
Using Partial Monotonicity in Submodular
Maximization

Loay Mualem
Department of Computer Science

University of Haifa
Haifa 3303221, Israel
loaymua@gmail.com

Moran Feldman
Department of Computer Science

University of Haifa
Haifa 3303221, Israel

moranfe@cs.haifa.ac.il

Abstract

Over the last two decades, submodular function maximization has been the
workhorse of many discrete optimization problems in machine learning appli-
cations. Traditionally, the study of submodular functions was based on binary
function properties, but recent works began to consider continuous function proper-
ties such as the submodularity ratio and the curvature. The monotonicity property
of set functions plays a central role in submodular maximization. Nevertheless, no
continuous version of this property has been suggested to date (as far as we know),
which is unfortunate since submoduar functions that are almost monotone often
arise in machine learning applications. In this work we fill this gap by defining the
monotonicity ratio, which is a continuous version of the monotonicity property. We
then show that for many standard submodular maximization algorithms one can
prove new approximation guarantees that depend on the monotonicity ratio; leading
to improved approximation ratios for the common machine learning applications
of movie recommendation, quadratic programming, image summarization and
ride-share optimization.

1 Introduction

Over the last two decades, submodular function maximization has been the workhorse of many
discrete optimization problems in machine learning applications such as data summarization [17,
19, 31, 32, 41, 50], social graph analysis [45], adversarial attacks [36], dictionary learning [15],
sequence selection [42, 51], interpreting neural networks [18] and many more. Traditionally, the
study of submodular functions was based on binary properties of functions. A function can be either
submodular or non-submodular, monotone or non-monotone, etc. Such properties are simple, but
they have an inherit weakness—if an algorithm assumes functions that have a particular property,
then it provides no guarantee for functions that violate this property, even if the violation is slight.

Given the above situation, recent works began to consider continuous versions of function properties.
Probably the most significant among these continuous versions so far are the submodularity ratio and
the curvature. The submodularity ratio (originally defined by Das and Kempe [16]) is a parameter
γ ∈ [0, 1] replacing the binary submodularity property that a set function can either have or not
have. A value of 1 corresponds to a fully submodular function, and lower values of γ represent some
violation of submodularity (the worse the violation, the lower γ). Similarly, the curvature (defined
by Conforti and Cornuéjol [13]) is a parameter c ∈ [0, 1] replacing the binary linearity property that
a set function can either have or not have. A value of 1 corresponds to a fully linear function, and
lower values of c represent some violation of linearity.

A central conceptual contribution of Das and Kempe [16] was that they were able to demonstrate
that continuous function properties further extend the usefulness of submodular maximization to new

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



machine learning applications (such as subset selection for regression and dictionary selection). This
has motivated a long list of works on such properties (see [3, 25, 26, 29, 34] for a few examples),
including works that combine both the submodularity ratio and the curvature (see, e.g., [3]). However,
to the best of our knowledge, no continuous version of the binary monotonicity property has been
suggested so far.1 See Appendix A for additional related work.

We note that the monotonicity property of set functions plays a central role in submodular maximiza-
tion, and basically every problem in this field has been studied for both monotone and non-monotone
objective functions. Naturally, monotone objective functions enjoy improved approximation guaran-
tees compared to general functions, and it is natural to ask how much of this improvement applies
also to functions that are almost monotone (in some sense). Since such functions often arise in
machine learning applications when a diversity promoting component is added to a basic monotone
objective, obtaining better guarantees for them should strongly enhance the usefulness of submodular
maximization as a tool for many machine learning applications.

Formally, a non-negative set function f : 2N → R≥0 over a ground set N is (increasingly) monotone
if f(S) ⊆ f(T ) for every S ⊆ T ⊆ N . Similarly, we define the monotonicity ratio of such a function
f as the maximum value m ∈ [0, 1] such that m · f(S) ≤ f(T ) for every two sets S ⊆ T ⊆ N .
Equivalently, one can define the monotonicity ratio m by m ≜ minS⊆T⊆N [f(T )/f(S)], where the
ratio f(T )/f(S) is assumed to be 1 whenever f(S) = 0. Intuitively, the monotonicity ratio measures
how much of the value of a set S can be lost when additional elements are added to S. One can view
m as the distance of f from monotonicity. In particular, m = 1 if and only if f is monotone.

Our main contribution in this paper is demonstrating the usefulness of the monotonicity ratio in
machine learning applications, which we do in two steps.

• First, we show (in Sections 3, 4 and 5) that for many standard submodular maximization
algorithms one can prove new approximation guarantees that depend on the monotonicity
ratio. These approximation guarantees interpolate between the known approximation ratios
of these algorithms for monotone and non-monotone submodular functions.

• Then, using the above new approximation guarantees, we derive new approximation ratios
for the standard applications of movie recommendation, quadratic programming, image
summarization and ride-share optimization. Our guarantees improve over the state-of-the-art
for most values of the problems’ parameters. See Section 6 for more detail.

Remark. Computing the monotonicity ratio m of a given function seems to be difficult. Thus, the
algorithms we analyze avoid assuming access to m, and the value of m is only used in the analyses of
these algorithms. Nevertheless, in the context of particular applications, we are able to bound m, and
plugging this bound into our general results yields our improved guarantees for these applications.

1.1 Our Results

Given a ground set N , a set function f : 2N → R is submodular if f(S ∪ {u}) − f(S) ≥ f(T ∪
{u}) − f(T ) for every two sets S ⊆ T ⊆ N and element u ∈ N \ T . Submodular maximization
problems ask to maximize such functions subject to various constraints. To allow for multiplicative
approximation guarantees for these problems, it is usually assumed that the objective function f is
non-negative. Accordingly, we consider in this paper the following three basic problems.

• Given a non-negative submodular function f : 2N → R, find a set S ⊆ N that (approxi-
mately) maximizes f . This problem is termed “unconstrained submodular maximization”,
and is studied in Section 3.

• Given a non-negative submodular function f : 2N → R and an integer parameter 0 ≤ k ≤
|N |, find a set S ⊆ N of size at most k that (approximately) maximizes f among such
sets. This problem is termed “maximizing a submodular function subject to a cardinality
constraint”, and is studied in Section 4.

• Given a non-negative submodular function f : 2N → R and a matroid M over the same
ground set, find a set S ⊆ N that is independent in M and (approximately) maximizes f

1Following the appearance of the pre-print version of this paper, we learned that Iyer defined in his Ph.D.
thesis [30] such a property, which is identical to the one we define. However, Iyer only used this property to
prove the result appearing below as Theorem 4.1; thus, our work is the first to systematically study this property.

2



among such sets. This problem is termed “maximizing a submodular function subject to a
matroid constraint”, and is studied in Section 5 (see Section 5 for the definition of matroids).

We present both algorithmic and inapproximability results for the above problems. Our algorithmic
results reanalyze a few standard algorithms, and surprisingly show that almost all these algorithms
guarantee an approximation ratio of m ·αmon +(1−m) ·αnon-mon, where m is the monotonicity ratio,
αmon is the approximation ratio known for the algorithm when f is monotone, and αnon-mon is the
approximation ratio known for the algorithm when f is a general non-negative submodular function.

While the above mentioned algorithmic results lead to our improved guarantees for applications,
our inapproximability results represent our main technical contribution. In general, these results are
based on the symmetry gap framework of Vondrák [52]. The original version of this framework is
able to deal both with the case of general (not necessarily monotone) submodular functions, and with
the case of monotone submodular functions; which in our terms correspond to the cases of m ≥ 0
and m ≥ 1, respectively. However, to prove our inapproximability results, we had to show that the
framework extends to arbitrary lower bounds on m, which was challenging because the original
proof of the framework is highly based on derivatives of continuous functions. From this point of
view, submodularity is defined as having non-positive second-order derivatives, and monotonicity is
defined as having non-negative first-order derivatives. However, the definition of the monotonicity
ratio cannot be easily restated in terms of derivatives;2 and thus, handling it required us to come up
with a different proof approach.

Interestingly, our results for unconstrained submodular maximization proves that the optimal ap-
proximation ratio for this problem does not exhibit a linear dependence on m. Thus, the nice linear
dependence demonstrated by almost all our algorithmic results is probably an artifact of looking
at standard algorithms rather than representing the true nature of the monotonicity ratio, and we
expect future algorithms tailored to take advantage of the monotonicty ratio to improve over this
linear dependence. The reason that we concentrate in this work on reanalyzing standard submodular
maximization algorithms rather than inventing new ones is that we want to stress the power obtained
by using the new notion of monotonicity ratio, as opposed to power gained via new algorithmic
innovations. This is in line with the research history of the submodularity ratio and the curvature.
For both of these parameters, the original works concentrated on reanalyzed the standard greedy
algorithm in view of the new suggested parameter; and the invention of algorithms tailored to the
parameter was deferred to later works (see [49] and [12] for examples of such algorithms for the
curvature and submodularity ratio, respectively).

Over the years, the standard submodular maximization algorithms have been extended and improved
in various ways. Some works presented accelerated and/or parallelized versions of these algorithms,
while other works generalized the algorithms beyond the realm of set functions (for example, to
(DR-)submodular functions over lattices or continuous domains). Since our motivation in this paper is
related to the monotonicity ratio, which is essentially independent of the extensions and improvements
mentioned above, we mostly analyze the vanilla versions of all the algorithms considered. This
keeps our analyses relatively simple. However, our experiments are based on more state-of-the-art
versions of the algorithms. Similarly, many continuous properties (including the submodularity ratio)
have weak versions that only depend on the behavior of the function for nearly feasible sets, and
immediately enjoy most of the results that apply to the original strong property. The definition of such
weak versions is useful for capturing additional application, but often add little from a theoretical
perspective. Therefore, in the theoretical parts of this paper we consider only the monotonicity ratio
as it is defined above; but for the sake of one of our applications we later define also the natural
corresponding weak property.

2 Preliminaries and Basic Observations

In this section we define the notation used in this paper, and then state some useful basic observations.
Given an element u ∈ N and a set S ⊆ N , we use S + u and S − u as shorthands for S ∪ {u} and
S \{u}. Additionally, given a set function f : 2N → R, we define f(u | S) ≜ f(S+u)−f(S)—this
value is known as the marginal contribution of u to S with respect to f . Similarly, given an additional

2To see why that is the case, notice that a function can have a monotonicity ratio close to 1, even in the
presence of very negative derivatives, as long as these derivatives do not occur over too long sections.

3



set T ⊆ N , we define f(T | S) ≜ f(S ∪ T ) − f(S). We also use 1S to denote the characteristic
vector of the set S, i.e., a vector in [0, 1]N that has 1 in the coordinates corresponding to elements that
appear in S and 0 to the other coordinates. Finally, if f is non-negative, we say that it is m-monotone
if its monotonicity ratio is at least m; and given an event E , we denote by 1[E ] the indicator of this
event, i.e., a random variable that takes the value 1 when the event happens, 0 otherwise .

Next, we present a well-known continuous extension of set functions. Given a set function f : 2N →
R, its multilinear extension is a function F : [0, 1]N → R defined as follows. For every vector
x ∈ [0, 1]N , let R(x) to be a random subset of N that includes every element u ∈ N with probability
xu, independently. Then, F (x) = E[f(R(x))]. Another extension of set functions is central to the
proof of the next lemma, which generalizes Lemma 2.2 of [6]—see Appendix B for the proof.

Lemma 2.1. Let f : 2N → R≥0 be a non-negative m-monotone submodular function. For every
deterministic set O ⊆ N and random set D ⊆ N , E[f(O ∪D)] ≥ (1− (1−m) ·maxu∈N Pr[u ∈
D]) · f(O).

We conclude this section with the following observation, which we view as evidence that the class of
non-negative m-monotone functions is a natural class for every m ∈ [0, 1].

Observation 2.2. For every two non-negative m-monotone functions f, g : 2N → R≥0 and constant
c ≥ 0, the following functions are also m-monotone: (i) h(S) = f(S) + g(S), (ii) h(S) = f(S) + c,
and (iii) h(S) = c · f(S).

3 Unconstrained Maximization

Recall that in the unconstrained submodular maximization problem, we are given a non-negative
submodular function f : 2N → R≥0, and the objective is to find a set S ⊆ N that (approximately)
maximizes f(S). Buchbinder et al. [7] gave the first 1/2-approximation algorithm for this problem,
known as the (randomized) double greedy algorithm. As its name suggests, double greedy maintains
two solutions: one starting as the empty set, and one starting as the entire ground set. Then, it
considers all elements, and greedily decides for each element either to add it to the originally empty
set, or remove it from the other set. When the algorithm terminates, the two sets are identical, and
their common value is the output of the algorithm. The 1/2-approximation guarantee of double greedy
is known to be optimal in general due to a matching inapproximability result due to Feige et al. [21].
Nevertheless, in this section we determine the extent to which one can improve over this guarantee as
a function of the monotonicity ratio m of f .

Theorem 3.1. The double greedy algorithm of Buchinder et al. [7] guarantees [1/(2 − m)]-
approximation for unconstrained submodular maximization, and no polynomial time algorithm
obtains an approximation ratio of 1/(2−m) + ε for any constant ε > 0.3

Interestingly, Theorem 3.1 shows that the optimal approximation ratio for unconstrained submodular
maximization does not have a linear dependence on m. The first part of Theorem 3.1 is proved
in Appendix C.1. Below, we concentrate on proving the second part of Theorem 3.1. We do this
using a generalization of the symmetry gap framework of Vondrák [52] that is informally stated as
Theorem 3.2 (see Appendix C.2 for the formal statement of the theorem). The fractional solution
mentioned in this informal statement is evaluate using the multilinear extension of the submodular
objective function.

Theorem 3.2. Consider a non-negative m-monotone submodular function f and a collection F ⊆ 2N

of feasible sets such that the problem max{f(S) | S ∈ F} is symmetric with respect to some group
G of permutations over N . If the best fractional solution for this problem which is symmetric with
respect to G is worse by a factor of γ compared to the optimal solution, then we say that the problem
has a symmetry gap of γ. In this case, exponentially many value oracle queries are required to
obtain (1 + ε)γ-approximation for the class of problems max{f̃(S) | S ∈ F̃} in which f̃ is a
non-negative m-monotone submodular function, and F̃ is some generalization of F (in particular, if
F is a matroid/cardinality constraint, then so is F̃ ).

3In the second part of Theorem 3.1, like in all the other inapproximability results in this paper, we make the
standard assumption that the objective function f can be accessed only through a value oracle that given a set
S ⊆ N returns f(S).

4



To use Theorem 3.2, we need to define a submodular maximization problem with a significant
symmetry gap. Let us choose N = {u, v}, f(S) = m · 1[S ̸= ∅] + (1 − m) · (|S| mod 2) and
F = 2N , where m is an arbitrary constant m ∈ [0, 1]. One can verify that f is submodular and
non-negative, that its monotonicity ratio is exactly m, and that the problem max{f(S) | S ∈ F} is
symmetric with respect to the group G of the two possible permutations of N . The following lemma
calculates the symmetry gap of this problem, and its proof can be found in Appendix C.3. The second
part of Theorem 3.1 follows from this lemma and Theorem 3.2.

Lemma 3.3. The problem max{f(S) | S ∈ F} has a symmetry gap of 1
2−m .

4 Maximization with a Cardinality Constraint

In this section we consider the problem of maximizing a non-negative submodular function f : 2N →
R≥0 subject to a cardinality constraint. In other words, we are given an integer value 1 ≤ k ≤ |N |,
and the objective is to output a set S ⊆ N of size at most k (approximately) maximizing f among
such sets. A standard greedy algorithm for this problem starts with the empty set, and then iteratively
adds elements to this set, choosing in each iteration the element whose addition increases the value of
the set by the most. When the objective function f is guaranteed to be monotone, it is long known
that this greedy algorithm guarantees (1− 1/e)-approximation for the above problem [44], and that
this is essentially the best possible for any polynomial time algorithm [43]. However, the greedy
algorithm has no constant approximation guarantee when the objective function is not guaranteed to
be monotone (see [4] for an example demonstrating this). In Appendix D.1 we prove Theorem 4.1,
which generalizes the result of [44], and proves an approximation guarantee for the greedy algorithm
that deteriorates gracefully with the monotonicity ratio m.

Theorem 4.1. The Greedy algorithm (Algorithm 2) has an approximation ratio of at least m(1−
1/e) for the problem of maximizing a non-negative m-monotone submodular function subject to a
cardinality constraint.

Following a long line of works [35, 22, 46, 52, 6, 20], the state-of-the-art approximation guarantee
for the case in which the objective function f is not guaranteed to be monotone is currently 0.385 [5].
However, the algorithm obtaining this approximation ratio is quite involved, which limits its prac-
ticality. Arguably, the state-of-the-art approximation ratio obtained by a “simple” algorithm is the
1/e ≈ 0.367-approximation obtained by an algorithm called Random Greedy, which adds to its
solution, in each iteration, a uniformly random element out of the k elements that can (individually)
add the most to the value of this solution. Random Greedy has the nice property that for monotone
objective functions it recovers the optimal 1− 1/e approximation guarantee. In Appendix D.2 we
prove Theorem 4.2, which gives an approximation guarantee for Random Greedy that smoothly
changes as a function of m and recovers both the above mentioned 1/e and 1− 1/e guarantees.

Theorem 4.2. Random Greedy (Algorithm 3) has an approximation ratio of at least m(1− 1/e) +
(1 −m) · (1/e) for the problem of maximizing a non-negative m-monotone submodular function
subject to a cardinality constraint.

There is still a gap between the state-of-the-art 0.385-approximation for non-monotone objectives
and the state-of-the-art inapproximability result due to Oveis Gharan and Vondrák [46], which only
shows that no polynomial time algorithm can guarantee a better than roughly 0.491-approximation.
In Appendix D.3 we give Theorem D.4, which uses Theorem 3.2 to prove an inapproximability result
that smoothly depends on m and recovers the above mentioned inapproximability results for m = 0
and m = 1.

To get an intuitive understanding of Theorem D.4, we numerically evaluated it for various values of m.
The plot obtained in this way appears in Figure 1a. For context, this figure also includes all the other
results proved in this section. As is evident from Figure 1a, Theorem D.4 improves over the 1− 1/e
inapproximability result of Nemhauser and Wolsey [43] only for m that is smaller than roughly 0.56.
This is surprising since, intuitively, one would expect the best possible approximation ratio to be
strictly worse than 1− 1/e for any m < 1. However, we were unable to prove an inapproximability
that is even slightly lower than 1− 1/e for any m > 0.56. Understanding whether this is an artifact
of our proof or a real phenomenon is an interesting question that we leave open.

5



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

m

ap
pr

ox
im

at
io

n
ra

tio

Greedy
Random Greedy
Inapproximability

(a) Results for cardinality constraint (Section 4)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

m

ap
pr

ox
im

at
io

n
ra

tio

Greedy
Measured Continuous Greedy
Random Greedy for Matroids
Inapproximability (Theorem E.8)
Inapproximability (1− 1/e)

(b) Results for matroid constraint (Section 5)

Figure 1: Graphical representation of the results of Sections 4 and 5

5 Maximization with a Matroid Constraint

In this section we consider the problem of maximizing a non-negative submodular function subject to
a matroid constraint. A matroid M over the ground set N is defined as a pair M = (N , I), where I
is a non-empty subset of 2N obeying two properties for every two sets S, T ⊆ N : (i) if S ⊆ T and
T ∈ I, then S ∈ I; and (ii) if S, T ∈ I and |S| < |T |, then there exists an element u ∈ T \ S such
that S + u ∈ I. A set S ⊆ N is called independent with respect to a matroid M if it belongs to I
(otherwise, we say that S is dependent with respect to M); and the matroid constraint corresponding
to a given matroid M allows only independent sets with respect to this matroid as feasible solutions.
Hence, we can restate the problem we consider in this section in the following more formal way.
Given a non-negative submodular function f : 2N → R≥0 and a matroid M = (N , I), output an
independent set S ∈ I (approximately) maximizing f among all such sets. It is also useful to note
that an independent set S ∈ I is called a base of M if it is an inclusion-wise maximal independent
set, i.e., S is not a subset of any other independent set.

A standard greedy algorithm for the above problem starts with the empty set, and then iteratively
adds to it elements, choosing in each iteration the element that increases the value of the solution by
the most among the elements whose addition to the solution does not violate the matroid constraint.
When the objective function f is guaranteed to be monotone, this greedy algorithm guarantees
1/2-approximation [24]. Our first result for this section (proved in Appendix E.1) shows how this
approximation guarantee changes as a function of m (the greedy algorithm has no constant guarantee
for non-monotone functions in this case as well).

Theorem 5.1. The Greedy algorithm (Algorithm 4) has an approximation ratio of at least m/2 for
maximizing a non-negative m-monotone submodular function subject to a matroid constraint.

The approximation ratio of the greedy algorithm was improved over by the seminal work of Călinescu
et al. [9], who described the Continuous Greedy algorithm whose approximation ratio is 1−1/e when
f is monotone; matching the inapproximability result of Nemhauser and Wolsey [43]. In contrast,
when f is not guaranteed to be monotone, the approximability of the problem is less well-understood.
On the one hand, after a long line of works [35, 22, 46, 52, 20], the state-of-the-art approximation
ratio for the problem is 0.385 [5], but on the other hand, it is only known that no polynomial time
algorithm for the problem can guarantee 0.478-approximation [46].

Unfortunately, the above mentioned state-of-the-art 0.385-approximation algorithm is quite involved.
Therefore, we chose to consider in this work two other algorithms. The first algorithm is Measure
Continuous Greedy (due to [22]) which guarantees an approximation ratio of 1/e− o(1) ≈ 0.367.
This algorithm performs only slightly worse than the above state-of-the-art, and is a central component
of all the currently known algorithms achieving better than 1/e-approximation. Measured Continuous
Greedy is also known to guarantee (1−1/e−o(1))-approximation when the objective f is monotone,
and the next theorem (proved in Appendix E.2) shows that its approximation guarantee changes
smoothly with the monotonicity ratio of f .

6



Theorem 5.2. Measured Continuous Greedy (Algorithm 5) has an approximation ratio of at least
m(1 − 1/e) + (1 − m) · (1/e) − o(1) for maximizing a non-negative m-monotone submodular
function subject to a matroid constraint, where the o(1) term diminishes with the ground set’s size.4

The other algorithm we consider is an algorithm called Random Greedy for Matroids (due to [6]).
Unlike Measured Continuous Greedy and almost all the other algorithms suggested for non-monotone
objectives to date, this algorithm is combinatorial, which makes it appealing in practice. It starts with
a base solution consisting of dummy elements representing empty slots, and iteratively performs
swaps on this base solution in the following way. In each iteration, the algorithm picks a base M
maximizing the (individual) marginal value of the elements within it with respect to the current base
solution. For every element in M , the algorithm identifies a distinct element of the current base
solution with which it can be swapped, and then for a uniformly random element of M such a swap is
indeed done. Buchbinder et al. [6] proved an approximation ratio of roughly (1+e−2)/4 for Random
Greedy for Matroids. The next theorem shows how this approximation guarantee improves as a
function of the monotonicity ratio. In this theorem we refer to the rank k of the matroid constraint
M, which is the size of the largest independent set with respect to this matroid. We also note that the
algorithm we analyze is identical to the algorithm of [6] up to two modifications: our algorithm makes
more iterations, and it updates the solution in an iteration only when this increases the solution’s
value.

Theorem 5.3. For every ε ∈ (0, 1), Random Greedy for Matroids (Algorithm 6) has an approximation
ratio of at least 1+m+e−2/(1−m)

4 − ε − ok(1) for the problem of maximizing a non-negative m-
monotone submodular function subject to a matroid constraint (except in the case of m = 1 in which
the approximation ratio is 1/2− ε− ok(1)), where ok(1) represents a term that diminishes with k.

Theorem 5.3 is proved in Appendix E.3. Let us also mention Theorem E.8, which appears in
Appendix E.4 and uses Theorem 3.2 to generalize the 0.478 inapproximability result of Oveis Gharan
and Vondrák [46]. To get an intuitive understanding of Theorem E.8, we numerically evaluated it for
various values of m, and depict the results in Figure 1b. For context, this figure also includes all the
other results proved in this section. Somewhat surprisingly, Figure 1b shows that Theorem E.8 does
not generalize the 1 − 1/e inapproximability result of Nemhauser and Wolsey [43] for monotone
functions despite the fact that this inapproximability result holds for every monotonicity ratio
m ∈ [0, 1]. This resembles the inability of Theorem D.4 to improve over the same inapproximability
result for large values of m.

6 Applications and Experiment Results

Many machine learning applications require optimization of non-monotone submodular functions
subject to some constraint. Unfortunately, such functions enjoy relatively low approximation guaran-
tees. Nevertheless, in many cases the non-monotone objective functions have a significant monotone
component that can be captured by the monotonicity ratio. In this section, we discuss two concrete
applications with non-monotone submodular objective functions. For each application we provide a
lower bound on the monotonicity ratio m of the objective function, which translates via our results
from the previous sections into an improved approximation guarantee for the application.

To demonstrate the value of our improved guarantees in experiments, we took the following approach.
The output of an approximation algorithm provides an upper bound on the value of the optimal
solution for the problem (formally, this upper bound is the value of the output over the approximation
ratio of the algorithm). Thus, we plot in each experiment the upper bound on the value of the optimal
solution obtained with and without taking into account the monotonicity ratio, which gives a feeling
of how the magnitude of our improvements compare to other values of interest (such as the gaps
between the performances of the algorithms considered). In Appendix F we give a third application
(Image summarization) that we study in the same way; and in Appendix G we lower bound the
monotonicity ratio of a fourth application (Ride-Share Optimization).

4Technically, Measured Continuous Greedy is an algorithm for maximizing the multilinear extesnion of a
non-negative submodular function subject to a general solvable down-closed convex body P constraint, and we
prove in Appendix E.2 that it guarantees the approximation ratio stated in Theorem 5.2 for this setting. However,
this implies the result stated in Theorem 5.2 using a standard reduction (see Appendix E.2 for further detail).

7



0.5 0.6 0.7 0.8 0.9

λ value

0

1

2

3

4

5

6

7

O
bj
ec
ti
ve

V
al
ue

×105

(a) Results when up to 10 movies
can be selected for varying λ.

20 40 60 80 100 120 140

Number of Movies

0.0

0.2

0.4

0.6

0.8

1.0

O
bj
ec
ti
ve

V
al
ue

×107

Threshold Random Greedy

Random

Previous Upper Bound

Our Upper Bound

(b) Results for λ = 0.55 when
the number movies in the solution
varies.

20 40 60 80 100 120 140

Number of Movies

0.0

0.2

0.4

0.6

0.8

1.0

O
bj
ec
ti
ve

V
al
ue

×107

Threshold Random Greedy

Random

Previous Upper Bound

Our Upper Bound

(c) Results for λ = 0.85 when
the number movies in the solution
varies.

5.0 7.5 10.0 12.5 15.0

Dimensionality

0

2

4

6

F
u

n
c
ti
o

n
 v

a
lu

e Previous Upper Bound

Our Upper Bound

Non monotone FW

(d) Varying the dimensionality n for
fixed α = 0.3 and β = 0.2.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

F
un
ct
io
n
va
lu
e

(e) Varying α for fixed β = 0.2 and
n = 4.

0.05 0.10 0.15 0.20 0.25 0.30

β value

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

F
un
ct
io
n
va
lu
e

(f) Varying β for fixed α = 0.5 and
n = 4.

Figure 2: Experimental results for Personalized Movie Recommendation (a–c) and Quadratic Pro-
gramming (d–f). Each plot includes the output of the algorithms we consider as well the previous and
improved upper bounds on the optimal value (the area between these two bounds is shaded).

6.1 Personalized Movie Recommendation

The first application we consider is Personalized Movie Recommendation. Consider a movie
recommendation system where each user specifies what genres she is interested in, and the system
has to provide a representative subset of movies from these genres. Assume that each movie is
represented by a vector consisting of users’ ratings for the corresponding movie. One challenge here
is that each user does not necessarily rate all the movies, hence, the vectors representing the movies
do not necessarily have similar sizes. To overcome this challenge, a low-rank matrix completion
techniques [10] can be performed on the matrix with missing values in order to obtain a complete
rating matrix. Formally, given few ratings from k users to n movies we obtain in this way a rating
matrix M of size k × n. Following [40], to score the quality of a selected subset of movies, we
use the function f(S) =

∑
u∈N

∑
v∈S su,v − λ

∑
u∈S

∑
v∈S su,v. Here, N is the set of n movies,

λ ∈ [0, 1] is a parameter and su,v denotes the similarity between movies u and v (the similarity su,v
can be calculated based on the matrix M in multiple ways: cosine similarity, inner product, etc).
Note that the first term in f ’s definition captures coverage, while the second term captures diversity.
Thus, the parameter λ denotes the importance of diversity in the returned subset.

One can verify that the above defined function f is non-negative and submodular. The next theorem,
proved in Appendix H.1, analyzes the monotonicity ratio of this function. In this theorem we assume
that the similarity scores su,v are non-negative and obey su,v = sv,u for every u, v ∈ N . Note
that the above mentioned ways to define these scores have these properties. Interestingly, it turns
out that the function f is monotone when λ is small enough despite the fact that this function is
traditionally treated as non-monotone (e.g., in [40, 23]). This is a nice unexpected result of the use
of the monotonicity ratio, which required us to really understand the degree of non-monotonicity
represented by the objective function.

Theorem 6.1. The objective function f is monotone for 0 ≤ λ ≤ 1/2 and 2(1 − λ)-monotone for
1/2 ≤ λ ≤ 1.

To demonstrate the value of our lower bound on the monotonicity ratio, we followed the experimental
setup of [40] and used a subset of movies from the MovieLens data set [28] which includes 10,437

8



movies. Each movie in this data set is represented by a 25 dimensional feature vector calculated using
user ratings, and we used inner products to obtain the similarity values si,j based on these vectors.

In our experiment we employed accelerated versions of the algorithms analyzed in Section 4 for a
cardinality constraint. Specifically, instead of the Greedy algorithm we used Threshold Greedy [1]
and Sample Greedy [39]; and instead of Random Greedy we used a threshold based version of this
algorithm due to [8] that we refer to as Threshold Random Greedy (Algorithm 6 in [8]). All three
algorithms had almost identical performance in our experiments (see Appendix I), thus, to avoid
confusion, in Figure 2 we draw only the output of Threshold Random Greedy.

Each plot of Figure 2 depicts the outputs of Threshold Random Greedy and a scarecrow algorithm
called Random that simply outputs a random subset of movies of the required size. Each point in the
plots represents the average value of the outputs of 10 executions of these algorithms. We also depict
in each plot the upper bound on the value of the optimal solution based on the general approximation
ratio of Random Greedy and the improved approximation ratio implied by Theorems 4.2 and 6.1—the
area between the two upper bounds is shaded. In Figure 2a we plot these values for the case in which
we asked the algorithms to pick at most 10 movies, and we vary the parameter λ. In Figures 2b
amd 2c we plotted the same values for a fixed parameter λ, while varying the maximum cardinality
(number of movies) allowed for the output set. Since the height of the shaded area is on the same
order of magnitude as the values of the solutions produced by Threashold Random Greedy (especially
when λ is close to 1/2), our results demonstrate that the improved upper bound we are able to prove
is much tighter than the state-of-the-art. Furthermore, our improved upper bound shows that the gap
between the empirical outputs of Threshold Random Greedy and Random is much more significant as
a percentage of the value of the optimal solution than one could believe based on the weaker bound.

6.2 Quadratic Programming

Consider the function

F (x) =
1

2
xTHx+ hTx+ c . (1)

By choosing appropriate matrix H, vector h and scalar c, this function can be made to have var-
ious properties. Specifically, we would like to make it non-negative and DR-submodular (DR-
submodularity is an extension of submodularity to continuous functions—see Appendix J for
more detail). Our goal in this section is to maximize F under a polytope constraint given by
P = {x ∈ Rn

≥0 | Ax ≤ b,x ≤ u, A ∈ Rm×n
≥0 ,b ∈ Rm

≥0} for some dimensions n and m.

Following Bian et al. [2], we set m = n, choose the matrix H ∈ Rn×n to be a randomly generated
symmetric matrix whose entries are drawn uniformly at random (and independently) from [−1, 0],
and choose A ∈ Rm×n to be a randomly generated matrix whose entries are drawn uniformly at
random from [v, v + 1] for v = 0.01 (this choice of v guarantees that the entries of A are strictly
positive). We also set b = 1̄ (i.e., b is the all ones vector), and u to be the upper bound on P given
by uj = minj∈[m] bi/Ai,j for every j ∈ [n]. Finally, we set h = −β ·HTu for a parameter β > 0.

The non-positivity of H guarantees that f is DR-submodular. To make sure that f is also non-negative,
the value of c should be at least −min0̄≤x≤u

1
2x

THx+ hTx (where 0̄ is the all zeros vector). This
value can be approximately obtained by using QUADPROGIP5 [53]. Let the value of this minimum be
M ; then we set c = −M + α|M | for some parameter α > 0.

The definition of the monotonicity ratio can be extend to the continuous setting we consider in this
section using the formula m = inf 0̄≤x≤y≤u

F (y)
F (x) , where the ratio F (y)/F (x) is understood as 1

whenever F (x) = 0. The following theorem analyzes the monotonicity ratio of the function F given
in Equation (1) based on this definition. The proof of this theorem can be found in Appendix H.2.

Theorem 6.2. For β ∈ (0, 1/2), the objective function F given by Equation (1) is (1−2β)·α
1+α -monotone.

Furthermore, when min0̄≤x≤u(
1
2x

THx+ hx) ≥ 0, F is even (1− 2β)-monotone.

We applied the Non-monotone Frank-Wolfe algorithm of Bian et al. [2] to the above defined op-
timization problem (we refer the reader to Appendix J for further detail about this algorithm and

5We have used IBM CPLEX optimization studio https://www.ibm.com/products/ilog-cplex-
optimization-studio.

9

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio


its analysis). Figures 2d, 2e and 2f depict the results we obtained. Specifically, Figure 2d shows
the value of the solution obtained by Non-monotone Frank-Wolfe for α = 0.3 and β = 0.2 as
the dimensionality n varies. The shaded area is the area between the previous upper bound on the
optimal value, and our upper bound that takes advantage on the monotonicity ratio bound given by
Theorem 6.2. Figures 2e and 2f are similar, but they fix the dimensionality n to be 4, and vary α
or β instead. Let us discuss now some properties of Figures 2d, 2e and 2f. (i) Each data point in
these figures corresponds to a single instance drawn from the distribution described above. This
implies that the plots in these figures vary for different runs of our experiment, but the plots that we
give represent a (single) typical run. (ii) The size of the the shaded area depends on α and β, but
also on the sign of min0̄≤x≤u(

1
2x

THx+ hx). This is the reason that this size behaves somewhat
non-continuously in Figure 2f. Interestingly, the sign of this minimum is mostly a function of β. In
other words, there are values of β for which the minimum is non-negative with high probability, and
other values for which the minimum is negative with high probability. (iii) One can see that the use
of the monotonicity ratio significantly improves the upper bound on the optimal value, especially
when min0̄≤x≤u(

1
2x

THx+ hx) happens to be non-negative.

7 Conclusion

In this paper we have defined the monotonicity ratio, analyzed how the approximation ratios of
standard submodular maximization algorithms depend on this ratio, and then demonstrated that
this leads to improved approximation guarantees for the applications of movie recommendation,
image summarization and quadratic programming. We believe that the monotonicity ratio is a natural
parameter of submodular maximization problems, refining the binary distinction between monotone
and non-monotone objective functions and improving the power of submodular maximization tools in
machine learning applications. Thus, we hope to see future work towards understanding the optimal
dependence on m of the approximation ratios of various submodular maximization problems.

An important take-home message from our work is that, at least in the unconstrained submodular
maximization case, the optimal algorithm has an approximation ratio whose dependence on m is
non-linear. Such algorithms are rarely obtained using current techniques, which might be one of
the reasons why these techniques have so far failed to obtain tight approximation guarantees for
constrained non-monotone submodular maximization.

Funding Transparency Statement

Funding in direct support of this work: This research was supported in part by Israel Science
Foundation (ISF) grant no. 459/20.

Additional revenues related to this work: None

References
[1] Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maximizing submodular

functions. In SODA, pages 1497–1514, 2014. doi: 10.1137/1.9781611973402.110. URL
https://doi.org/10.1137/1.9781611973402.110.

[2] An Bian, Kfir Yehuda Levy, Andreas Krause, and Joachim M. Buhmann. Non-
monotone continuous DR-submodular maximization: Structure and algorithms. In NeurIPS,
pages 486–496, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
58238e9ae2dd305d79c2ebc8c1883422-Abstract.html.

[3] Andrew An Bian, Joachim M. Buhmann, Andreas Krause, and Sebastian Tschiatschek. Guaran-
tees for greedy maximization of non-submodular functions with applications. In ICML, pages
498–507, 2017. URL http://proceedings.mlr.press/v70/bian17a.html.

[4] Niv Buchbinder and Moran Feldman. Submodular functions maximization problems. In
Teofilo F. Gonzalez, editor, Handbook of Approximation Algorithms and Metaheuristics, Second
Edition, Volume 1: Methologies and Traditional Applications, pages 753–788. Chapman and

10

https://doi.org/10.1137/1.9781611973402.110
https://proceedings.neurips.cc/paper/2017/hash/58238e9ae2dd305d79c2ebc8c1883422-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/58238e9ae2dd305d79c2ebc8c1883422-Abstract.html
http://proceedings.mlr.press/v70/bian17a.html


Hall/CRC, 2018. doi: 10.1201/9781351236423-42. URL https://doi.org/10.1201/
9781351236423-42.

[5] Niv Buchbinder and Moran Feldman. Constrained submodular maximization via a nonsymmet-
ric technique. Math. Oper. Res., 44(3):988–1005, 2019. doi: 10.1287/moor.2018.0955. URL
https://doi.org/10.1287/moor.2018.0955.

[6] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular maximization
with cardinality constraints. In Chandra Chekuri, editor, SODA, pages 1433–1452. SIAM, 2014.
doi: 10.1137/1.9781611973402.106. URL https://doi.org/10.1137/1.9781611973402.
106.

[7] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM J. Comput., 44(5):1384–
1402, 2015. doi: 10.1137/130929205. URL https://doi.org/10.1137/130929205.

[8] Niv Buchbinder, Moran Feldman, and Roy Schwartz. Comparing apples and oranges: Query
trade-off in submodular maximization. Math. Oper. Res., 42(2):308–329, 2017. doi: 10.1287/
moor.2016.0809. URL https://doi.org/10.1287/moor.2016.0809.

[9] Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM J. Comput., 40(6):1740–1766, 2011.
doi: 10.1137/080733991. URL https://doi.org/10.1137/080733991.

[10] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex optimization.
Foundations of Computational mathematics, 9(6):717–772, 2009.

[11] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Dependent randomized rounding via
exchange properties of combinatorial structures. In FOCS, pages 575–584, 2010. doi: 10.1109/
FOCS.2010.60. URL https://doi.org/10.1109/FOCS.2010.60.

[12] Lin Chen, Moran Feldman, and Amin Karbasi. Weakly submodular maximization beyond
cardinality constraints: Does randomization help greedy? In ICML, pages 803–812, 2018. URL
http://proceedings.mlr.press/v80/chen18b.html.

[13] Michele Conforti and Gérard Cornuéjols. Submodular set functions, matroids and the greedy
algorithm: Tight worst-case bounds and some generalizations of the rado-edmonds theorem.
Discret. Appl. Math., 7(3):251–274, 1984. doi: 10.1016/0166-218X(84)90003-9. URL https:
//doi.org/10.1016/0166-218X(84)90003-9.

[14] Min Cui, Donglei Du, Dachuan Xu, and Ruiqi Yang. Approximation algorithm for maximizing
nonnegative weakly monotonic set functions. In CSoNet, pages 50–58, 2021. doi: 10.1007/978-
3-030-91434-9\ 5. URL https://doi.org/10.1007/978-3-030-91434-9_5.

[15] Abhimanyu Das and David Kempe. Submodular meets spectral: greedy algorithms for subset
selection, sparse approximation and dictionary selection. In ICML, pages 1057–1064, 2011.

[16] Abhimanyu Das and David Kempe. Approximate submodularity and its applications: Subset
selection, sparse approximation and dictionary selection. J. Mach. Learn. Res., 19:3:1–3:34,
2018. URL http://jmlr.org/papers/v19/16-534.html.

[17] Anirban Dasgupta, Ravi Kumar, and Sujith Ravi. Summarization through submodularity and
dispersion. In ACL, pages 1014–1022. The Association for Computer Linguistics, 2013. URL
https://aclanthology.org/P13-1100/.

[18] Ethan R. Elenberg, Alexandros G. Dimakis, Moran Feldman, and Amin Karbasi. Streaming
weak submodularity: interpreting neural networks on the fly. In NeurIPS, pages 4047–4057,
2017.

[19] Ehsan Elhamifar and M Clara De Paolis Kaluza. Online summarization via submodular and
convex optimization. In CVPR, pages 1783–1791, 2017.

[20] Alina Ene and Huy L. Nguyen. Constrained submodular maximization: Beyond 1/e. In Irit
Dinur, editor, FOCS, pages 248–257. IEEE Computer Society, 2016. doi: 10.1109/FOCS.2016.
34. URL https://doi.org/10.1109/FOCS.2016.34.

11

https://doi.org/10.1201/9781351236423-42
https://doi.org/10.1201/9781351236423-42
https://doi.org/10.1287/moor.2018.0955
https://doi.org/10.1137/1.9781611973402.106
https://doi.org/10.1137/1.9781611973402.106
https://doi.org/10.1137/130929205
https://doi.org/10.1287/moor.2016.0809
https://doi.org/10.1137/080733991
https://doi.org/10.1109/FOCS.2010.60
http://proceedings.mlr.press/v80/chen18b.html
https://doi.org/10.1016/0166-218X(84)90003-9
https://doi.org/10.1016/0166-218X(84)90003-9
https://doi.org/10.1007/978-3-030-91434-9_5
http://jmlr.org/papers/v19/16-534.html
https://aclanthology.org/P13-1100/
https://doi.org/10.1109/FOCS.2016.34


[21] Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing non-monotone submodular
functions. SIAM J. Comput., 40(4):1133–1153, 2011. doi: 10.1137/090779346. URL https:
//doi.org/10.1137/090779346.

[22] Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. A unified continuous greedy algorithm
for submodular maximization. In Rafail Ostrovsky, editor, FOCS, pages 570–579. IEEE
Computer Society, 2011. doi: 10.1109/FOCS.2011.46. URL https://doi.org/10.1109/
FOCS.2011.46.

[23] Moran Feldman, Christopher Harshaw, and Amin Karbasi. Greed is good: Near-optimal
submodular maximization via greedy optimization. In COLT, pages 758–784, 2017. URL
http://proceedings.mlr.press/v65/feldman17b.html.

[24] M. Fisher, G. Nemhauser, and L. Wolsey. An analysis of approximations for maximizing
submodular set functions–II. Mathematical Programming, 8:73–87, 1978.

[25] Mehrdad Ghadiri, Richard Santiago, and F. Bruce Shepherd. A parameterized family of meta-
submodular functions. CoRR, abs/2006.13754, 2020. URL https://arxiv.org/abs/2006.
13754.

[26] Mehrdad Ghadiri, Richard Santiago, and F. Bruce Shepherd. Beyond submodular maximization
via one-sided smoothness. In Dániel Marx, editor, SODA, pages 1006–1025. SIAM, 2021. doi:
10.1137/1.9781611976465.63. URL https://doi.org/10.1137/1.9781611976465.63.

[27] Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. Constrained non-monotone
submodular maximization: Offline and secretary algorithms. In WINE, pages 246–257,
2010. doi: 10.1007/978-3-642-17572-5\ 20. URL https://doi.org/10.1007/978-3-
642-17572-5_20.

[28] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (TiiS), 5(4):1–19, 2015.

[29] Rishabh K. Iyer, Stefanie Jegelka, and Jeff A. Bilmes. Curvature and optimal algorithms for
learning and minimizing submodular functions. In Christopher J. C. Burges, Léon Bottou,
Zoubin Ghahramani, and Kilian Q. Weinberger, editors, Advances in Neural Information
Processing Systems (NeurIPS), pages 2742–2750, 2013.

[30] Rishabh Krishnan Iyer. Submodular optimization and machine learning: Theoretical results,
unifying and scalable algorithms, and applications. PhD thesis, University of Washington,
2015.

[31] Ehsan Kazemi, Shervin Minaee, Moran Feldman, and Amin Karbasi. Regularized submodular
maximization at scale. In ICML, pages 5356–5366. PMLR, 2021.

[32] Katrin Kirchhoff and Jeff Bilmes. Submodularity for data selection in machine translation. In
EMNLP, pages 131–141, 2014.

[33] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

[34] Alan Kuhnle, J. David Smith, Victoria G. Crawford, and My T. Thai. Fast maximization of
non-submodular, monotonic functions on the integer lattice. In Jennifer G. Dy and Andreas
Krause, editors, ICML, pages 2791–2800. PMLR, 2018. URL http://proceedings.mlr.
press/v80/kuhnle18a.html.

[35] Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Non-monotone
submodular maximization under matroid and knapsack constraints. In Michael Mitzenmacher,
editor, STOC, pages 323–332. ACM, 2009. doi: 10.1145/1536414.1536459. URL https:
//doi.org/10.1145/1536414.1536459.

[36] Qi Lei, Lingfei Wu, Pin-Yu Chen, Alex Dimakis, Inderjit S. Dhillon, and Michael J. Witbrock.
Discrete adversarial attacks and submodular optimization with applications to text classification.
In Ameet Talwalkar, Virginia Smith, and Matei Zaharia, editors, MLSys. mlsys.org, 2019. URL
https://proceedings.mlsys.org/book/284.pdf.

12

https://doi.org/10.1137/090779346
https://doi.org/10.1137/090779346
https://doi.org/10.1109/FOCS.2011.46
https://doi.org/10.1109/FOCS.2011.46
http://proceedings.mlr.press/v65/feldman17b.html
https://arxiv.org/abs/2006.13754
https://arxiv.org/abs/2006.13754
https://doi.org/10.1137/1.9781611976465.63
https://doi.org/10.1007/978-3-642-17572-5_20
https://doi.org/10.1007/978-3-642-17572-5_20
http://proceedings.mlr.press/v80/kuhnle18a.html
http://proceedings.mlr.press/v80/kuhnle18a.html
https://doi.org/10.1145/1536414.1536459
https://doi.org/10.1145/1536414.1536459
https://proceedings.mlsys.org/book/284.pdf


[37] Hui Lin and Jeff Bilmes. Multi-document summarization via budgeted maximization of
submodular functions. In Human Language Technologies (HLT), pages 912–920, 2010.

[38] László Lovász. Submodular functions and convexity. In A. Bachem, M. Grötschel, and B. Korte,
editors, Mathematical Programming: the State of the Art, pages 235–257. Springer, 1983.

[39] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and Andreas
Krause. Lazier than lazy greedy. In AAAI, pages 1812–1818, 2015. URL http://www.aaai.
org/ocs/index.php/AAAI/AAAI15/paper/view/9956.

[40] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, and Amin Karbasi. Fast constrained
submodular maximization: Personalized data summarization. In ICML, pages 1358–1367.
PMLR, 2016.

[41] Marko Mitrovic, Ehsan Kazemi, Morteza Zadimoghaddam, and Amin Karbasi. Data sum-
marization at scale: A two-stage submodular approach. In ICML, pages 3596–3605. PMLR,
2018.

[42] Marko Mitrovic, Ehsan Kazemi, Moran Feldman, Andreas Krause, and Amin Karbasi. Adaptive
sequence submodularity. NeurIPS, 32:5352–5363, 2019.

[43] G. L. Nemhauser and L. A. Wolsey. Best algorithms for approximating the maximum of a
submodular set function. Mathematics of Operations Research, 3(3):177–188, 1978.

[44] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing
submodular set functions–I. Mathematical Programming, 14:265–294, 1978.

[45] Ashkan Norouzi-Fard, Jakub Tarnawski, Slobodan Mitrovic, Amir Zandieh, Aidasadat Mousav-
ifar, and Ola Svensson. Beyond 1/2-approximation for submodular maximization on massive
data streams. In ICML, pages 3829–3838. PMLR, 2018.

[46] Shayan Oveis Gharan and Jan Vondrák. Submodular maximization by simulated annealing. In
Dana Randall, editor, SODA, pages 1098–1116. SIAM, 2011. doi: 10.1137/1.9781611973082.
83. URL https://doi.org/10.1137/1.9781611973082.83.

[47] Benjamin Qi. On maximizing sums of non-monotone submodular and linear functions. CoRR,
abs/2205.15874, 2022. doi: 10.48550/arXiv.2205.15874. URL https://doi.org/10.48550/
arXiv.2205.15874. To appear in ISAAC 2022.

[48] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.

[49] Maxim Sviridenko, Jan Vondrák, and Justin Ward. Optimal approximation for submodular and
supermodular optimization with bounded curvature. Math. Oper. Res., 42(4):1197–1218, 2017.
doi: 10.1287/moor.2016.0842. URL https://doi.org/10.1287/moor.2016.0842.

[50] Sebastian Tschiatschek, Rishabh K Iyer, Haochen Wei, and Jeff A Bilmes. Learning mixtures
of submodular functions for image collection summarization. In NeurIPS, pages 1413–1421,
2014.

[51] Sebastian Tschiatschek, Adish Singla, and Andreas Krause. Selecting sequences of items via
submodular maximization. In Satinder P. Singh and Shaul Markovitch, editors, AAAI, pages
2667–2673. AAAI Press, 2017. URL http://aaai.org/ocs/index.php/AAAI/AAAI17/
paper/view/14898.

[52] Jan Vondrák. Symmetry and approximability of submodular maximization problems. SIAM J.
Comput., 42(1):265–304, 2013. doi: 10.1137/110832318. URL https://doi.org/10.1137/
110832318.

[53] Wei Xia, Juan-Carlos Vera, and Luis F. Zuluaga. Globally solving nonconvex quadratic programs
via linear integer programming techniques. INFORMS J. Comput., 32(1):40–56, 2020. doi:
10.1287/ijoc.2018.0883. URL https://doi.org/10.1287/ijoc.2018.0883.

13

http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9956
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9956
https://doi.org/10.1137/1.9781611973082.83
https://doi.org/10.48550/arXiv.2205.15874
https://doi.org/10.48550/arXiv.2205.15874
https://doi.org/10.1287/moor.2016.0842
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14898
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14898
https://doi.org/10.1137/110832318
https://doi.org/10.1137/110832318
https://doi.org/10.1287/ijoc.2018.0883


Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] Most of them in the

supplementary material.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [No]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] in the supplementary material.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14


	Introduction
	Our Results

	Preliminaries and Basic Observations
	Unconstrained Maximization
	Maximization with a Cardinality Constraint
	Maximization with a Matroid Constraint
	Applications and Experiment Results
	Personalized Movie Recommendation
	Quadratic Programming

	Conclusion
	Additional Related Work
	Proof of Lemma 2.1
	Proofs of Section 3
	Proof of the first part of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Lemma 3.3

	Inapproximability and Proofs of Section 4
	Analysis of the Greedy Algorithm
	Analysis of Random Greedy
	Inapproximability for a Cardinality Constraint

	Inapproximability and Proofs of Section 5
	Analysis of the Greedy algorithm
	Analysis of Measured Continuous Greedy
	Analysis of Random Greedy for Matroids
	Inapproximability for a Matroid Constraints

	Personalized Image Summarization
	Ride-Share Optimization
	Proofs of Section 6
	Proof of Theorem 6.1
	Proof of Theorem 6.2

	Additional Plots for Section 6
	Maximizating DR-submodular Functions subject to a Polytope Constraint

