accomplished by rewriting the update rule of GraphSAGE X(l+1) =
σ(X(l)W (l,1) + D−1AX(l)W (l,2)) as a form resembling σ(UV T), so that the polynomial tensor
sketch technique may still be used.

17



Therefore, we replace the update rule (Eq. (5)) with the following for GraphSAGE,

σ(X(l)W (l,1) +D−1AX(l)W (l,2)) = σ
([
In ‖ (D−1A)T

]T[
X(l)W (l,1) ‖ X(l)W (l,2)

])
≈

r∑
k=1

ckTSk
([
In‖(D−1A)T

]T)
TSk
([
X(l)W (l,1)‖X(l)W (l,2)

]T)T
.

(14)

D.2 Sketch-GAT: Sketching Self-Attention Units

GAT employs self-attention to learn the convolution matrix C(l) (superscript (l) denotes the convolu-
tion matrices learned are different in each layer). For the sake of simplicity, we assume single-headed
attention while we can generalize to multiple heads using the same method as for GraphSAGE. The
convolution matrix of GAT is defined asC(l) = (A+In)�((exp�(Z(l))1n)T)−1 exp�(Z(l)), where
1n ∈ Rn is a vector of ones, Z(l) ∈ Rn×n is the raw attention scores in the l-th layer, defined as
Z

(l)
i,j = LeakyReLU([X

(l)
i,: W

(l) ‖ X(l)
j,:W

(l)] · a(l)), with a(l) ∈ R2n being the learnable parameter
vector.

Our goal is to approximate the sketches of the convolution matrix S(l,k,k′)
C using the sketches of

node representations S(l,k)
X and the learnable weights W (l),a(l). We accomplish this by utilizing the

locality-sensitive property of the sketches and by assuming that the random Rademacher variables
s(l,1), · · · , s(l,k) are fixed to +1. We find that setting all Rademacher variables to +1 has no
discernible effect on the performance of Sketch-GAT.

With this additional assumption, each vector of node representation can be approximated
by the average of vectors hashed into the same bucket, i.e., X

(l)
i,: ≈

∑
j 1{h(l,k)(i) =

h(l,k)(j)}X(l)
j,: /

∑
j 1{h(l,k)(i) = h(l,k)(j)} for any k ∈ [r]. More specifically, the numerator

is exactly the h(l,k)(i)-th column vector of the sketch S(l,k)
X , i.e.,

∑
j 1{h(l,k)(i) = h(l,k)(j)}X(l)

j,: =

[S
(l,k)
X ]:,h(l,k)(i). Using only the sketch S

(l,k)
X and the bucket sizes in the hash table h(l,k), we

can approximate any X(l)
i,: as a function of h(l,k)(i) (instead of i), and thus approximate the en-

tries of this n × n matrix Z(l) with c2 distinct values only. Even after the element-wise ex-
ponential and row-wise normalization, any attention score [((exp�(Z(l))1n)T)−1 exp�(Z(l))]i,j

can still be estimated as a function of the tuple (h(l,k)(i), h(l,k)(j)), where Z(l)
i,j = 〈X(l)

i,: , X
(l)
j,: 〉.

This means we can approximate the attention scores [((exp�(Z(l))1n)T)−1 exp�(Z(l))] using the
sketched representation S(l,k)

X , using the fact that Z(l)
i,j = 〈X(l)

i,: , X
(l)
j,: 〉 ≈ 〈[S

(l)
X ]:,h(l)(i)/|{a|h(l)(a) =

h(l)(i)}|[S(l)
X ]:,h(l)(j)/|{a|h(l)(a) = h(l)(j)}|〉, where {a|h(l)(a) = h(l)(i)}| is the bucket size of

h(l)(i)-th hash bucket.

We can see that computing the sketches of C(l) (the sketch functions are defined by the
same hash table h(l,k)(·)) only requires (1) the c2 distinct estimations of the entries in
((exp�(Z(l))1n)T)−1 exp�(Z(l)), and (2) an “averaged c× c version” of the mask (A+ In), which
is exactly the two-sided count sketch of (A + In) defined by the hash table h(i,j). In conclusion,
we find a O(c2) algorithm to estimate the sketches of the convolution matrix S(l,k,k′)

C using the
sketches of node representations S(l,k)

X and a pre-computed two-sided count sketch of the mask
matrix (A+ In).

E The Complete Pseudo-Code

The following is the pseudo-code outlining the workflow of Sketch-GNN (assuming GCN backbone).

F Summary of Theoretical Complexities

In this appendix, we provide more details on the theoretical complexities of Sketch-GNN with a GCN
backbone. For simplicity, we assume bounded maximum node degree, i.e., m = θ(n).

18



Algorithm 1 Sketch-GNN: sketch-based approximate training of GNNs with sublinear complexities
Require: GNN’s convolution matrix C, input node features X , ground-truth labels Y

1 procedure PREPROCESS(C,X)
2 Sketch X = X(0) into {S(0,k)

X }rk=1 and sketch C into {{S(k,k′)
C }rk=1}rk′=1

3 procedure TRAIN({{S(k,k′)
C }rk=1}rk′=1, {S

(0,k)
X }rk=1, Y )

4 Initialize weights {W (l)}Ll=1, coefficients {{c(l)k }
r
k=1}Ll=1, and LSH projections {{P (l)

k }
r
k=1}Ll=1.

5 for epoch t = 1, . . . , T do
6 for layer l = 1, . . . , L− 1 do
7 Forward-pass and compute S(l+1,k′)

X via Eq. (5).
8 Evaluate losses on a subset B of nodes in buckets with the largest gradients for each class.
9 Back-propagate and update weights {W (l)}Ll=1 and coefficients {{c(l)k }

r
k=1}Ll=1.

10 Update the LSH projections {{P (l)
k }

r
k=1}Ll=1 with the triplet loss Eq. (7) for every TLSH epoch.

11 return Learned weights {W (l)}Ll=1

12 procedure INFERENCE({W (l)}Ll=1)
13 Predict via the corresponding standard GNN update rule, using the learned weights {W (l)}Ll=1

Preprocessing. The r sketches of the node feature matrix takeO(r(n+c)d) time and occupyO(rdc)
memory. And the r2 sketches of the convolution matrix require O(r(m+ c) + r2m) time (the LSH
hash tables are determined by the node feature vectors already) and O(r2cm/n) memory. The total
preprocessing time is O(r2m+ rm+ r(n+ c)d) = O(n) and the memory taken by the sketches is
O(rc(d+ rm/n)) = O(c).

Forward and backward passes. For each sketch in each layer, matrix multiplications take O(cd(d+
m/n)) time, FFT and its inverse take O(dc log(c)) time, thus the total forward/backward pass time
is O(Lcrd(log(c) + d+m/n)) = O(c). The memory taken by sketches in a Sketch-GNN is just L
times the memory of input sketches, i.e., O(Lrc(d+ rm/n)) = O(c).

LSH hash updates and loss evaluation. Computing the triplet loss and updating the corresponding
part of the hash table requires O(Lrb(n/c)) where b = |B| is the number of nodes selected based on
the gradients (for each sketch). Updates of the sketches are only performed every TLSH epochs.

Inference is conducted on the standard GCN model with parameters {W (l)}Ll=1 learned via Sketch-
GNN, which takes O(Ld(m/n+ d)) time on average for a node sample.

Remarks. (1) Sparsity of sketched convolution matrix. The two-sided sketch CS(CS(C)T) ∈
Rc×c maintains sparsity for sparse convolution C, as CS(CS(C)T) = RCRT (a product of 3 sparse
matrices) is still sparse, where count-sketch matrix R ∈ Rc×n has one non-zero entry per column (by
its definition see Section 2). If C has at most s non-zeros per column, there are ≤ s non-zeros per
column in RC when c� s (holds for sparse graphs that real-world data exhibits). Thus, we avoid
the O(c2) memory cost and are strictly O(c). (2) Overhead of computing the LSH hash tables.
Following Eq. (3) and Eq. (6), we need O(cd) overhead to obtain the LSH hash index of each node,
and since we have n nodes in total and we maintain r independent hash tables, the total overhead for
computing the LSH hash tables is O(ncrd) during preprocessing.

In conclusion, we achieve sublinear training complexity except for the one-time preprocessing step.

G More Related Work Discussions

G.1 Sketch-GNN v.s. GraphSAINT

GraphSAINT[45] is a graph sampling method that enables training on a mini-batch of subgraphs
instead of on the large input graph. GraphSAINT is easily applicable to any graph neural network
(GNN), introduces minor overheads, and usually works well in practice. However, GraphSAINT is
not a sub-linear training algorithm, it saves memory at the cost of time overhead. We have to iterate
through the full batch of subgraphs in an epoch, and the training time complexity is still linear in the
graph size. In contrast, our proposed Sketch-GNN is an approximated training algorithm of some
GNNs with sub-linear time and memory complexities. Sketch-GNN has the potential to scale better
than GraphSAINT on larger graphs. Besides, as a sketching algorithm, Sketch-GNN is suitable for

19



some scenarios, for example, sketching big graphs in an online/streaming fashion. Sketch-GNN
can also be combined with subgraph sampling to scale up to extremely large graphs. Sketching the
sampled subgraphs (instead of the original graph) avoids the decreasing sketch-ratio when the input
graph size grows to extremely large while with a fixed memory constraint.

G.2 Sketching in GNNs

EXACT [30] is a recent work which applies random projection to reduce the memory footprint of
non-linear activations in GNNs. In this regard, they also applies sketching techniques to scale up the
training of GNNs. However there are three important differences between Sketch-GNN and EXACT
summarized as follows: (1) Sketch-GNN propagates sketched representations while sketching in
EXACT only affects the back-propagation, (2) Sketch-GNN sketches the graph size dimension
while EXACT sketches the feature dimension, and (3) Sketch-GNN enjoys sub-linear complexity
while EXACT does not. We want to address that Sketch-GNN and EXACT are aiming for very
different goals; Sketch-GNN is sketching the graph to achieve sub-linear complexity, while EXACT
is sketching to save the memory footprint of non-linear activations

G.3 Sketching Neural Networks

Compression of layers/kernels via sketching methods has been discussed previously, but not on a
full-architectural scale. Wang et al. [40] utilize a multi-dimensional count sketch to accelerate the
decomposition of a tensorial kernel, at which point the tensor is fully-restored, which is not possible
in our memory-limited scenario. Shi and Anandkumar [35] utilize the method of Wang et al. [40]
to compute compressed tensorial operations, such as contractions and convolutions, which is more
applicable to our setup. Their experiments involve the replacement of a fully-connected layer at the
end of a tensor regression network rather than full architectural compression. Furthermore, they
guarantee the recovery of a sketched tensor rather than the recovery of tensors passing through a
nonlinearity such as a ReLU. Kasiviswanathan et al. [26] propose layer-to-layer compression via sign
sketches, albeit with no guarantees, and their back-propagation equations require O(n2) memory
complexity when dealing with the nonlinear activations. In contrast to these prior works, we propose
a sketching method for nonlinear activation units, which avoids the need to unsketch back to the high
dimensional representation in each layer.

G.4 LSH in Neural Networks

Locality sensitive hashing (LSH) has been widely adopted to address the time and memory bottlenecks
of many large-scale neural networks training systems, with applications in computer vision [13],
natural language processing [6] and recommender systems [36]. For fully connected neural networks,
Chen et al. [10] proposes an algorithm, SLIDE, that retrieves the neurons in each layer with the
maximum inner product during the forward pass using an LSH-based data structure. In SLIDE,
gradients are only computed for neurons with estimated large gradients during back-propagation. For
transformers, Kitaev et al. [28] proposes to mitigate the memory bottleneck of self-attention layers
over long sequences using LSH. More recently, Chen et al. [9] has dealt with the update overheads
of LSH during the training of NNs. Chen et al. [9] introduces a scheduling algorithm to adaptively
perform LSH updates with provable guarantees and a learnable LSH algorithm to improve the query
efficiency.

G.5 Graph Sparsification for GNNs

Graph sparsification, i.e., removing task-irrelevant and redundant edges from the large input graph,
can be applied to speed up the training of GNNs. Calandriello et al. [5] propose fast and scalable
graph sparsification algorithms for graph-Laplacian-based learning on large graphs. Zheng et al. [47]
sparsify the graph using neural networks and applied to the training of general GNNs. Srinivasa
et al. [38] specifically considered the graph sparsification problem for graph attention (e.g., graph
attention networks, GAT). Graph sparsification will not reduce the number of nodes; thus, the
memory reduction of node feature representation is limited. However, some carefully designed graph
sparsification may enjoy small approximation error (thus smaller performance drops) and improve
the robustness of learned models.

20



H Implementation Details

This appendix lists the implementation details and hyper-parameter setups for the experiments
in Section 5.

Datasets. Dataset ogbn-arxiv and ogbn-product are obtained from the Open Graph Benchmark
(OGB)1. Dataset Reddit is adopted from [45] and downloaded from the PyTorch Geometric library2,
it is a sparser version of the original dataset provided by Hamilton et al. [18]. We conform to the
standard data splits defined by OGB or PyTorch Geometric.

Code Frameworks. The implementation of our Sketch-GNN is based on the PyTorch library and
the PyTorch Sparse library3. More specifically, we implement the Fast Fourier Transform (FFT)
and its inverse (used in tensor sketch) using PyTorch. We implement count sketch of node features
and convolution matrices as sparse-dense or sparse-sparse matrix multiplications, respectively, using
PyTorch Sparse. Our implementations of the standard GNNs are based on the PyTorch Geometric
library. The implementations of SGC [42] and GraphSAINT [45] are also adopted from PyTorch
Geometric, while the implementations of VQ-GNN4 [15] and Coarsening5 [22] are adopted from
their official repositories, respectively. All of the above-mentioned libraries (except for PyTorch) and
code repositories we used are licensed under the MIT license.

Computational Infrastructures. All of the experiments are conducted on Nvidia RTX 2080Ti
GPUs with Xeon CPUs.

Repeated Experiments. For the efficiency measures in Section 5, the experiments are repeated
two times to check the self-consistency. For the performance measures in Section 5, we run all the
experiments five times and report the mean and variance.

Setups of GNNs and Training. On all of the three datasets, unless otherwise specified, we always
train 3-layer GNNs with hidden dimensions set to 128 for all scalable methods and for the oracle
“full-graph” baseline. The default learning rate is 0.001. We apply batch normalization on ogbn-arxiv
but not the other two datasets. Dropout is never used. Adam is used as the default optimization
algorithm.

Setups of Baseline Methods. For SGC, we set the number of propagation steps k in preprocessing
to 3 to be comparable to other 3-layer GNNs. For GraphSAINT, we use the GraphSAINT-RW variant
with a random walk length of 3. For VQ-GNN, we set the number of K-means clusters to 256 and use
a random walk sampler (walk length is also 3). For Coarsening, we use the Variation Neighborhood
graph coarsening method if not otherwise specified. As reported in [22], this coarsening algorithm
has the best performance. We use the mean aggregator in GraphSAGE and single-head attention in
GAT.

Setups of Sketch-GNN. If not otherwise mentioned, we always set the polynomial order (i.e., the
number of sketches) r = 3. An L2 penalty on the learnable coefficients is applied with coefficient
λ ranging from 0.01 to 0.1. For the computation of the triplet loss, we always set α to 0.1, but the
values of t+ > t− > 0 are different across datasets. We can find a suitable starting point to tune by
finding the smallest inner product of vectors hashed into the same bucket. To get the sampled subset
B, we take the union of 0.01c buckets with the largest gradient norms for each sketch. The LSH hash
functions are updated every time for the first 5 epochs, and then only every TLSH = 10 epochs. We do
not traverse through all pairs of vectors in B to populate P+ and P−. Instead, we randomly sample
pairs until |P+|, |P−| > 1000.

1https://ogb.stanford.edu/
2https://github.com/pyg-team/pytorch_geometric
3https://github.com/rusty1s/pytorch_sparse
4https://github.com/devnkong/VQ-GNN
5https://github.com/szzhang17/Scaling-Up-Graph-Neural-Networks-Via-Graph-Coarsening

21

https://ogb.stanford.edu/
https://github.com/pyg-team/pytorch_geometric
https://github.com/rusty1s/pytorch_sparse
https://github.com/devnkong/VQ-GNN
https://github.com/szzhang17/Scaling-Up-Graph-Neural-Networks-Via-Graph-Coarsening

