
Supplementary to “Approximation with CNNs in
Sobolev Space: with Applications to Classification"

Guohao Shen∗

Department of Applied Mathematics, The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong SAR, China

guohao.shen@polyu.edu.hk

Yuling Jiao∗

School of Mathematics and Statistics
and Hubei Key Laboratory of Computational Science

Wuhan University, Wuhan 430072, China
yulingjiaomath@whu.edu.cn

Yuanyuan Lin†

Department of Statistics, The Chinese University of Hong Kong
Shatin, New Territories, Hong Kong SAR, China

ylin@sta.cuhk.edu.hk

Jian Huang†
Department of Applied Mathematics, The Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong SAR, China
j.huang@polyu.edu.hk

Supplementary materials

In the Supplementary materials, we include detailed descriptions on convex surrogate
losses,convolutional neural networks, non-asymptotic error bounds for commonly used loss functions,
and prove Theorems 2.1,2.2, 2.4, 4.4, 4.6, and 4.7, as well as the error bounds for cross entropy, SVM,
logistic, exponential and least squares loss examples. A toy example on the numerical performance
of CNN approximation is presented in Appendix D.

1 Convex surrogate loss

We next give a brief review of the convex surrogate loss functions and discuss in details on the
connection between the excess risk with respect to the ϕ-loss and that of 0-1 loss [28, 4].

Let ϕ be a given convex univariate function ϕ : R → [0,∞). Instead of minimizing the excess risk R
over H, we consider minimizing the risk with respect to the loss ϕ (ϕ-risk)

R(f) := E{ϕ(Y f(X))}

over a certain class of functions F , where ϕ : R → [0,∞) is some generic loss function. For the
special case when H = {h : h(x) = sign(f(x)), f ∈ F} and ϕ(·) is a step function, i.e., ϕ(x) = 1

∗Guohao Shen and Yuling Jiao contributed equally to this work
†Corresponding authors

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

if x < 0 and ϕ(x) = 0 if x ≥ 0, then to minimize R over H, it suffices to minimize R over F . Given
S = {(Xi, Yi)}ni=1, let Rn(f) :=

∑n
i=1 ϕ(Yif(Xi))/n be the empirical risk of f w.r.t the ϕ-loss,

and define the empirical risk estimator (ERM) as

f̂n ∈ argmin
f∈F

Rn(f). (1)

Based on the ERM f̂n, a classification rule or a classifier ĥn(x) := sign(f̂n(x)) for x ∈ X can
be induced which aims at minimizing the 0-1 risk. As shown in [28] and [4], for a properly
chosen ϕ, f̂n can indeed help reduce the 0-1 excess risk R∗(ĥn) − R∗(h0). More precisely, let
R0 := inff measurable R(f), then for a proper ϕ, we have

ψ(R∗(ĥn)−R∗(h0)) ≤ R(f̂n)−R(f0),

where ψ : [−1, 1] → [0,∞) is a nonnegative continuous function, invertible on [0, 1], and achieves
its minimum at 0 with ψ(0) = 0. A wide variety of popular classification methods are based on
this tactic. For instance, when ϕ(a) = log{1 + exp(−a)}, it is the logistic regression [11]; when
ϕ(a) = max{1− a, 0}, it becomes the SVM [7]; when ϕ(a) = exp(−a) is the exponential loss, it is
the AdaBoost algorithm [10]; when ϕ(a) = (1− a)2, it is the least squares method for classification,
and so on.

Define the measurable minimizer of R as

f0 = arg min
f measurable

E{ϕ(Y f(X))}, (2)

and the corresponding minimal ϕ-risk as R0 = R(f0). Clearly, the optimal f0 depends on the
loss function ϕ. If ϕ is not properly chosen, the resulting f0 can be poor and thus the classifier
h0(x) = sign(f0(x)) based on f0 can be invalid. To study the basic conditions imposed on ϕ, so as
to produce a valid classifier towards minimizing the 0-1 loss, we need a thorough understanding of
the risk R.

Let the conditional ϕ-risk of f given X = x be denoted by Rx(f) := E{ϕ(Y f(X)) | X = x}.
Recall that η(x) = P{Y = 1 | X = x} as defined in (15). We have

Rx(f) = η(x)ϕ(f(x)) + {1− η(x)}ϕ(−f(x)), x ∈ X .

For a good classifier, if η(x) > 1/2, it is naturally expected that f0(x) > 0 and h0(x) =
sign(f0(x)) = 1 (correct sign); thus to encourage f0(x) > 0, we should at least require
ϕ(f0(x)) < ϕ(−f0(x)) to minimize the conditional risk Rx. Similarly, if η(x) < 1/2, we ex-
pect that the contrary happens. A rigorous definition for such an ideal ϕ is given in Definition 1 of
[4].
Definition 1.1 (Classification-calibrated). For η ∈ [0, 1] and a ∈ R, define H(η, a) = ηϕ(a) + (1−
η)ϕ(−a). Then, we say that ϕ is classification-calibrated if for any η ̸= 1/2,

inf
a∈R

H(η, a) < inf
a∈R:a(2η−1)≤0

H(η, a).

With a classification-calibrated loss ϕ, it is guaranteed that the “incorrect" label sign(f(X)) in the
sense that it is inconsistent with the Bayes estimator sign(2η(X)− 1)) results in a strictly larger loss
under ϕ. It was shown by [4] that, the surrogate loss function ϕ is able to produce the optimal Bayes
classifier. For ease of reference, we state this result as Lemma 1.2 below.
Lemma 1.2 (Theorem 1 of [4]). For any nonnegative loss function ϕ : R → [0,∞), any measurable
f : X → R, its induced classifier hf = sign(f) : X → {±1}, and any probability measure P of
(X,Y) on X × {±1},

ψ(R∗(hf)−R∗(h0)) ≤ R(f)−R0,

where ψ : [−1, 1] → [0,∞) is the Fenchel-Legendre biconjugate of ψ̃ : [−1, 1] → R, and

ψ̃(θ) = inf
a∈R:a(2η−1)≤0

H(
1 + θ

2
)− inf

a∈R
H(

1 + θ

2
).

Besides, if ϕ is classification-calibrated, then for any sequence {am} in [0, 1], ψ(am) → 0, if and
only if am → 0.

2

Lemma 1.2 has some important implications. First, for any nonnegative ϕ, ψ is simply the functional
convex hull (the greatest convex minorant) of ψ̃. Both ψ and ψ̃ are continuous on [−1, 1], and ψ
is nonnegative that attains its minimum at 0 with ψ(0) = 0. Second, if the loss ϕ is nonnegative
and classification-calibrated, then ψ(θ) > 0 for all θ ∈ (0, 1] and ψ is invertible on [0, 1]. In
this case, we have R∗(hf) − R∗(h0) ≤ ψ−1(R(f) − R0). Third, if ϕ is nonnegative convex and
classification-calibrated, then ψ(θ) = ϕ(0)− infa∈RH((1 + θ)/2, a), which gives an easy way to
compute the function ψ. Note that for the formulation of ψ, Theorem 34 in [6] shows that if ϕ is
convex, ϕ′′(0) > 0 exists and ϕ′ < 0, then ψ(θ) = θ2.

Next, we present several examples of ϕ, and the corresponding f0, R(f0), ψ and its inverse on [0, 1]
in Table 1.

Table 1: Minimizer and minimal conditional risk under different loss functions ϕ.

Least squares SVM Exponential Logistic Cross entropy

ϕ(a) (1− a)2 max{1−a, 0} exp(−a) log{1 + exp(−a)} − log{0.5 + a}
f0(x) 2η − 1 sign(2η − 1) 1

2 log(
η

1−η) log(η
1−η) η − 0.5

Rx(f0) 4η(1− η) 1− |2η − 1| 2
√
η(1− η) −η log(η)− (1− η) log(1− η) −η log(η)− (1− η) log(1− η)

ψ(θ) θ2 |θ| 1−
√
1− θ2 θ2 θ2

ψ−1(θ)
√
θ |θ|

√
1− (1− θ)2

√
θ

√
θ

Note: η(x) is written as η for notational simplicity.

We also list the Lipschitz constant Bϕ and ∆ϕ(T) for commonly-used SVM, cross entropy, least
squares, exponential and logistic loss functions in Table 2.

Table 2: Bound ϕB of ϕ, Lipschitz constant Bϕ and ∆ϕ(T) for the truncated f0 under least squares,
logistic, exponential and SVM hinge loss function restricted to [−B,B] for 1 ≤ T ≤ B; and cross
entropy loss function restricted to [−B,B] for T ≤ B ≤ 0.5.

Least
squares SVM Exponential Logistic Cross entropy

ϕ(a) (1− a)2 max{1−a, 0} exp(−a) log{1 + exp(−a)} − log{0.5 + a}
f0(x) 2η − 1 sign(2η − 1) 1

2 log(
η

1−η) log(η
1−η) η − 0.5

ϕB (B + 1)2 1 exp(B) log(1 + exp(B)) − log(0.5− B)
Bϕ 2B + 2 *** exp(B) 1/{exp(−B) + 1} 1/(0.5 + B)

∆ϕ(T) 0 0 exp(−T) log{1 + exp(−T)} − log{1 + (0.5− T)}

Note: η(x) is written as η for notational simplicity and "***" stands for not applicable.

2 Convolutional neural networks

As indicated by their name, CNNs employ a mathematical operation called convolution. Convolutional
networks are a specialized type of structured sparse feedforward neural network (FNN) that use
convolution in place of general matrix multiplication in at least one of their layers [12]. There are
different formulations of CNNs in the literature [1, 31, 22, 18, 29, 30].

For a general neural network, let L denote the number of layers and (σ1, . . . , σL) denote the activation
functions, such as the rectified linear unit (ReLU) and max pooling function. Besides, let di denote
the width (the number of neurons or computational units) of the i-th layer, i = 1, . . . , L + 1, and
W = max{d1, . . . , dL} denote the maximum width among layers. In our present classification
problem, d0 = d (the dimension of the input X) and dL+1 = 1 (the dimension of the output Y).

In the following, two common types of neural networks including FNNs or MLPs and CNNs with
downsampling [29] are shown.

• The architecture of a MLP fMLP : Rd → R can be expressed as a composition of a series
of linear transformations: for any x ∈ Rd,

fMLP (x) =WL+1σL(WLσL−1(· · ·σ2(W2σ1(W1x+ b1) + b2) · · ·) + bL) + bL+1, (3)

3

where Wi ∈ Rdi+1×di is a fully connected weight matrix, and bi ∈ Rdi+1 is a bias vector in
the i-th linear transformation. Usually, the activation functions (σ1, . . . , σL) are the ReLU
activation, where ReLU(x) = max{0, x} for any x ∈ R (defined for each component of x
if x is a vector).

• The formulation of a downsampled CNN fCNN : Rd → R is essentially a specially structured
architectures of MLP, and here we use the formulation defined in [31, 29, 30]

fCNN = AL+1 ◦AL ◦ · · · ◦A2 ◦A1, (4)
where ◦ denotes the functional composition and Ai is a linear operation, i = 1, . . . , L+ 1.
The Ai’s are either convolutional operators or downsampling operators. For convolutional
layers,

Ai = σ(W c
i x+ bci),

where σ is the rectified linear unit (ReLU) activation function applying to each component
of the input vector, W c

i ∈ Rdi×di−1 is the structured sparse Toeplitz type weight matrix
induced by the convolutional filter {w(i)j}s(i)j=0 with filter length s(i) ∈ N involving only
s(i)+1 free parameters. The corresponding (di−1+s

(i))×di−1Toeplitz type weight matrix
W c

i is given explicitly by

W c
i =

w
(i)
0 0 0 0 · · · · · · 0

w
(i)
1 w

(i)
0 0 0 · · · · · · 0

...
.

...
w

(i)

s(i)
w

(i)

s(i)−1
· · · w

(i)
0 0 · · · 0

0 w
(i)

s(i)
· · · w

(i)
1 w

(i)
0 0 · · · 0

...
.

...
0 · · · 0 w

(i)

s(i)
· · · w

(i)
1 w

(i)
0

0 · · · 0 0 w
(i)

s(i)
· · · w

(i)
1

...
.

...
0 0 0 0 · · · 0 w

(i)

s(i)

∈ R(di−1+s(i))×di−1 .

It can be seen that by convolutional operations here, the network has linearly increasing
widths di = di−1 + s(i) for convolutional layers. On the contrary, the downsampling layers
decrease the width of the networks.
For downsampling layers,

Ai(x) = Di(x) =WD
i x,

where Di : Rdi−1 → R[di−1/mi] is the downsampling operator with a scaling parameter
mi ≤ di−1 and WD ∈ Rdi−1×[di−1/mi] is corresponding structured sparse weight matrix
induced by Di in the i-th layer. Here the downsampling operator [29] is given by

Di(x) = (xjmi)
[di−1/mi]
j=1 , x ∈ Rdi−1 ,

which takes a real vector x ∈ Rdi−1 as input and outputs a subvector of x with length
R[di−1/mi] where [a] denotes the integer part of a ∈ R. It can be seen that by downsampling
operation Di here, the network width is scaled down by about mi times. For the function
class of the downsampled CNNs formulated as in (4), we let L be th number of hidden layers
and S be the total number of parameters for networks in FCNN and let W be the maximum
filter length of convolutional layers.
A downsampled CNN fCNN is called uniform if the length of its filters {s(i)} in the
convolutional layers are the same. [29] showed that any multilayer perceptron can be
represented by a uniform downsampled CNN with parameters no more than 8 times as that
of the MLP.

3 Non-asymptotic error bounds for commonly used loss functions

In this section, we show more examples of the non-asymptotic error bounds for commonly used loss
functions including the hinge loss, the logistic loss, the exponential loss and the least square loss.

4

3.1 SVM: the hinge loss

For SVM, the loss function ϕ(a) = max{1 − a, 0} is not differentiable at a = 1 and thus the
ϕ-risk minimizer f0(x) = sign(2η(x)− 1) may not be continuous even though η is continuous, as
f0(x) is discontinuous when η(x) = 1/2. To tackle this problem, we additionally impose the low
noise condition on η [20, 24], i.e., there exist cnoise > 0 and q ∈ [0,∞] such that for any t > 0,
P(|2η(X)− 1| ≤ t) ≤ cnoiset

q, where the constant q is called the noise exponent.

Suppose that Assumptions 4.3 holds f0 ∈ Hβ([0, 1]d, B0). Denote ζn = nd/{2d+4β(q+1)}.
Let FCNN be the class of CNNs defined in (2) with B ≥ 1, depth L ≤ 378 · 382(⌊β⌋ +
1)6d2⌊β⌋+2⌊ζn⌋⌈log(8ζn)⌉/(smin−1), filter lengths 2 ≤ smin ≤ smax ≤ 9×382(⌊β⌋+1)4d2⌊β⌋+2

and size S ≤ 8WL ≤ 42 ∗ 8 ∗ 92 ∗ 384(⌊β⌋ + 1)10d4⌊β⌋+4⌊ζn⌋⌈log(8ζn)⌉/(smin − 1). Theorem
4.6 implies that, with probability at least 1− exp(−ζ2n), the excess ϕ-risk of the ERM f̂n defined in
(13) satisfies

R(f̂n)−R(f0) ≤ Cn−β(q+1)/{d+2β(q+1)}(log n)2,

where C = O(cnoise4
qBq+1

0 (β+1)2q+8d(q+1)(3β+3)). For the induced classifier ĥn = sign(f̂n), the
excess misclassification error satisfies

R∗(ĥn)−R∗(h0) ≤ Cn−β(q+1)/{d+2β(q+1)}(log n)2.

The excess risk bound depends on q, the noise exponent. When q = 0 (high noise), the convergence
rate is n−β/(d+2β); when q = +∞ (no noise), the rate will be significantly improved to n−1/2. A
similar result can be found in Theorem 3.3 of [16].

Suppose Assumption 2.3 holds and for any ε ∈ (0, 1), the radius of the neighborhood ρ in this
assumption satisfies ρ ≤ ρε, then Theorem 4.7 implies that

R(f̂n)−R(f0) ≤ Cn−β(q+1)/{0.75dε+2β(q+1)}(log n)2,

where C is a constant independent of n.

3.2 The logistic loss

For the logistic loss function ϕ(a) = log{1+exp(−a)}, the minimizer of ϕ-risk log{η(x)/1− η(x)}
is unbounded with the Lipschitz constant Bϕ = 1/{exp(−B) + 1} ≤ 1 on [−B,B], and ϕB =
log(1+exp(B)) ≤ B +∞ and the truncation error ∆ϕ(T) = log{1+exp(−T)}. A feasible choice
is T = B = log(n) where n is the sample size, in which case ∆ϕ(T) = log{1 + 1/n} ≤ 1/n.

Suppose Assumptions 4.3 (in main context) holds and f0 ∈ Hβ([0, 1]d, B0). Take N = 1 in (7)
and M = ⌊ξ⌋ in (4) and let FCNN be the class of CNNs in (2) with depth L ≤ 378 · 382(⌊β⌋ +
1)6d2⌊β⌋+2⌊nd/{2d+4β}⌋⌈log(8n)⌉/(smin − 1), filter lengths 2 ≤ smin ≤ smax ≤ 9 × 382(⌊β⌋ +
1)4d2⌊β⌋+2 and size S ≤ 8WL ≤ 42∗8∗92∗384(⌊β⌋+1)10d4⌊β⌋+4⌊nd/{2d+4β}⌋⌈log(8n)⌉/(smin−
1).

Theorem 4.6 implies that, with probability at least 1− exp{−nd/(d+2β)}, the excess ϕ-risk of the
ERM f̂n defined in (13) satisfies

R(f̂n)−R(f0) ≤ n−1 + (log n)n−β/(d+2β)

×{c(⌊β⌋+ 1)8d3⌊β⌋+3(log n)2/(smin − 1) + 18B0(⌊β⌋+ 1)2d⌊β⌋+(⌊β⌋∨1)/2},

or simply

R(f̂n)−R(f0) ≤C(d, β,B0, smin)(log n)
3n−β/(d+2β),

where C(d, β,B0, smin) = O(B0(⌊β⌋+1)8d3⌊β⌋+3/(smin−1)) is a constant independent of n. For
the induced classifier ĥn = sign(f̂n), the excess misclassification error satisfies

R∗(ĥn)−R∗(h0) ≤
√
C(d, β,B0, smin)(log n)

3/2n−β/(2d+4β).

In addition, suppose the approximate low-dimensional manifold Assumption 2.3 also holds
and for any ε ∈ (0, 1), the radius of the neighborhood ρ in Assumption 2.3 satisfies ρ ≤

5

C2(NM)−2β/dε(⌊β⌋+1)2d1/2d
3⌊β⌋
ε (

√
d/dε+1−ε)−1(1−ε)1−β ,where dε = O(dMlog(d/ε)/ε2)

is an integer satisfying dM≤ dε ≪ d. Then Theorem 4.7 shows that the rate of convergence can be
improved to

R(f̂n)−R(f0) ≤ C(d, dε, β, B0, smin)(log n)
2n−β/(dε+2β),

where C(d, dε, ε, β,B0, smin) = O(B0(1− ε)−β(⌊β⌋+ 1)8d1/2d
3⌊β⌋+3
ε /(smin − 1)) is a constant

independent of n.

3.3 The exponential loss

For the exponential loss function ϕ(a) = exp(−a), the minimizer of ϕ-risk log{η(x)/1− η(x)}/2
is unbounded, the truncation error ∆ϕ(T) = exp(−T), the Lipschitz constant Bϕ = exp(B) and
ϕB = exp(B). A feasible choice is T = B = (β/{2d+ 4β}) log(n) where n is the sample size.

Suppose Assumptions 4.3 (in main context) holds and f0 ∈ Hβ([0, 1]d, B0). Take N = 1 in (7)
and M = ⌊ξ⌋ in (4) and let FCNN be the class of CNNs in (2) with depth L ≤ 378 · 382(⌊β⌋ +
1)6d2⌊β⌋+2⌊nd/{2d+4β}⌋⌈log(8n)⌉/(smin − 1), filter lengths 2 ≤ smin ≤ smax ≤ 9 × 382(⌊β⌋ +
1)4d2⌊β⌋+2 and size S ≤ 8WL ≤ 42∗8∗92∗384(⌊β⌋+1)10d4⌊β⌋+4⌊nd/{2d+4β}⌋⌈log(8n)⌉/(smin−
1). Theorem 4.6 implies that, with probability at least 1− exp{−nd/(d+2β)}, the excess ϕ-risk of
the ERM f̂n defined in (13) satisfies

R(f̂n)−R(f0) ≤ n−β/(2d+4β) + n−β/(2d+4β)

×{c(⌊β⌋+ 1)8d3⌊β⌋+3(log n)2/(smin − 1) + 18B0(⌊β⌋+ 1)2d⌊β⌋+(⌊β⌋∨1)/2},

or simply

R(f̂n)−R(f0) ≤C(d, β,B0, smin)(log n)
2n−β/(2d+4β),

where C(d, β,B0, smin) = O(B0(⌊β⌋+ 1)8d3⌊β⌋+3/(smin − 1)) is a constant independent of n.

In addition, suppose the approximate low-dimensional manifold Assumption 2.3 also holds and for any
ε ∈ (0, 1), the radius of the neighborhood ρ in Assumption 2.3 satisfies ρ ≤ C2(NM)−2β/dε(⌊β⌋+
1)2d1/2d

2⌊β⌋
ε (

√
d/dε+1−ε)−1(1−ε)1−β , where dε = O(dMlog(d/ε)/ε2) is an integer satisfying

dM≤ dε ≪ d. Then Theorem 4.7 shows that the rate of convergence can be improved to

R(f̂n)−R(f0) ≤ C(d, dε, ε, β,B0, smin)(log n)
2n−β/(2dε+4β),

where C(d, dε, ε, β,B0, smin) = O(B0(1− ε)−β(⌊β⌋+ 1)8d1/2d
3⌊β⌋+3
ε /(smin − 1)) is a constant

independent of n.

To improve the rate of convergence, one can use a modified exponential loss function, i.e. ϕ(a) =
max{exp(−a), τ} for some small τ > 0. The minimum of modified ϕ can be achieved at a∗(τ) =
− log(τ), and the minimizer f0(x) will be a truncated version of log(η/(1 − η))/2 (truncated by
a∗(τ) = − log(τ)). In light of this, under the modified exponential loss with τ = exp(−T), the
corresponding measurable minimizer defined in (14) is f0,T , the truncated version of the minimizer
f0 under the original exponential loss; see Table 2. Then ∆ϕ(T) = 0 by its definition since the
infimum of the modified loss can be achieved within [−T, T]. By choosing T = B = log log n and
τ = exp(−T), with the modified exponential loss, Theorem 4.6 implies that with probability at least
1− exp{−nd/(d+2β)}, the excess ϕ-risk of the ERM f̂n defined in (13) satisfies

R(f̂n)−R(f0) ≤C(d, β,B0, smin)(log n)
3n−β/(d+2β),

where C(d, β,B0, smin) = O(B0(⌊β⌋+1)8d3⌊β⌋+3/(smin−1)) is a constant independent of n. For
the induced classifier ĥn = sign(f̂n), the excess misclassification error satisfies

R∗(ĥn)−R∗(h0) ≤
√
C(d, β,B0, smin)(log n)

3/2n−β/(2d+4β).

6

3.4 The least squares loss

For the least squares loss ϕ(a) = (1− a)2, we first prove that the approximation error is of a special
form. For any f ∈ FCNN

R(f)−R(f0) = E{ϕ(Y f(X))− ϕ(Y f0(X))}
= E{(1− Y f(X))2 − (1− Y f0(X))2}
= E[f(X)2 − f0(X)2 − 2Y {f(X)− f0(X)}]
= E[(f(X)− f0(X)){f(X) + f0(X)− 2E(Y | X)}]
= E[(f(X)− f0(X))(f(X) + f0(X)− 2f0(X))]

= E|f(X)− f0(X)|2.

Ans we have

inf
f∈FCNN

R(f)−R(f0) = inf
f∈FCNN

E|f(X)− f0(X)|2.

Besides, note that for least squares f0 = 2η − 1 and ∥f0∥∞ = 1, thus taking the truncation T = 1 is
sufficient for the error control analysis. Let FCNN be a class of CNNs defined in (2) with B ≥ T = 1.

By Theorem 2.2, there exists a function f implemented by CNN with depth L ≤ 378 · 382(⌊β⌋ +
1)6d2⌊β⌋+2M⌈log(8M)⌉/(smin − 1), filter lengths 2 ≤ smin ≤ smax ≤ 9× 382(⌊β⌋+ 1)4d2⌊β⌋+2

and size S ≤ 8WL ≤ 42 ∗ 8 ∗ 92 ∗ 384(⌊β⌋+ 1)10d4⌊β⌋+4N⌈log(8N)⌉/(smin − 1) such that

E∥f(X)− f0(X)∥22 ≤ 182B2
0(⌊β⌋+ 1)4d2⌊β⌋+(β∨1)(NM)−4β/d,

and based on Lemma 4.1 and Theorem 4.2, the empirical ϕ-risk minimizer f̂n defined in (13) satisfies,
for any δ > 0, with probability at least 1− δ,

R(f̂n)−R(f0) ≤
ϕB√
n

(√
cSL log(S) log n+

√
log(1/δ)

)
+ 182B2

0(⌊β⌋+ 1)4d2⌊β⌋+(β∨1)(NM)−4β/d.

Let FCNN be the class of CNNs defined in (2) with depth L ≤ 378 · 382(⌊β⌋ +
1)6d2⌊β⌋+2⌊nd/(2d+8β)⌋⌈log(8nd/(2d+8β))⌉/(smin − 1), filter lengths 2 ≤ smin ≤ smax ≤
9 × 382(⌊β⌋ + 1)4d2⌊β⌋+2 and size S ≤ 8WL ≤ 42 ∗ 8 ∗ 92 ∗ 384(⌊β⌋ +
1)10d4⌊β⌋+4⌊nd/(2d+8β)⌋⌈log(8nd/(2d+8β))⌉/(smin − 1), B ≥ B0 and δ = exp{−nd/(d+4β)}. By
plunging in ϕB = (B+1)2 and above values, we have with probability at least 1−exp{−nd/(d+4β)},

R(f̂n)−R(f0) ≤ (log n)2n−β/(3d/8+2β)

×
{
c(β + 1)8(B + 1)2d3⌊β⌋+3/(smin − 1) + 182B2(⌊β⌋+ 1)4d2⌊β⌋+(β∨1)

}
,

or simply

R(f̂n)−R(f0) ≤C(d, β,B, smin)(log n)
2n−β/(3d/8+2β),

where C(d, β,B, smin) = O(B2(⌊β⌋+ 1)8d3⌊β⌋+3/(smin − 1)) is a constant independent of n. For
the induced classifier ĥn = sign(f̂n), the excess misclassification error satisfies

R∗(ĥn)−R∗(h0) ≤
√
C(d, β,B0, smin)(log n)n

−4β/(3d+16β).

The excess risk bound under the approximate low-dimensional manifold assumption can be obtained
in a similar way.

3.5 Excess misclassification errors

In this subsection, we summarize the misclassification error bounds obtained in existing results and
compare them with ours.

When the hypothesis space is taken to be the class of measurable functions itself, for the excess
misclassification error with the 0-1 loss, the convergence rates of order O(n−1/2) can be attained

7

using oracle inequalities [20, 26]. Under Tsybakov noise condition of exponent θ and α-Hölder
smooth condition on the decision boundaries, [24] proved that the minimax lower bound of the excess
misclassification rate is O(n−α(θ+1)/{α(θ+2)+(d−1)θ}) over all measurable classifiers. With large
enough α and θ, the convergence rate can be close to O(n−1) arbitrarily.

For classifications using deep neural networks with the SVM hinge loss function, [16] showed
that the minimax optimal convergence rate is O(n−α(θ+1)/{α(θ+2)+(d−1)θ}) under the Tsybakov
noise condition of exponent θ and α-Hölder smooth condition on the decision boundaries and
O(n−α(θ+1)/{α(θ+2)+d}) under the Tsybakov noise condition of exponent θ and α-Hölder smooth
condition on the conditional class probability η(x) = P (Y = 1|X = x).

For classifications using deep convolutional networks with the p-norm hinge loss function ϕ(u) =
max{1− u, 0}p with p ≥ 1 (it is hinge loss when p = 1), [9] derived the approximation error rate
and the excess misclassification rate for a target function in the Sobolev spaceW β,p(Sd−1) with input
data supported on the sphere Sd−1 in Rd under the variancing power condition [25]. Two quantities
including γ = max{1, (d + 3 + β)/2(d − 1)} and τ for variancing power condition are involved
in the convergence rate. Details can be found in [9]. Based on Table II in [9], we list the excess
misclassification rates and compare them in the table below.

Table 3: Excess Misclassification Error

Hypothesis space Loss Condition Rate Reference

Measurable
functions

0-1
loss θ-noise condition;

α-Hölder decision boundary
O(n−

β(θ+1)
β(θ+2)+(d−1)θ) Theorem 1 in [24]

DNN Hinge O(n−
β(θ+1)

β(θ+2)+(d−1)(θ+1)) Theorem 1 in [16]

Deep CNNs

1-norm
f0 ∈W β,p(Sd−1)

O(n−
β

β(2−τ)+2γ(d−1)) Theorem 2 in [9]
p-norm O(n−

pβ
2pβ(2−τ)+2p(γ+1)(d−1))

2-norm f0 ∈W β,p(Sd−1);
θ-noise condition; O(n−

2βθ
(2+θ)((γ+1)(d−1)+2β)) Theorem 3 in [9]

Hinge
θ-noise condition;
f0 ∈W β,p([0, 1]d)

O(n−
β(θ+1)

d+2β(θ+1))

This paperLogistic f0 ∈W β,p([0, 1]d) O(n− β
2d+4β)

Exponential f0 ∈W β,p([0, 1]d) O(n− β
2d+4β)

Least square f0 ∈W β,p([0, 1]d) O(n−
4β

3d+16β)

4 A toy example for CNN approximation

In this subsection, we use a toy example to illustrate the approximation power of CNNs. We examine
how the approximation error varies according to the filter size and depth of the CNNs.

We consider a target function f0 defined as

f0(x) = 2 sin(2πx1) + 4(x2)
3, x ∈ [0, 1]2

where x = (x1, x2) ∈ [0, 1]2 is the two-dimensional input. The 2D heatmap and 3D surface
visualizations for the target function f0 are presented in Figure 1.

8

Figure 1: Heatmap and 3D surface plots for the target function f0 defined on [0, 1]2.

To construct CNNs that approximates f0, we train the CNNs on noiseless data, which is generated
by taking values of the target function in [0, 1]2. Specifically, we choose 100 × 100 lattice points
{Xi}10,000i=1 uniformly on the square [0, 1]2 and calculate the corresponding target function values
{Yi = f0(Xi)}10,000i=1 to get the training data {Xi, Yi}10,000i=1 for function approximation.

We implement the training in Python via Pytorch and use Adam [17] as the optimization algorithm
with default learning rate 0.01 and default β = (0.9, 0.99) (coefficients used for computing running
averages of gradients and their squares). During the training process, we set the batch size as 2, 500,
i.e. the 1/4 of the sample size. The maximum epoch of training is set as 1,000 and an early stopping
rule is applied where we stop the iteration if the training losses for the last 200 consecutive epochs do
not achieve a new minimum.

We investigate the approximation power of CNNs with different shapes, which are specified through
the filter length and the depth. For ease of demonstration, we consider CNNs with L hidden layers
with each hidden layer being a convolutional layer with a uniform filter length s. We set the last layer
as a fully connected layer with one-dimensional scalar output.

We train 12 CNNs that approximate the target function for L = 1, 2, 3 and s = 20, 50, 100, 200, then
we calculate the empirical L1 and L2 distances measuring the approximation error according to

L1(f̂ , f0) =
1

10, 000

10,000∑
i=1

|f̂(Xi)− f0(Xi)|,

L2(f̂ , f0) =

√√√√ 1

10, 000

10,000∑
i=1

|f̂(Xi)− f0(Xi)|2,

where f̂ denotes the approximate function by CNN. Due to the randomness of the optimization
algorithms, we train each CNN for several times and take the best one as the final approximator on
the target function.

The summary statistics of empirical L1 and L2 distances between the CNNs to the target function on
the training data are presented in Table 4. We can see that the numerical results generally support
our theory in the sense that the approximation error shrinks by a proper rate with respect to the filter
length and depth of CNN. However, we would like to mention that the optimization procedure using
Adam is not fully tuned and optimization errors may slightly perturb the results, especially when the
network is deep and wide.

A visualization of CNN approximations on the target function by heatmaps are presented in Figure 2.

9

Table 4: Approximation errors by CNNs with different filter lengths and depths.

Approximation error Filter length
L1(L2) 20 50 100 200

Hidden layers
1 0.807(0.969) 0.450(0.539) 0.139(0.186) 0.062(0.084)
2 0.112(0.144) 0.055(0.070) 0.047(0.064) 0.025(0.037)
3 0.078(0.098) 0.051(0.070) 0.037(0.046) 0.032(0.045)

Figure 2: Heatmaps for the CNN approximations on the target function. The CNNs are designated
with depth L = 1, 2, 3 and filter length s = 20, 50, 100, 200.

5 Proofs

In this section, we prove Theorems 2.1,2.2, 2.4, 4.4, 4.6, 4.7, as well as the non-asymptotic error
bound results for the cross entropy, the SVM, the logistic, the exponential and the least squares losses.

5.1 Proof of Theorem 2.1

As in [13], this approximation result in term of ∥ · ∥Wβ−1,p norm is proved for target function
f ∈W β,p(X), which can be seen as an generalization of Theorem 1 in [27] where L∞ error bounds
for f ∈W β,∞(X) is derived. Besides, our results improves the prefactor in d of the network width
in Theorem 4.1 in [13]. The main idea of our proof is to approximate the averaged Taylor expansion
of function f in Sobolev functions. The definition and properties of averaged Taylor expansion can
be found in subsection 5.13 of this supplementary material. By Lemma 5.6, let B be a ball with
proper radius in Ω such that Ω is star-shaped with respect to B, for 1 ≤ p ≤ ∞ we have

∥f − T βf∥Wm,p(Ω) ≤ Cm,β,γr
β−m
Ω ∥f∥Wm,p(Ω), k = 0, 1, . . . , β

10

where Ck,β,γ > 0 is a constant, rΩ is the diameter of Ω ⊆ X , γ is the chunkiness parameter of Ω
defined in definition 5.4 and T βf is the averaged Taylor expansion over B defined as in (13):

T βf(x) =

∫
B

T β
y f(x)ϕ(y)dy,

where
T β
y f(x) =

∑
∥α∥1≤β

1

α!
Dαf(y)(x− y)α,

and ϕ is an arbitrary cut-off function supported in B̄ being infinitely differentiable.

This reminder term could be well controlled when the approximation to Taylor expansion in im-
plemented in a fairly small local region. Then we can focus on the approximation of the Taylor
expansion locally. The proof is divided into four parts:

(i) Partition X into small cubes ∪θQθ, and construct a network ψ that approximately maps
each x ∈ Qθ to a fixed point xθ ∈ Qθ. Hence, ψ approximately discretize X .

(ii) For any multi-index α, construct a network ϕα that approximates the coefficient of the
averaged Taylor expansion over a ball B in Qθ, that is x ∈ Qθ 7→ cα(xθ), where Qθ =∑

α≤β cα(xθ)x
α by Lemma 5.2. Once X is discretized, the approximation is reduced to a

data fitting problem.
(iii) Construct a network Pα(x) to approximate the polynomial xα := xα1

1 . . . xαd

d where x =

(x1, . . . , xd)
⊤ ∈ Rd and α = (α1, . . . , αd)

⊤ ∈ Nd
0. In particular, we can construct a

network ϕ×(·, ·) approximating the product function of two scalar inputs.
(iv) Lastly, our construction of neural network can be written in the form,

ϕ(x) =
∑

∥α∥1≤β

ϕ×

(
ϕα(x), Pα(x)

)
.

Proof. Before proving the theorem, we firstly show that each ReLU activated multilayer-perceptron
can be computed by a downsampled CNN fCNN defined as in (4). The proof here follows Theorem
2 in [29] where we construct downsampled CNN exactly computing a fully-connected layer. Due to
the simplicity of the formulation of ReLU activated multilayer-perceptron, we focus on showing that
each fully-connected layer can be reproduced by a down sampled CNN with proper choice of filters.
Without loss of generality, let

W =

w11 w12 · · · w1din

w21 w22 · · · w2din

... · · · · · ·
...

wdout1 wdout2 · · · wdoutdin

 ,
be the weight matrix and b = (b1, . . . , bdout

)⊤ ∈ Rdout be the bias vector of a fully-connect layer
AF (·) : Rdin → Rdout , where wij , i = 1, . . . , dout; j = 1, . . . , din are weights. Then the output of
the fully-connect layer with respect to x ∈ Rdin is

AF (x) = σ(Wx+ b).

To construct a downsampled CNN to represent the fully-connected layer, we define a sequence
w = (w0, . . . , wdin×dout

) ∈ Rdin×dout with length din × dout by stacking the reversed row vectors
of the weight matrix W as

wi+(r−1)din
=Wr,din−i, r = 1, 2, . . . , dout, i = 0, 1, . . . , din − 1,

or
w = (w1din

, . . . , w11, w2din
, . . . , w21, . . . , wdoutdin

, . . . , wdout1),

where wij are weights of the matrix W . By Lemma 2 in [29], there exists a sequence of filter
{w(i)}Ii=1 of equal filter length s for some s ∈ [2, din × dout] and I ≤ ⌈(din × dout − 1)/(s− 1)⌉
such that w has convolutional factorization w(I) ∗w(I−1) ∗ · · · ∗w(1). We let {w(i)}Ii=1 be the filters
of the I Toeplitz type convolutional matrices T (1), . . . , T (I) of the convolutional operators

A(i)(x) = σ(T (i)x+ b(i))

11

for i = 1, . . . , I . Next we construct the bias vectors {b(i)}Ii=1 according to Lemma 3 in [29]. Let

b(1) = −B∥w(1)∥11din+s

with B denoting the infinity norm of the input x of the fully-connected layer, and let

b(i) = −B(Πi−1
j=1∥w

(j)∥1)T (j)
1din+s(i−1) +B(Πi

j=1∥w(j)∥1)1din+is

for i = 2, . . . , I − 1. Then we have

A(I−1) ◦ · · · ◦A(1)(x) = T (i−1) · · ·T (1)x+B(ΠI−1
j=1∥w

(j)∥1)1din
.

Finally, we set

b(i) =

{
−B(ΠI−1

j=1∥w(j)∥1)T (j)
1din+s(I−1) + θ, if I ≥ 2,

θ, if I = 1,

where θ ∈ Rdin+s(I−1) s an arbitrary vector satisfying DI(θ) = b with DI : Rdin+sI → Rdout

denoting the downsampling operator and b is the bias vector of the target fully-connected layer. Then
we can defined the downsampled CNN by

fCNN = DI ◦A(I) ◦ · · · ◦A(1),

and by Lemma 1 in [29] we have

fCNN (x) = DI(σ(T
(I) · · ·T (1)x+ θ)) = σ(Wx+ b).

And the the total number of free parameters in computing the fully-connected layer AF is no more
than

(3s+ 2)⌈ (din × dout − 1)

(s− 1)
⌉ ≤ 8din × dout,

which is 8 times of the total parameters of the fully-connected layer. The depth of fCNN is I + 1 ≤
⌈(din × dout − 1)/(s− 1)⌉+ 1. If we take s = din × dout, then fCNN is a 2-layer convolutional
network. By induction, we know that for any MLP with depth L, width (d0, d1, . . . , dL+1) and
size S, there exists a downsampled CNN as defined in (4) that exactly computes the MLP. The
downsampled CNN has size no more than 8S , depth no more than L+

∑L
i=0⌈di × di+1/(s

(i) − 1)⌉
where s(i) is the filter length of the 2i-th layer of downsampled CNN and the 2i − 1-th layers are
downsampling operations. More specifically, if take the maximum possible filter size s(i) = di×di+1

for each construction of the fully-connected layer above, the downsampled CNN that computed the
MLP has depth no more than 2L, size no more than 8S and maximum filter length no more than
W = max{d0d1, . . . , dLdL+1}. In general, the maximum filter length s = O(1), and the constructed
downsampled CNN has size no more than 8S , depth no more than L+

∑L
i=0⌈di×di+1/(s

(i)−1)⌉ ≤
L(1 +W2/(smin − 1)) ≤ 2LW2/(smin − 1) where smin is the minimum of the filter lengths over
convolutional layers.

Now we prove the theorem following the four parts described above. Part (i) (domain discretization)
uses an idea similar to that in the proof of Theorem 3.3 in [15]. We target for approximation on
Sobolev functions that the inequalities will be obtained for Sobolev norms instead of L1 or L2 norms,
and the local averaged Taylor’s expansion instead of Taylor’s expansion of the target function will be
approximated.

Without loss of generality, we assume the Sobolev norm of f is 1, i.e. ∥f∥Wβ,p(X) ≤ 1. The reason
is that we can always approximate f/B0 firstly by a network ϕ with approximation error ϵ, then the
scaled network B0ϕ will approximate f with error no more than ϵB0. Besides, it is a trivial case
when the Sobolev norm of f is 0. Next, we prove the four parts of the sketch as follows.

Part (i): Discretization.
We first divide the domain X approximately into hypercubes as in [23, 15]. We present below the
sketch, and details can be found in proof of Theorem 3.3 in [15].

(i) The domain is approximately divided into hypercubes {Qθ} indexed by θ. Given
N,M ∈ N+, set K = ⌊N1/d⌋2⌊M2/d⌋ and δ ∈ (0, 1/(3K)], for each θ = (θ1, . . . , θd) ∈
{0, 1, . . . ,K − 1}d, we define

Qθ :=
{
x = (x1, . . . , xd) : xi ∈ [

θi
K
,
θi + 1

K
− δ · 1θi<K−1], i = 1, . . . , d

}
.

Let Ω(X ,K, δ) = X\ ∪θ Qθ be the trifling region or the complement of ∪θQθ.

12

(ii) For each θ, there exists a ReLU network maps all x ∈ Qθ to a common value depending
on θ. To be specific, by Lemma 5.7 and proof in Theorem 3.3 in [15], there exists a
ReLU network ψ(x) with width d(4⌊N1/d⌋ + 3) and depth 4M + 5 such that for any
θ = (θ1, . . . , θd) ∈ {0, 1, . . . ,K − 1}d, we have

ψ(x) = ψ(x1, . . . , xd) = θ/K := (θ1/K, . . . , θd/K)⊤

for all x = (x1, . . . , xd)
⊤ ∈ Qθ.

Part (ii): Local Approximation of averaged Taylor expansion coefficients.
We consider the local approximation of f ∈ W β,p(X) on the subset Qθ for each θ by its
averaged Taylor expansion T βf(x) =

∫
Bθ
T β
y f(x)ϕ(y)dy over the ball Bθ where T β

y f(x) =∑
∥α∥1≤β

1
α!D

αf(y)(x−y)α, the ballBθ = {y ∈ X : ∥y− (θ+(1−δ)/2)/K∥2 ≤ (1−δ)/(2K)}
support in Qθ, and ϕ is an cut-off function supported in B̄ defined in Definition 5.1. Note that Qθ

has diameter rQθ
=

√
d(1 − δ)/K and it is star-shaped with respect to the ball Bθ with radius

(1 − δ)/(2K). By Lemma 5.6, we have error bound for the remainder of the averaged Taylor
expansion,

∥f − T βf∥Wm,p(Qθ) ≤ Cm,β,γ

(√d(1− δ)

K

)β−m

∥f∥Wβ,p(Qθ) m = 0, 1, . . . , β.

Besides, by Lemma 5.2, the averaged Taylor expansion is actually a polynomial T βf(x) =∑
∥α∥1≤β c

θ
αx

α for x ∈ Qθ with |cθα| ≤ C(β, d) for all α where

C(β, d) = (β + 1)2β+d/pd3β/2(π−d/2Γ(d/2 + 1))1/p(NM)2/p−2β/d∥f∥Wβ,p(Ω).

Next we seek to approximate the polynomial T βf(x) =
∑

∥α∥1≤β c
θ
αx

α locally by deep neural
networks. In this part of proof, we firstly construct network to approximate the coefficients of
averaged Taylor expansion.

For each hypercube Qθ, we locate the input x ∈ Qθ by mapping multi-dimensional x to an integer
iθ for each θ. Given the fact that θ ∈ {0, 1, . . . ,K − 1}d is one-to-one correspondence to iθ :=∑d

j=1 θjK
j−1 ∈ {0, 1 . . . ,Kd − 1}, and based on the locator ψ in part (i), it is proved that in

[19, 15], there exists a network ψ0 : Rd → R with width d(4⌊N1/d⌋+ 3) and depth 4M + 5 such
that for each θ ∈ {0, 1, . . . ,K − 1}d, ψ0(x) =

∑d
j=1 θjK

j−1 = iθ for all x ∈ Qθ.

For any α ∈ Nd
0 satisfying ∥α∥1 ≤ β and each i = iθ ∈ {0, 1, . . . ,Kd − 1}, we denote ξα,i :=

(cθα + C(β, d))/(2C(β, d)) ∈ [0, 1]. Since Kd ≤ N2M2, by Lemma 5.8, there exists a ReLU
network φα with width 16(β + 2)(N + 1)⌈log2(8N)⌉ and depth 5(M + 2)⌈log2(4M)⌉ such that

|φα(i)− ξα,i| ≤ (NM)−2β−4,

for all iθ ∈ {0, 1, . . . ,Kd − 1}. We define

ϕα(x) := 2C(β, d)φα(ψ0(x))− C(β, d) ∈ [−C(β, d), C(β, d)], x ∈ Rd.

Then ϕα can be implemented by a network with width 16d(β + 2)(N + 1)⌈log2(8N)⌉ ≤ 32d(β +
2)N⌈log2(8N)⌉ and depth 5(M + 2)⌈log2(4M)⌉+ 4M + 5 ≤ 15M⌈log2(8M)⌉ such that

|ϕα(x)− cθα| = 2C(β, d)|φα(iθ)− ξα,iθ | ≤ 2C(β, d)(NM)−2β−4, (5)

for any θ ∈ {0, 1, . . . ,K − 1}d and x ∈ Qθ.

Part (iii): Local Approximation of the polynomial.
In this part, we present two lemmas showing that the multiplication operator and polynomials can be
approximated by proper networks under ∥ · ∥W 1,∞ norm. For multiplication operator, by Lemma 5.9,
there exists a ReLU network with width 9N + 1 and depth 4βM + 8 such that for any t1, t2 ∈ [a, b],

∥t1t2 − ϕ×(t1, t2)∥W 1,∞([a,b]2) ≤ 6(b− a)2N−2βM−4, (6)

with ∥ϕ×∥W 1,∞((a,b)2) ≤ 12(b − a)2. For polynomials, by Lemma 5.10, for any α ∈ Nd
0 with

∥α∥1 ≤ β ∈ N+, there exists a ReLU network Pα with width 9(N + 1) + β and depth 7(β + 1)2M
and ∥Pα∥W 1,∞(X) ≤ 18 such that for any x ∈⊆ [0, 1]d

∥Pα(x)− xα∥W 1,∞(X) ≤ 10(β + 1)(N + 1)−7(β+1)M . (7)

13

Note that above approximation result holds for x ∈ [0, 1]d, we then provide below network con-
struction for truncation operator of the input onto [0, 1]d. Let φ0(t) = min{max{t, 0}, 1} =
σ(t) − σ(t − 1) for t ∈ R, where σ(·) is the ReLU activation function. And let φ(x) =
φ(x1, . . . , xd) := (φ0(x1), . . . , φ0(xd))

⊤ denote the extension of φ0 to Rd. Then φ truncates
the input x ∈ Rd onto [0, 1]d.

Part (iv): Approximation of f on ∪θ∈{0,1,...,K−1}dQθ.

For any x ∈ Qθ, θ ∈ {0, 1, . . . ,K − 1}d, we can now approximate the averaged Taylor expansion of
f(x) by combined sub-networks. Motivated by this, we define

ϕ0(x) :=
∑

∥α∥1≤β

ϕ×

(
ϕα(x), Pα(φ(x))

)
∈ [−dβC(β, d), dβC(β, d)],

where ∥ϕ0∥W 1,∞(X) ≤ 48C(β, d)2(β + 1)dβ . Then ϕ0 is our constructed neural network approxi-
mating the target function f on X . Recall that width and depth of φ is (2d, 1), width and depth of ψ
is (d(4⌊N1/d⌋+ 3), 4M + 5), width and depth of Pα is (9(N + 1) + β, 7(β + 1)2M), width and
depth of ϕα is width (16d(β + 2)(N + 1)⌈log2(8N)⌉,5(M + 2)⌈log2(4M)⌉+ 4M + 5) and width
and depth of ϕ× is (9N + 1, 2βM + 4). Hence, by our construction, ϕ0 can be implemented by a
neural network with width 38(β + 1)2dβ+1N⌈log2(8N)⌉ and depth 21(β + 1)2M⌈log2(8M)⌉.

For θ ∈ {0, 1, . . . ,K − 1}d, thanks to Lemma 5.6, we have error bound for the remainder of the
averaged Taylor expansion,

∥f − T βf∥Wm,p(Qθ) ≤ Cβ,d,r

(√d(1− δ)

K

)β−m

∥f∥Wβ,p(Qθ),

where Cβ,d,r = 3βdβ−1Γ(d/2 + 1)π−d/2(1 + 2
√
d)d. Then for any θ ∈ {0, 1, . . . ,K − 1}d, the

approximation error of ϕ0 on f over Qθ can be upper bounded,
∥ϕ0 − f∥W 1,p(Qθ) ≤ ∥ϕ0 − T βf∥W 1,p(Qθ) + ∥T βf − f∥W 1,p(Qθ)

≤ ∥
∑

∥α∥1≤β

ϕ×

(
ϕα(x), Pα(φ(x))

)
− cθαx

α∥W 1,∞(Qθ)

+ Cm,β,γ

(√d(1− δ)

K

)β−m

∥f∥Wβ,p(Qθ). (8)

We denote Eα = ∥cθαxα − ϕ×
(
ϕα(x), Pα(φ(x))

)
∥W 1,∞(Qθ) for each α ∈ Nd

0 with ∥α∥1 ≤ β.
Using the inequality |t1t2 − ϕ×(t3, t4)| ≤ |t1t2 − t3t2| + |t3t2 − t3t4| + |t3t4 − ϕ×(t3, t4)| ≤
|t2||t1 − t3|+ |t3||t2 − t4|+ |t3t4 − ϕ×(t3, t4)| for any t1, t2, t3, t4 ∈ R, and by (5), (6) and (7), for
∥α∥1 ≤ β we have

Eα ≤|xα|∥cθα − ϕα(x)∥W 1,∞(Qθ) + |ϕα(x)|∥xα − Pα(φ(x))∥W 1,∞(Qθ)

+
∥∥∥ϕα(x)Pα(φ(x))− ϕ×

(
ϕα(x), Pα(φ(x))

)∥∥∥
W 1,∞(Qθ)

≤2C(β, d)(NM)−2β−4 + 10C(β, d)(β + 1)(N + 1)−7βM−7M + 24C(β, d)2N−2βM−4

≤(12C(β, d)(β + 1) + 24C(β, d)2)(NM)−2β−4

≤36(β + 1)222β+2d/pd3β(π−d/2Γ(d/2 + 1))2/pB0∥f∥Wβ,p(Ω)(NM)−2β−4β/d, (9)
where the last inequality holds since p ≥ 1 and ∥f∥Wβ,p(Ω) ≤ B0. Moreover, as in the proof of
Theorem 3.3 in [15], the number of terms |{α : α ∈ Nd

0, ∥α∥1 ≤ β}| in the summation can be
bounded by (β + 1)dβ .

Recall that K = ⌊N1/d⌋2⌊M2/d⌋, combining (8) and (9), we have

∥ϕ0 − f∥W 1,p(Qθ) ≤ ∥ϕ0 − T βf∥W 1,p(Qθ) + ∥T βf − f∥W 1,p(Qθ)

≤ 36 · 22β+2d/p(β + 1)3d4β(π−d/2Γ(d/2 + 1))2/pB0∥f∥Wβ,p(Ω)(NM)−2β−4β/d

+ βd3β/2Γ(d/2 + 1)π−d/2(1 + 1/r)d∥f∥Wβ,p(Qθ)(NM)−2(β−m)/d

≤ 37 · 22β+2d/p(1 + 2
√
d)d(β + 1)3d4β(π−d/2Γ(d/2 + 1))2/p+1

×B0∥f∥Wβ,p(Qθ)(NM)−2(β−m)/d, (10)

14

for θ ∈ {0, 1, . . . ,K − 1}d. Note that X = Ω(X ,K, δ) ∪ (∪θ∈{0,1,...,K−1}dQθ) and the Lebesgue
measure of Ω(X ,K, δ) can be upper bounded by δdK since δ ∈ (0, 1/(3K)] can be arbitrarily small.
Then the approximation error ∥f(x)− ϕ0(x)∥W 1,p(X) can be further bounded as follows.

∥f(x)− ϕ0(x)∥W 1,p(X) =
(∑

θ∈{0,1,...,K−1}d

∥f − ϕ0∥pW 1,p(Qθ)
+ ∥f − ϕ0∥pW 1,p(Ω(X ,K,δ))

)1/p

≤ 37 ·B02
2β+2d/p(1 + 2

√
d)d(β + 1)3d4β(π−d/2Γ(d/2 + 1))2/p+1(NM)−2(β−m)/d

×
(∑

θ∈{0,1,...,K−1}d

∥f∥p
Wβ,p(Qθ)

)1/p

≤ 37 · 22β+2d/p(1 + 2
√
d)d(β + 1)3d4β(π−d/2Γ(d/2 + 1))2/p+1(NM)−2(β−m)/d

×B0∥f∥Wβ,p(X)

= 37 · 22β+2d/pB2
0(β + 1)3(π−d/2Γ(d/2 + 1))2/p+1(1 + 2

√
d)dd4β(NM)−2(β−m)/d,

where ∥f − ϕ0∥pW 1,p(Ω(X ,K,δ)) can be arbitrarily small since ∥f∥pW 1,∞(X) and ∥ϕ0∥pW 1,∞(X) are
bounded, and δ ∈ (0, 1(3K)] can be arbitrarily small.

When p = ∞, the target function f ∈ W β,∞(X) actually is Hölder smooth with order β and
constant B0 = ∥f∥Wβ,∞(X). In this case, it is shown in Theorem 3.3 of [15] that there exists a
function ϕ0 implemented by a neural network with width 38(⌊β⌋ + 1)2d⌊β⌋+1N⌈log2(8N)⌉ and
depth 21(⌊β⌋+ 1)2M⌈log2(8M)⌉ such that

|f(x)− ϕ0(x)| ≤ 18B0(⌊β⌋+ 1)2dβ+(β∨1)/2(NM)−2β/d,

for any x ∈ ∪θ∈{0,1,...,K−1}dQθ. If the probability measure of X is absolutely continuous with
respect to the Lebesgue measure, we also have

E|f(X)− ϕ0(X)| ≤ 18B0(⌊β⌋+ 1)2dβ+(β∨1)/2(NM)−2β/d.

As we have shown at the beginning of the proof, the multilayer-perceptron ϕ0 here can be com-
puted by a downsampled CNN with filter lengths 2 ≤ smin ≤ smax ≤ W = 382(⌊β⌋ +
1)4d2⌊β⌋+2N2⌈log2(8N)⌉2 and depth L ≤ 42(⌊β⌋ + 1)2M⌈log2(8M)⌉W/(smin − 1) and size
S ≤ 8WL. We know that there exists a fCNN ∈ FCNN such that the approximation results hold.
This completes the proof.

5.2 Proof of Theorem 2.2

Proof. Let K ∈ N+ and τ ∈ (0, 1/K), define a region Ω(X ,K, τ) of X as

Ω(X ,K, ε) = ∪d
i=1{x = [x1, x2, ..., xd]

T : xi ∈ ∪K−1
k=1 (k/K − τ, k/K)}.

By Theorem 3.3 of [15], for any M,N ∈ N+, there exists a function f∗ ∈ FMLP with ∥f∗∥∞ ≤ B,
depth 21(⌊β⌋+ 1)2M⌈log2(8M)⌉ and width 38(⌊β⌋+ 1)2d⌊β⌋+1N⌈log2(8N)⌉ such that

|f∗(x)− f0,T (x)| ≤ 18B0(⌊β⌋+ 1)2d⌊β⌋+(β∨1)/2(NM)−2β/d

for any x ∈ X\Ω(X ,K, τ) where K = ⌊N1/d⌋2⌊M1/d⌋2 and τ is an arbitrary number in (0, 1
3K]

and ⌊a⌋ denotes the largest integer smaller than a. Note that the Lebesgue measure of Ω(X ,K, τ)
is no more than dKτ which can be arbitrarily small if τ is arbitrarily small. Since P is absolutely
continuous with respect to Lebesgue measure, then we have

E∥f∗(X)− f0,T (X)∥2 ≤ 18B0(⌊β⌋+ 1)2d⌊β⌋+(β∨1)/2(NM)−2β/d.

By the proof of Theorem 2.1, any MLP can be computed exactly by a downsampled CNN. Thus
there exists a function f implemented by CNN with its depth no more than L = 42(⌊β⌋ +
1)2M⌈log2(8M)⌉W/(smin − 1) where W = 382(⌊β⌋ + 1)4d2⌊β⌋+2N2⌈log2(8N)⌉2 and its fil-
ter lengths 2 ≤ smin ≤ smax ≤ W = 382(⌊β⌋+ 1)4d2⌊β⌋+2N2⌈log2(8N)⌉2 such that

E∥f(X)− f0,T (X)∥2 ≤ 18B0(⌊β⌋+ 1)2d⌊β⌋+(β∨1)/2(NM)−2β/d.

15

5.3 Proof of Theorem 2.4

Proof. The idea of the proof is to project the data into a low-dimensional space using a shallow
CNN and then approximate the low-dimensional function using another CNN. The idea is similar to
that of Theorem 6.1 in [15] and Theorem 1.2 in [23], and the existence of such a projection follows
from Theorem 3.1 in [2]. We present a proof sketch of the projection, and details can be completed
following the proof of Theorem 6.1 in [15].

(i) There exists a linear projectorA ∈ Rdδ×d that maps a low-dimensional manifold (embedded
in a high-dimensional space) to a low-dimensional space almost preserving the distance,
i.e. there exists a matrix A ∈ Rdδ×d such that AAT = (d/dδ)Idδ

where Idδ
is an identity

matrix of size dδ × dδ , and

(1− δ)∥x1 − x2∥2 ≤ ∥Ax1 −Ax2∥2 ≤ (1 + δ)∥x1 − x2∥2,

for any x1, x2 ∈ M.

(ii) For the linear map A and ρ-neighborhood Mρ, we have A(Mρ) ⊆ A(X) ⊆ E :=

[−
√

d
dδ
,
√

d
dδ
]dδ .

(iii) For any z ∈ A(M), there exists a unique x ∈ M such that Ax = z. Then for any
z ∈ A(M), define xz = SL({x ∈ M : Ax = z}) where SL(·) is a set function which
returns a unique element of a set. Then SL : A(M) → M is a differentiable function
with the norm of its derivative locates in [1/(1 + δ), 1/(1 − δ)], i.e. 1

1+δ∥z1 − z2∥2 ≤
∥xz1 − xz2∥2 ≤ 1

1−δ∥z1 − z2∥2, for any z1, z2 ∈ A(M).

(iv) For the function f0 : [0, 1]d → R1, define its low-dimensional representation f̃0 : Rdδ → R1

by f̃0(z) = f0(xz), for any z ∈ A(M) ⊆ Rdδ . Then f̃0 ∈ Hβ(A(M), B0/(1 − δ)β)
since f0 ∈ Hβ(X , B0).

(v) By the extended version of Whitney’ extension theorem in [8], there exists a function
F̃0 ∈ Hβ(E,B0/(1 − δ)β) such that F̃0(z) = f̃0(z) for any z ∈ A(M), given that M is
compact and A is a linear mapping.

Now on E = [−
√
d/dδ,

√
d/dδ]

dδ , we consider approximate F̃0 by CNN. By Theorem 2.1, for
any N,M ∈ N+, there exists a function f̃n : Rdδ → R1 implemented by a downsampled CNN
with filter lengths 2 ≤ smin ≤ smax ≤ W = 382(⌊β⌋ + 1)4d

2⌊β⌋+2
δ N2⌈log2(8N)⌉2 and depth

L = 42(⌊β⌋+ 1)2M⌈log2(8M)⌉W/(smin − 1) such that

|f̃n(z)− F̃0(z)| ≤ 18
B0

(1− δ)β
(⌊β⌋+ 1)2d1/2d

(3β+1)/2
δ (NM)−2β/dδ ,

for all z ∈ E\Ω(E) where Ω(E) is a subset of E with an arbitrarily small Lebesgue measure as
well as Ω := {x ∈ Mρ : Ax ∈ Ω(E)} does. If we define f∗n = f̃n ◦ A, i.e. f∗n(x) = f̃n(Ax) for
x ∈ X , then f∗n is also a downsampled CNN with one more layer than f̃n since linear map A can be
realized by one ReLU layer. Note that for any x ∈ Mρ\Ω and z = Ax, there exists a x̃ ∈ M such
that ∥x− x̃∥2 ≤ ρ, and

|f∗n(x)− f0(x)| ≤ |f̃n(Ax)− F̃0(Ax)|+ |F̃0(Ax)− F̃0(Ax̃)|+ |F̃0(Ax̃)− f0(x)|

≤ 18
B0

(1− δ)β
(⌊β⌋+ 1)2d1/2d

(3β+1)/2
δ (NM)−2β/dδ +

B0

1− δ
∥Ax−Ax̃∥2 + |f0(x̃)− f0(x)|

≤ 18
B0

(1− δ)β
(⌊β⌋+ 1)2d1/2d

(3β+1)/2
δ (NM)−2β/dδ +

ρB0

1− δ

√
d

dδ
+ ρB0

≤ (18 + C2)
B0

(1− δ)β
(⌊β⌋+ 1)2d1/2d

(3β+1)/2
δ (NM)−2β/dδ ,

where C2 > 0 is a constant not depending on any parameter and the last inequality follows from
ρ ≤ C2(NM)−2β/dδ(⌊β⌋+1)2d1/2d

(3β+1)/2
δ {

√
d/dδ+1−δ}−1(1−δ)1−β . Given the probability

16

measure ν of X is absolutely continuous with respect to the Lebesgue measure, we have

E|f∗n(X)− f0(X)| ≤ (18 + C2)
B0

(1− δ)β
(⌊β⌋+ 1)2d1/2d

(3β+1)/2
δ (NM)−2β/dδ , (11)

where dδ = O(dMlog(d/δ)/δ2) is assumed to satisfy dδ ≪ d. This completes the proof of Theorem
2.4.

5.4 Proof of Theorem 4.2

The proof follows Theorem 11.8 and Corollary 3.19 in [21]. Recall that (X,Y) has joint distribution
P, we let Pn denote the empirical distribution of the sample S = {(Xi, Yi)}ni=1 and let (X̃, Ỹ) ∼ Pn.
Note that for any f ∈ FCNN we have ∥f∥∞ ≤ B, then 0 ≤ ϕ(yf(x)) ≤ ϕB for any (x, y) ∼ P.
For any f ∈ FCNN and t ≥ 0, we denote by c(f, t) the classifier defined by c(f, t) : (x, y) 7→
1(ϕ(Y f(X)) > t). Correspondingly, we define the risk of c(f, t) by

R(c(f, t)) = P[c(f, t)(X,Y) = 1] = P[ϕ(Y f(X)) > t],

and similarly define its empirical risk by Rn(c(f, t)) = Pn[ϕ(Ỹ f(X̃)) > t]. Then we write

|R(f)−Rn(f)| =
∣∣∣E(X,Y)ϕ(Y f(X))− E(X̃,Ỹ)ϕ(Ỹ f(X̃))

∣∣∣
=

∣∣∣∣∣
∫ ϕB

0

(
P [ϕ(Y f(X)) > t]− P [ϕ(Ỹ f(X̃)) > t]

)
dt

∣∣∣∣∣
≤ ϕB sup

t∈[0,ϕB]

∣∣∣P [ϕ(Y f(X)) > t]− P [ϕ(Ỹ f(X̃)) > t]
∣∣∣

= ϕB sup
t∈[0,ϕB]

∣∣∣R(c(f, t))−Rn(c(f, t))
∣∣∣.

And this implies that

P
[

sup
f∈FCNN

|R(f)−Rn(f)| > ϵ
]
≤ P

[
sup

f∈FCNN,t∈[0,ϕB]

|R(c(f, t))−Rn(c(f, t))| >
ϵ

ϕB

]
.

The right-hand side can be bounded using a standard generalization bound for classification (Corollary
3.19 in [21]) in terms of the VC-dimension of the class of functions {c(f, t) : f ∈ FCNN, t ∈ [0, ϕB]},
which, by definition of the pseudo-dimension, is Pdim(FCNN) the pseudo-dimension of function class
FCNN = {(x, y) 7→ ϕ(yf(x)) : f ∈ FCNN}. Now we have with probability at least 1 − δ over the
choice of an i.i.d. sample S of size n that

sup
f∈FCNN

|R(f)−Rn(f)| ≤ ϕB

(√2Pdim(FCNN) log(en)

n
+

√
log(1/δ)

2n

)
.

Next, we bound the pseudo-dimension of FCNN by that of FCNN, and this leads to the final stochastic
error bound in terms of the parameters of FCNN. For a sample S = {(Xi, Yi)}ni=1 with size n, if
there exist t1, . . . , tn ∈ [0, ϕB] such that for each (b1, . . . , bn) ∈ {0, 1}n there exists a f ∈ F such
that 1(ϕ(yif(xi)) > ti) = bi for i = 1, . . . , n, then since ϕ is convexity and non-increasing, we
also have 1(f(xi) > ϕ−1(ti)) = 1 − bi if yi = 1 and 1(f(xi) > −ϕ−1(ti)) = bi if yi = −1.
Thus {xi}ni=1 is shattered by FCNN and the threshold values y1ϕ−1(t1), . . . , ynϕ

−1(tn) witness the
shattering. This implies Pdim(FCNN) ≤ Pdim(FCNN). Besides, for piece-wise linear neural networks
FCNN, it is proved in Theorem 6 of [3] that

Pdim(FCNN) ≤ C · SL logS,
for some universal constant C > 0 where S and L are the size and depth of FCNN respectively.
Combine above inequities, we have with probability at least 1− δ over the choice of an i.i.d. sample
S of size n that

sup
f∈FCNN

|R(f)−Rn(f)| ≤ ϕB

(√CSL logS log(n)

n
+

√
log(1/δ)

n

)
,

for some universal constant C > 0.

17

5.5 Proof of Lemma 4.4

Proof. To deal with the approximation of unbounded target function, we consider truncating the
target function f0 by a constant T , where T may depend on n. Let f0,T be the truncated version of
f0 defined as

f0,T (x) =

{
f0(x), if |f0(x)| ≤ T,

T sign(f0(x)), if |f0(x)| > T.

Then, the approximation error can be decomposed into two terms that are easier to deal with. Denote
the error of the loss function ϕ due to truncation by

∆ϕ(T) := ϕ(T)− inf
a∈Ran(f0)

ϕ(a), (12)

where Ran(f0) is the range of the target function f0. This error decreases as the threshold T increases,
however, a bigger T leads to bigger B and Bϕ, thus a bigger stochastic error.

Firstly, we prove that under Assumption 4.3(a) and (b), f0,T , the truncated version of the target
function f0, is bounded by T and continuous on X . Recall that for any a ∈ R and η ∈ [0, 1],
the conditional risk function H(η, a) = ηϕ(a) + (1 − η)ϕ(−a). Given η ∈ [0, 1], the function
dH(η, a)/da = ηϕ′(a)− (1− η)ϕ′(−a) is continuous in both η and a. Thus under Assumption 4.3
(b) the solution a(η) = argmina∈R̄H(η, α) is continuous with respect to η, and |a(η)| <∞ when
η ∈ (0, 1). By Assumption 4.3 (a), η(x) is continuous on {x ∈ X : η(x) ≤ 1− δ} for any δ ∈ (0, 1),
thus f0(x) = f0(η(x)) is continuous and η(x)ϕ′(f0(x)) − (1 − η(x))ϕ′(−f0(x)) = 0 on for any
x ∈ X . And f0(x) is continuous on {x ∈ X : |f0(η(x))| ≤ T} for any T ≥ 0. For any T > 0, the
set {x ∈ X : |f0(x)| ≤ T} is a compact set. Thus f0,T , the truncated version of target function is
also continuous on X .

Recall that for any f , the ϕ-risk is defined by R(f) = Eϕ(Y f(X)), then for f0,T , the truncated
version of target function satisfies

R(f0,T)−R(f0) = E{ϕ(Y f0,T (X))− ϕ(Y f0(X))}

= E
[
E{ϕ(Y f0,T (X))− ϕ(Y f0(X)) | X}

]
= E

[
η(X){ϕ(f0,T (X))− ϕ(f0(X))}+ (1− η(X)){ϕ(−f0,T (X))− ϕ(−f0(X))}

]
.

For x ∈ X , we define g(x) = η(x){ϕ(f0,T (x)) − ϕ(f0(x))} + (1 − η(x)){ϕ(−f0,T (x)) −
ϕ(−f0(x))}. Recall that ϕ is non-increasing and we have:

(a) If −T ≤ f0(x) ≤ T , then f0(x) = f0,T (x) and g(x) = 0;

(b) If f0(x) > T , then f0,T (x) = T and ϕ(−f0,T (x))− ϕ(−f0(x)) ≤ 0, and

g(x) =η(x){ϕ(f0,T (x))− ϕ(f0(x))}+ (1− η(x)){ϕ(−f0,T (x))− ϕ(−f0(x))}
≤η(x){ϕ(f0,T (x))− ϕ(f0(x))}
=η(x){ϕ(T)− ϕ(f0(x))}
≤ϕ(T)− ϕ(f0(x));

(c) If f0(x) < −T , then f0,T (x) = −T and ϕ(f0,T (x))− ϕ(f0(x)) ≤ 0, and

g(x) =η(x){ϕ(f0,T (x))− ϕ(f0(x))}+ (1− η(x)){ϕ(−f0,T (x))− ϕ(−f0(x))}
≤(1− η(x)){ϕ(−f0,T (x))− ϕ(−f0(x))}
=(1− η(x)){ϕ(T)− ϕ(−f0(x))}
≤ϕ(T)− ϕ(−f0(x)).

Thus for any x ∈ X , we have g(x) ≤ ϕ(T)− infa∈Ran(f0) ϕ(a) andR(f0,T)−R(f0) = E{g(X)} ≤
ϕ(T)− infa∈Ran(f0) ϕ(a), where Ran(f0) is the range of the target function f0.

inf
f∈FCNN

R(f)−R(f0) = inf
f∈FCNN

R(f)−R(f0,T) +R(f0,T)−R(f0),

18

then left thing to do is to prove

inf
f∈FCNN

R(f)−R(f0,T) ≤ Bϕ inf
f∈FCNN

E|f(X)− f0,T (X)|.

With f0 ∈ Hβ([0, 1]d, B0), ϕ is Bϕ-Lipschitz, and it is a straightforward proof that

inf
f∈FCNN

R(f)−R(f0,T) = inf
f∈FCNN

E{ϕ(Y f(X))− ϕ(Y f0,T (X))}

≤ inf
f∈FCNN

E{Bϕ|Y f(X)− Y f0,T (X)|}

= Bϕ inf
f∈FCNN

E|f(X)− f0,T (X)|.

5.6 Proof of Theorem 4.5

The main focus of the proof is to deal with the truncation. If f0 ∈ Hβ([0, 1]d, B0) is uniformly
bounded by T ≤ B, by Theorem 2.2, there exists a ReLU neural network ϕ such that

E|ϕ(X)− f0(X)| ≤ 18B0(β + 1)2dβ+(β∨1)/2(NM)−2β/d.

We let ϕ0(x) = σ(ϕ(x) + B) − σ(ϕ(x) − B) − B be the truncated network where σ denotes the
ReLU activation function. Then

E|ϕ0(X)− f0,T (X)| ≤ E|ϕ(X)− f0(X)| ≤ 18B0(β + 1)2dβ+(β∨1)/2(NM)−2β/d.

If f0 ∈ Hβ([0, 1]d, B0) is not uniformly bounded by T , then the set {x : |f0(x)| ≤ T} does not
equal to the whole domain X . Actually {x : |f0(x)| ≤ T} can be written as a union of connected
subsets since f0 is Hölder smooth on its domain X = [0, 1]d, and in the interior of each connected
subset, the function f0 keeps its Hölder smoothness β. By [8], the truncated target function f0,T
on {x ∈ X : |f0(x)| ≤ T} can be extended to X to be β-Hölder and bound T + c for some small
constant c > 0. Let f̃0,T be the extended function on X , then by Theorem 2.2, there exists a ReLU
neural network ϕ such that

E|ϕ(X)− f̃0,T (X)| ≤ 18B0(β + 1)2dβ+(β∨1)/2(NM)−2β/d.

We let ϕ0(x) = σ(ϕ(x) + B) − σ(ϕ(x) − B) − B be the truncated network where σ denotes the
ReLU activation function. Then

E|ϕ0(X)− f0,T (X)| ≤ E|ϕ(X)− f̃0,T (X)| ≤ 18B0(β + 1)2dβ+(β∨1)/2(NM)−2β/d.

5.7 Proof of Theorem 4.6

Combining Lemma 4.1, Theorem 4.2 and 4.5, Theorem 4.6 is easily proved.

For the proof of Theorem 4.7, we need the following lemma, which can be proved using the technique
in [23]. We refer to [23] for the detailed description of the technique.

5.8 Proof of Theorem 4.7

Proof. The proof is similar to that of Theorem 4.6, except how we deal with inff∈FCNN E∥f(X)−
f0,T (X)∥2. Combining Lemma 4.4 and using Theorem 2.4, we have

R(f̂n)−R(f0) ≤
16
√
2BϕBS1/2L1/4

√
n

+ 2BϕB
√

2 log(1/δ)

n

+(18 + C2)
B0

(1− ε)β
(⌊β⌋+ 1)2d1/2d3⌊β⌋/2ε (NM)−2β/dε + inf

|a|≤T
ϕ(a)− inf

a∈Eϕ

ϕ(a).

This completes the proof of Theorem 4.7.

19

5.9 Proof of the cross entropy loss example in Section 5

For the cross entropy loss function ϕ(a) = − log{0.5 + a}, with the choice T = B = 0.5 −
nβ/(2d+4β), we have B ≤ 0.5, ∆ϕ(T) ≤ n−β/(2d+4β) and Bϕ = nβ/(2d+4β). Suppose Assumptions
2.3, 4.3 hold and f0 ∈ Hβ([0, 1]d, B0).

Take N = 1 in (7) and M = ⌊ξ⌋ in (4) and let FCNN be the class of CNNs in (2) with
depth L ≤ 378 · 382(⌊β⌋ + 1)6d2⌊β⌋+2⌊nd/{2d+4β}⌋⌈log(8n)⌉/(smin − 1), filter lengths 2 ≤
smin ≤ smax ≤ 9 × 382(⌊β⌋ + 1)4d2⌊β⌋+2 and size S ≤ 8WL ≤ 42 ∗ 8 ∗ 92 ∗ 384(⌊β⌋ +
1)10d4⌊β⌋+4⌊nd/{2d+4β}⌋⌈log(8n)⌉/(smin − 1).

Theorem 4.6 implies that, with probability at least 1− exp{−nd/(d+2β)}, the excess ϕ-risk of the
ERM f̂n defined in (13) satisfies

R(f̂n)−R(f0) ≤ n−β/(2d+4β)

× {c(⌊β⌋+ 1)8d3⌊β⌋+3(log n)2/(smin − 1) + 18B0(⌊β⌋+ 1)2d⌊β⌋+(⌊β⌋∨1)/2},

or simply

R(f̂n)−R(f0) ≤C(d, β,B0, smin)(log n)
2n−β/(2d+4β),

where C(d, β,B0, smin) = O(B0(β + 1)8d3β+3/(smin − 1)) is a constant independent of n. The
excess risk bound under the approximate low-dimensional manifold assumption can be obtained in a
similar way.

Under the modified cross entropy loss ϕ(a) = max{− log{0.5 + a}, τ} with τ = − log{0.5 + T},
the corresponding measurable minimizer defined in (14) is f0,T and ∆ϕ(T) = 0 by definition since
the infimum of the modified cross entropy loss can be achieved within [−T, T] ⊂ [−0.5, 0.5]. By
choosing T = B = 0.5− (log n)−1 and τ = − log{1− (log n)−1}, with the modified cross entropy
loss, Theorem 4.6 implies that with probability at least 1− exp{−nd/(d+2β)}, the excess ϕ-risk of
the ERM f̂n defined in (13) satisfies

R(f̂n)−R(f0) ≤C(d, β,B0, smin)(log n)
2n−β/(d+2β),

where C(d, β,B0, smin) = O(B0(⌊β⌋+ 1)8d3⌊β⌋+3/(smin − 1)) is a constant independent of n.

5.10 Proof of the SVM example

Proof. Based on Lemma 4.1, our proof focus on controlling the approximation error
inff∈FCNN R(f) − R(f0). Recall that f0(x) = sign(2η(x) − 1), we would firstly approx-
imate Hölder smooth function η by CNNs. Similar to the proof in Theorem 4.6, for
any N,M ∈ N+, there exists a function η∗ ∈ FCNN with bound B = 1, depth
L ≤ 378 · 382(⌊β⌋ + 1)6d2⌊β⌋+2M⌈log(8M)⌉/(smin − 1), filter lengths 2 ≤ smin ≤
smax ≤ 382(⌊β⌋ + 1)4d2⌊β⌋+2N⌊log(8N)⌋ and size S ≤ 8WL ≤ 42 ∗ 8 ∗ 384(⌊β⌋ +
1)10d4⌊β⌋+4M⌈log(8M)⌉N2⌈log(8N)⌉2/(smin − 1) such that

|η∗(x)− η(x)| ≤ 18B0(⌊β⌋+ 1)2d⌊β⌋+(β∨1)/2(NM)−2β/d,

for any x ∈ X\Ω where Ω is a set with arbitrarily small Lebesgue measure. Let εn = 18B0(⌊β⌋+
1)2d⌊β⌋+(β∨1)/2(NM)−2β/d.

We construct the neural network fCNN by adding one layer to η∗ as

fCNN (x) = 2σ
[1

εn
{η∗(x)− 1

2
}
]
− 2σ

[1

εn
{η∗(x)− 1

2
} − 1

]
− 1,

where σ is the ReLU activation function. Then we can see that ∥fCNN∥∞ ≤ 1 and fCNN (x) = 1 if
η∗(x) ≥ εn+1/2, fCNN (x) = 2(η∗(x)−1/2)/εn−1 if 1/2+εn > η∗(x) ≥ 1/2 and fCNN (x) =
−1 if η∗(x) < 1/2. Let Ωη,ε = {x ∈ X : |2η(x) − 1| > ε} for ϵ > 0. Then for x ∈ Ωη,4εn , we
have |fCNN (x) − f0(x)| = 0, since η∗(x) − 1/2 = (η(x) − 1/2) − (η∗(x) − η(x)) > εn when

20

η(x)− 1/2 > 2εn and η∗(x)− 1/2 < −εn when η(x)− 1/2 < −2εn. Then

R(fCNN)−R(f0) =E
[
ϕ(Y fCNN (X))− ϕ(Y f0(X))

]
=E

[
|fCNN (X)− f0(X)||2η(X)− 1|

]
=EX∈Ωη,4εn

[
|fCNN (X)− f0(X)||2η(X)− 1|

]
≤8εnP (|2η(X)− 1| ≤ 4εn)

≤8× 4q × cnoise × εq+1
n .

Setting the parameters in η∗ by N = 1 and M = ⌊nd/{d+4β(q+1)}⌋ and size (number of parameters)
S ≤ 8WL ≤ 42∗8∗92∗384(⌊β⌋+1)10d4⌊β⌋+4⌊nd/{d+4β(q+1)}⌋⌈log(8n)⌉/(smin−1), and let δ =
exp(−nd/(d+2β(q+1))), then by Theorem 4.6, with probability at least 1− exp(−nd/(d+2β(q+1))),

R(f̂n)−R(f0) ≤ (log n)2 × n−β(q+1)/{d+2β(q+1)}

×
{
c(⌊β⌋+ 1)8d3⌊β⌋+3 + 8× 4qcnoise[18B0(⌊β⌋+ 1)2d⌊β⌋+(β∨1)/2]q+1

}
.

The excess risk bound under the approximate low-dimensional manifold assumption can be obtained
in a similar way.

5.11 Proof of the logistic loss example

The proof is similar to that of the cross entropy loss example. We omitted the proof here.

5.12 Proof of the exponential loss example

The proof is similar to that of the cross entropy loss example. We omitted the proof here.

5.13 Supporting definitions and Lemmas

For ease of reference, we collect several definitions and existing results that we used in our proofs.
Firstly, we present the definition and properties of the averaged Taylor expansion in chapter 4 of [5].

Definition 5.1 (Averaged Taylor expansion). Let β ∈ N, 1 ≤ p ≤ ∞ and f ∈ W β−1,p, and let
Ω ∈ Rd, x0 ∈ Ω, r > 0, B := Br(x0) = {x ∈ Rd : ∥x− x0∥2 < r} with its closure B̄ compact in
Ω. The corresponding Taylor polynomial of order β of f averaged over B is defined as

T βf(x) =

∫
B

T β
y f(x)ϕ(y)dy, (13)

where
T β
y f(x) =

∑
∥α∥1≤β−1

1

α!
Dαf(y)(x− y)α,

and ϕ is an arbitrary cut-off function supported in B̄ being infinitely differentiable, i.e., ϕ ∈ C∞(Rd)
with supp ϕ = B̄ and

∫
Rd ϕ(x)dx = 1. For example, let

ψ(x) =

{
exp{−(1− (|x− x0|/r)2)−1}, if |x− x0| < r,

0 , else,

and let c =
∫
Rd ψ(x)dx(c > 0), then ϕ(x) = ψ(x)/c is a cut-off function and ∥ϕ∥L∞(B) :=

max |ϕ(x)| ≤ c(d) · r−d where c(d) > 0 is a constant depending only on d. Besides,

ϕ(x) =

{
π−d/2Γ(d/2 + 1)r−d, if |x− x0| < r,

0 , else,

is a another example of cut-off function, in which case ϕ puts constant weight on the ball d-
dimensional B with radius r.

21

The averaged Taylor polynomial defined above is an integral of the traditional Taylor expansion
weighted by the cut-off function over a region. Following the equations (4.1.5)-(4.1.8) in [5], we
show the below lemma that the averaged Taylor polynomial of order β is indeed a polynomial of
degree less than β in x.
Lemma 5.2. Let β ∈ N, 1 ≤ p ≤ ∞ and f ∈W β−1,p(Ω), and let x0 ∈ Ω, r > 0, R ≥ 1 such that
for the ball B := Br(x0) with its closure B̄ compact in Ω and ∥y∥∞ ≤ R for all y ∈ B. Then the
Taylor polynomial of order β of f averaged over B can be written as

T βf(x) =
∑

∥α∥1≤β−1

cαx
α for x ∈ Ω,

where
|cα| ≤ β(2d)β−1(π−d/2Γ(d/2 + 1))1/pRβ−1∥f∥Wβ−1,p(Ω)r

−d/p

for all α satisfying ∥α∥1 ≤ β − 1.

Proof. Recall that for x, y ∈ Rd and α = (α1, . . . , αd) ∈ Nd
0, if we write

(x− y)α = Πd
i=1(xi − yi)

αi =
∑

γ,θ∈Nd
0 ,γ+θ=α

a(γ, θ)xγyθ,

where γ = (γ1, . . . , γd) and θ = (θ1, . . . , θd) are d-tuples of nonnegative integers, and a(γ, θ) ∈ R
are the constants satisfying |a(γ, θ)| ≤

(
α
γ

)
= α!/(γ!θ!) in multi-index notation. Then

T βf(x) =

∫
B

T β
y f(x)ϕ(y)dy =

∑
∥α∥1≤β−1

∑
γ+θ=α

1

α!
a(γ, θ)xγ

∫
B

Dαf(y)yθϕ(y)dy

=
∑

∥γ∥1≤β−1

xγ
{ ∑

∥γ+θ∥1≤β−1

1

(γ + θ)!
a(γ, θ)

∫
B

Dγ+θf(y)yθϕ(y)dy
}
.

Then we consider bounding the coefficient of xγ . Note that∣∣∣ ∫
B

Dγ+θf(y)yθϕ(y)dy
∣∣∣ ≤ ∫

B

|Dγ+θf(y)||yθ||ϕ(y)|dy

≤ R∥θ∥1∥f∥Wβ−1,p(B)∥ϕ∥Lq(B)

≤ R∥θ∥1∥f∥Wβ−1,p(B)∥ϕ∥
1/q
L1(B)∥ϕ∥

1−1/q
L∞(B)

≤ Rβ−1∥f∥Wβ−1,p(Ω)∥ϕ∥
1−1/q
L∞(B)

≤ Rβ−1∥f∥Wβ−1,p(Ω)(π
−d/2Γ(d/2 + 1))1/pr−d/p,

where the second inequality holds since ∥y∥∞ ≤ R, ∀y ∈ B and the use of Hölder’s inequality with
1/p+ 1/q = 1, the third inequality holds again by Hölder’s inequality, and the last two lines hold
since ∥ϕ∥L1(B) = 1 and ∥ϕ(x)∥L∞(B) ≤ π−d/2Γ(d/2 + 1) · r−d. Lastly, the coefficient cγ of xγ
can be upper bounded by

|cγ | =
∣∣∣ ∑
∥γ+θ∥1≤β−1

1

(γ + θ)!
a(γ, θ)

∫
B

Dγ+θf(y)yθϕ(y)dy
∣∣∣

≤ Rβ−1∥f∥Wβ−1,p(Ω)∥ϕ∥L∞(B)

∑
∥γ+θ∥1≤β−1

1

(γ + θ)!
|a(γ, θ)|

≤ (π−d/2Γ(d/2 + 1))1/pRβ−1∥f∥Wβ−1,p(Ω)r
−d/p

∑
∥γ+θ∥1≤β−1

1

γ!θ!
.

Note that ∑
∥γ+θ∥1≤β−1

1

γ!θ!
=

β−1∑
s=0

∑
∥α∥1=s

∑
γ+θ=α

1

γ!θ!

≤
β−1∑
s=0

∑
∥α∥1=s

2s ≤
β−1∑
s=0

ds2s ≤ β(2d)β−1.

22

Thus we have
|cγ | ≤ β(2d)β−1(π−d/2Γ(d/2 + 1))1/pRβ−1∥f∥Wβ−1,p(Ω)r

−d/p.

Next, we present the main approximation result of averaged Taylor expansion on Sobolev functions by
Bramble-Hilbert (Lemma 4.3.8 in [5]) after introduce some prerequisite definitions and conceptions.
Definition 5.3 (Star-shaped set). Let Ω, B ⊂ Rd. Ω is star-shaped with respect to B if for all x ∈ Ω,
the closed convex hull of {x} ∪B is a subset of Ω.
Definition 5.4 (Chunkiness parameter). Suppose Ω ⊂ Rd has diameter rΩ and is star-shaped with
respect to a ball B. Let rmax = sup{r ∈ R+ : Ω is star-shaped with respect to a ball of radius r}.
Then the chunkiness parameter of Ω is defined by γ = rΩ/rmax.
Lemma 5.5 (Proposition 4.2.8 in [5]). Let f ∈W β,p(Ω) and T β be its averaged Taylor expansion
defined in (13) over the ball B with radius r, then the remainder Rβf := f − T βf satisfies

Rβf(x) = β
∑
|α|=β

∫
Cx

kα(x, z)D
αf(x)dz,

where Cx is the convex hull of {x} ∪B, z = x+ s(y − x), kα(x, z) = (1/α!)(x− z)αk(x, z) and

|k(x, z)| ≤ 1

d
∥ϕ∥L∞(B)(r + |x− x0|)d|z − x|−d.

Lemma 5.6 (Bramble-Hilbert). Let B be a ball in Ω such that Ω is star-shaped with respect to B
and such that its radius r > rmax/2, where rmax is defined in Definition 5.4. Let T βf be the Taylor
polynomial of order β of f averaged over B where f ∈W β,p(Ω) and p ≥ 1. Then

∥f − T βf∥Wk,p(Ω) ≤ βdβ−1Γ(d/2 + 1)π−d/2(1 + rΩ/r)
drβ−k

Ω ∥f∥Wk,p(Ω), k = 0, 1, . . . , β

where rΩ is the diameter of Ω.

The proof can be found in Lemma 4.3.8 in [5].
Lemma 5.7 (Proposition 4.3 in [19]). For any N,M, d ∈ N+ and δ ∈ (0, 3K] with K =
⌊N1/d⌋2⌊M2/d⌋, there exists a one-dimensional function ϕ implemented by a ReLU FNN with
width 4⌊N1/d⌋+ 3 and depth 4M + 5 such that

ϕ(x) = k, if x ∈ [
k

K
,
k + 1

K
− δ · 1k<K−1], for k = 0, 1, . . . ,K − 1.

Lemma 5.8 (Proposition 4.4 in [19]). Given any N,M, s ∈ N+ and ξi ∈ [0, 1] for i =
0, 1, . . . , N2L2 − 1, there exists a function ϕ implemented by a ReLU FNN with width 16s(N +
1)⌈log2(8N)⌉ and depth (5M + 2)⌈log2(4M)⌉ such that

|ϕ(i)− ξi| ≤ N−2sM−2s, for i = 0, 1, . . . , N2M2 − 1,

and 0 ≤ ϕ(x) ≤ 1 for any x ∈ R.

The next lemma demonstrate that the production function and polynomials can be approximated by
ReLU neural networks. The basic idea is firstly to approximate the square function using “sawtooth"
functions then the production function, which is firstly raised in [27]. A general polynomial can be
further approximated combining the approximated square function and production function. The
following two lemmas are more general results than those in [27].
Lemma 5.9 (Lemma 3.4 in [14]). For any N,M ∈ N+, and a, b ∈ R with a < b, there ex-
ists a function ϕ implemented by a ReLU FNN with width 9N + 1 and depth 2M such that
∥ϕ∥W 1,∞((a,b)2) ≤ 12(b− a)2 and

∥ϕ(x, y)− xy∥W 1,∞((a,b)2) ≤ 6(b− a)2N−M

for any x, y ∈ (a, b).
Lemma 5.10 (Proposition 4.1 in [19], Proposition 3.6. in [14]). Assume P (x) = xα =
xα1
1 xα2

2 · · ·xαd

d for α ∈ Nd with ∥α∥1 ≤ k ∈ N+. For any N,M ∈ N+, there exists a func-
tion ϕ implemented by a ReLU FNN with width 9(N + 1) + k − 1 and depth 14k2M such that
∥ϕ∥W 1,∞(X) ≤ 18 and

∥ϕ(x)− P (x)∥W 1,∞(X) ≤ 10k(N + 1)−7kM for any x ∈ [0, 1]d.

23

References
[1] Chenglong Bao, Qianxiao Li, Zuowei Shen, Cheng Tai, Lei Wu, and Xueshuang Xiang. Approximation

analysis of convolutional neural networks. 2014.

[2] Richard G. Baraniuk and Michael B. Wakin. Random projections of smooth manifolds. Found. Comput.
Math., 9(1):51–77, 2009.

[3] Peter L. Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight VC-dimension and
pseudodimension bounds for piecewise linear neural networks. J. Mach. Learn. Res., 20:Paper No. 63, 17,
2019.

[4] Peter L. Bartlett, Michael I. Jordan, and Jon D. McAuliffe. Convexity, classification, and risk bounds. J.
Amer. Statist. Assoc., 101(473):138–156, 2006.

[5] Susanne C Brenner and L Ridgway Scott. The Mathematical Theory of Finite Element Methods. Springer,
2008.

[6] Di-Rong Chen, Qiang Wu, Yiming Ying, and Ding-Xuan Zhou. Support vector machine soft margin
classifiers: error analysis. The Journal of Machine Learning Research, 5:1143–1175, 2004.

[7] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.

[8] Charles Fefferman. Whitney’s extension problem for cm. Annals of Mathematics., 164(1):313–359, 2006.

[9] Han Feng, Shuo Huang, and Ding-Xuan Zhou. Generalization analysis of cnns for classification on spheres.
IEEE Transactions on Neural Networks and Learning Systems, 2021.

[10] Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algorithm. In icml, volume 96,
pages 148–156. Citeseer, 1996.

[11] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression: a statistical view of
boosting. Ann. Statist., 28(2):337–407, 2000.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, Cambridge, MA, 2016.

[13] Ingo Gühring, Gitta Kutyniok, and Philipp Petersen. Error bounds for approximations with deep relu
neural networks in w s, p norms. Analysis and Applications, 18(05):803–859, 2020.

[14] Sean Hon and Haizhao Yang. Simultaneous neural network approximations in sobolev spaces. arXiv
preprint arXiv:2109.00161, 2021.

[15] Yuling Jiao, Guohao Shen, Yuanyuan Lin, and Jian Huang. Deep nonparametric regression on approxi-
mately low-dimensional manifolds. arXiv preprint arXiv 2104.06708, 2021.

[16] Yongdai Kim, Ilsang Ohn, and Dongha Kim. Fast convergence rates of deep neural networks for classifica-
tion. Neural Networks, 138:179–197, 2021.

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[18] Shan Lin and Jingwei Zhang. Generalization bounds for convolutional neural networks. arXiv preprint
arXiv:1910.01487, 2019.

[19] Jianfeng Lu, Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approximation for smooth
functions. SIAM Journal on Mathematical Analysis, 53(5):5465–5506, 2021.

[20] Enno Mammen and Alexandre B Tsybakov. Smooth discrimination analysis. The Annals of Statistics,
27(6):1808–1829, 1999.

[21] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning. MIT
Press, Cambridge, MA, 2018.

[22] Kenta Oono and Taiji Suzuki. Approximation and non-parametric estimation of resnet-type convolutional
neural networks. In International Conference on Machine Learning, pages 4922–4931. PMLR, 2019.

[23] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approximation characterized by number of
neurons. Commun. Comput. Phys., 28(5):1768–1811, 2020.

[24] Alexandre B. Tsybakov. Optimal aggregation of classifiers in statistical learning. Ann. Statist., 32(1):135–
166, 2004.

24

[25] Qiang Wu, Yiming Ying, and Ding-Xuan Zhou. Multi-kernel regularized classifiers. Journal of Complexity,
23(1):108–134, 2007.

[26] Yuhong Yang. Minimax nonparametric classification. i. rates of convergence. IEEE Transactions on
Information Theory, 45(7):2271–2284, 1999.

[27] Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:103–114,
2017.

[28] Tong Zhang. Statistical behavior and consistency of classification methods based on convex risk minimiza-
tion. Ann. Statist., 32(1):56–85, 2004.

[29] Ding-Xuan Zhou. Theory of deep convolutional neural networks: Downsampling. Neural Networks,
124:319–327, 2020.

[30] Ding-Xuan Zhou. Universality of deep convolutional neural networks. Appl. Comput. Harmon. Anal.,
48(2):787–794, 2020.

[31] Pan Zhou and Jiashi Feng. Understanding generalization and optimization performance of deep cnns. In
International Conference on Machine Learning, pages 5960–5969. PMLR, 2018.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running exper-

iments multiple times)? [N/A] This may not apply to our experiment on function
approximation.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] Only a toy example is used in our
experiment which is not computationally expensive.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]

25

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

26

	Convex surrogate loss
	Convolutional neural networks
	Non-asymptotic error bounds for commonly used loss functions
	SVM: the hinge loss
	The logistic loss
	 The exponential loss
	 The least squares loss
	Excess misclassification errors

	A toy example for CNN approximation
	Proofs
	Proof of Theorem 2.1
	Proof of Theorem 2.2
	Proof of Theorem 2.4
	Proof of Theorem 4.2
	Proof of Lemma 4.4
	Proof of Theorem 4.5
	Proof of Theorem 4.6
	Proof of Theorem 4.7
	Proof of the cross entropy loss example in Section 5
	Proof of the SVM example
	Proof of the logistic loss example
	Proof of the exponential loss example
	Supporting definitions and Lemmas

