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Abstract

We study the problem of representation learning in stochastic contextual linear
bandits. While the primary concern in this domain is usually to find realizable repre-
sentations (i.e., those that allow predicting the reward function at any context-action
pair exactly), it has been recently shown that representations with certain spectral
properties (called HLS) may be more effective for the exploration-exploitation task,
enabling LinUCB to achieve constant (i.e., horizon-independent) regret. In this
paper, we propose BANDITSRL, a representation learning algorithm that com-
bines a novel constrained optimization problem to learn a realizable representation
with good spectral properties with a generalized likelihood ratio test to exploit the
recovered representation and avoid excessive exploration. We prove that BAN-
DITSRL can be paired with any no-regret algorithm and achieve constant regret
whenever an HLS representation is available. Furthermore, BANDITSRL can be
easily combined with deep neural networks and we show how regularizing towards
HLS representations is beneficial in standard benchmarks.

1 Introduction

The contextual bandit is a general framework to formalize the exploration-exploitation dilemma
arising in sequential decision-making problems such as recommendation systems, online advertising,
and clinical trials [e.g., [1l. When solving real-world problems, where contexts and actions are
complex and high-dimensional (e.g., users’ social graph, items’ visual description), it is crucial
to provide the bandit algorithm with a suitable representation of the context-action space. While
several representation learning algorithms have been proposed in supervised learning and obtained
impressing empirical results [e.g.,[2, 13]], how to efficiently learn representations that are effective for
the exploration-exploitation problem is still relatively an open question.

The primary objective in representation learning is to find features that map the context-action space
into a lower-dimensional embedding that allows fitting the reward function accurately, i.e., realiz-
able representations [e.g.,4H10]. Within the space of realizable representations, bandit algorithms
leveraging features of smaller dimension are expected to learn faster and thus have smaller regret.
Nonetheless, Papini et al. [[11] have recently shown that, even among realizable features, certain
representations are naturally better suited to solve the exploration-exploitation problem. In particular,
they proved that LINUCB [12}[13] can achieve constant regret when provided with a “good” repre-
sentation. Interestingly, this property is not related to “global” characteristics of the feature map (e.g.,
dimension, norms), but rather on a spectral property of the representation (the space associated to
optimal actions should cover the context-action space, see HLS property in Def. 2.T)). This naturally
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raises the question whether it is possible to learn such representation at the same time as solving
the contextual bandit problem. Papini et al. [[11]] provided a first positive answer with the LEADER
algorithm, which is proved to perform as well as the best realizable representation in a given set up
to a logarithmic factor in the number of representations. While this allows constant regret when a
realizable HLS representation is available, the algorithm suffers from two main limitations: 1) it
is entangled with LINUCB and it can hardly be generalized to other bandit algorithms; 2) it learns
a different representation for each context-action pair, thus making it hard to extend beyond finite
representations to arbitrary functional space (e.g., deep neural networks).

In this paper, we address those limitations through BANDITSRL, a novel algorithm that decouples
representation learning and exploration-exploitation so as to work with any no-regret contextual bandit
algorithm and to be easily extended to general representation spaces. BANDITSRL combines two
components: 1) a representation learning mechanism based on a constrained optimization problem
that promotes “good” representations while preserving realizability; and 2) a generalized likelihood
ratio test (GLRT) to avoid over exploration and fully exploit the properties of “good” representations.
The main contributions of the paper can be summarized as follows:

1. We show that adding a GLRT on the top of any no-regret algorithm enables it to exploit the
properties of a HLS representation and achieve constant regret. This generalizes the constant
regret result for LINUCB in [11] to any no-regret algorithm.

2. Similarly, we show that BANDITSRL can be paired with any no-regret algorithm and perform
effective representation selection, including achieving constant regret whenever a HLS repre-
sentation is available in a given set. This generalizes the result of LEADER beyond LINUCB.
In doing this we also improve the analysis of the misspecified case and prove a tighter bound
on the time to converge to realizable representations. Furthermore, numerical simulations in
synthetic problems confirm that BANDITSRL is empirically competitive with LEADER.

3. Finally, in contrast to LEADER, BANDITSRL can be easily scaled to complex problems where
representations are encoded through deep neural networks. In particular, we show that the La-
grangian relaxation of the constrained optimization problem for representation learning becomes
a regression problem with an auxiliary representation loss promoting HL S-like representations.
We test different variants of the resulting NN-BANDITSRL algorithm showing how the auxiliary
representation loss improves performance in a number of dataset-based benchmarks.

2 Preliminaries

We consider a stochastic contextual bandit problem with context space X and finite action set A.
At each round ¢ > 1, the learner observes a context x; sampled i.i.d. from a distribution p over X,
selects an action a; € A, and receives a reward y; = p(x¢, a;) + 7 where 1 is a zero-mean noise and
X x A — Ris the expected reward. The objective of a learner 2 is to minimize its pseudo-regret
Ry = Zthl (1*(x¢) — p(xe, aq)) forany T > 1, where p*(24) := maxae 4 p(x¢, a). We assume
that for any « € X the optimal action a, := argmax, 4 p(x, a) is unique and we define the gap
A(z,a) = p*(x) — p(z,a). We say that 2 is a no-regret algorithm if, for any instance of y, it
achieves sublinear regret, i.e., Ry = o(T).
We consider the problem of representation learning in given a candidate function space & C
{gb c XA x A = R% }, where the dimensionality ds may depend on the feature ¢. Let
5 = argming pa, Eump| Y o(0(z,a)T0 — p(z,a))?] be the best linear fit of 1 for representa-
tion ¢. We assume that ® contains a linearly realizable representation.

Assumption 1 (Realizability). There exists an (unknown) subset ®* C ® such that, for each ¢ € *,
w(z,a) = QS(I,Q)T%,VI eX,ae A

Assumption 2 (Regularity). Let B, := {0 € R% : ||0|la < By} be a ball in R%. We as-
sume that, for each ¢ € ®, sup, , lo(z,a)lla < Lg, |6;H2 < By, sup, , |p(x,a)T0] < 1

forany 0 € By and |y;| < 1 almost surely for all t. We assume parameters Ly and By are
known. We also assume the minimum gap A = inf ¢ x.,(2)>0,0€4,A(z,0)>01A(2, a)} > 0 and that

Amin (ﬁ Y uEanplo(z, a)p(z, a)T]) > 0 for any ¢ € ®*, i.e, all realizable representations are

non-redundant.




Under Asm. (I} when |®| = 1, the problem reduces to a stochastic linear contextual bandit and can be
solved using standard algorithms, such as LINUCB/OFUL [12}13]], LinTS [14]], and e-greedy [15],
which enjoy sublinear regret and, in some cases, logarithmic problem-dependent regret. Recently,
Papini et al. [[11]] showed that LINUCB only suffers constant regret when a realizable representation
is HLS, i.e., when the features of optimal actions span the entire d4-dimensional space. HLS

Definition 2.1 (HLS Representation). A representation ¢ is HLS (the acronym refers to the last
names of the authors of [16]) if

M(9) = Amin (Eonp [0(z, a})d(z,a%)T]) > 0

where Amin(A) denotes the minimum eigenvalue of a matrix A.

Papini et al. showed that HLS, together with realizability, is a sufficient and necessary property for
achieving constant regret in contextual stochastic linear bandits for non-redundant representations.

In order to deal with the general case where ® may contain non-realizable representations, we rely on
the following misspecification assumption from [[L1].

Assumption 3 (Misspecification). For each ¢ ¢ O*, there exists €5 > 0 such that

min min, Eap (92, 7(2))70 — (e, 7(2)))°] 2 €.

This assumption states that any non-realizable representation has a minimum level of misspecification
on average over contexts and for any context-action policy. In the finite-context case, a sufficient
condition for Asm.[3]is that, for each ¢ ¢ ®*, there exists a context z € X’ with p(z) > 0 such that
d(z,a)70 # p(z,a) foralla € Aand 0 € By,

Related work. Several papers have focused on contextual bandits with an arbitrary function space
to estimate the reward function under realizability assumptions [e.g., 4} |5, [7]. While these works
consider a similar setting to ours, they do not aim to learn “good” representations, but rather focus on
the exploration-exploitation problem to obtain sublinear regret guarantees. This often corresponds
to recovering the maximum likelihood representation, which may not lead to the best regret. After
the work in [[11]], the problem of representation learning with constant regret guarantees has also
been studied in reinforcement learning [[17} [18]]. As these approaches build on the ideas in [11], they
inherit the same limitations as [[11]].

Another related literature is the one of expert learning and model selection in bandits [e.g.,[19H25]],
where the objective is to select the best candidate among a set of base learning algorithms or experts.
While these algorithms are general and can be applied to different settings, including representation
learning with a finite set of candidates, they may not be able to effectively leverage the specific
structure of the problem. Furthermore, at the best of our knowledge, these algorithms suffers a
polynomial dependence in the number of base algorithms (|®| in our setting) and are limited to

worst-case regret guarantees. Whether the /7 or poly(|®|) dependency can be improved in general
is an open question (see [25[] and [11, App. A]). Finally, [8} 26] studied the specific problem of
model selection with nested linear representations, where the best representation is the one with the
smallest dimension for which the reward is realizable.

Several works have recently focused on theoretical and practical investigation of contextual bandits
with neural networks (NNs) [27H29]. While their focus was on leveraging the representation power
of NNs to correctly predict the rewards, here we focus on learning representations with good spectral
properties through a novel auxiliary loss. A related approach to our is [29] where the authors leverage
self-supervised auxiliary losses for representation learning in image-based bandit problems.

3 A General Framework for Representation Learning

We introduce BANDITSRL (Bandit Spectral Representation Learner), an algorithm for stochastic con-
textual linear bandit that efficiently decouples representation learning from exploration-exploitation.
As illustrated in Alg.[T] BANDITSRL has access to a fixed-representation contextual bandit algorithm
2, the base algorithm, and it is built around two key mechanisms: @ a constrained optimization
problem where the objective is to minimize a representation loss L to favor representations with HL'S
properties, whereas the constraint ensures realizability; ® a generalized likelihood ratio test (GLRT)



Algorithm 1 BANDITSRL

1: Input: representations ®, no-regret algorithm 2, confidence § € (0, 1), update schedule v > 1
2: Initialize j = 0, ¢}, 0y, o arbitrarily, Vo(¢;) = Ma, . tj =1, letd; := 5/(2( +1)%)
3: fort =1,...do

4:  Observe context

50 if GLR—1(x¢; ®;) > 5t—1,5/|<b\(¢j) then

6: Play a; = argmax ¢ 4 {qu (z¢, a)T0¢j,t,1} and observe reward y;
7:  else

8: Play a; = 2, (245 ¢5,6;/|®|), observe reward y,, and feed it into 2A
9: endif

10: ift = [+¢;] and |®| > 1 then

11: Setj=j+1landt; =1t

12: Compute ¢; = argmingcq, {L:(¢)} and reset 2A

13:  end if

14: end for

to ensure that, if a HLS representation is learned, the base algorithm 2( does not over-explore and the
“good” representation is exploited to obtain constant regret.

Mechanism @ (line 12). The first challenge when provided with a generic set ® is to ensure that
the algorithm does not converge to selecting misspecified representations, which may lead to linear
regret. This is achieved by introducing a hard constraint in the representation optimization, so that
BANDITSRL only selects representations in the set (see also [[11, App. F]),

ori= {0 @ jin £1(6.0) < iy anin (E(@'6) +05(6")} } (1)

where FE(¢,0) := % Zi:l ((;S(xs, as)To — ys)2 is the empirical mean-square error (MSE) of model

d
(¢,0) and a4 5(¢) := 470 log (8‘¢|2(12L§B¢t) ¢t3) + % This condition leverages the existence of a

realizable representation in ®; to eliminate representations whose MSE is not compatible with the
one of the realizable representation, once accounted for the statistical uncertainty (i.e., oy s (0)).

Subject to the realizability constraint, the representation loss £;(¢) favours learning a HLS representa-
tion (if possible). As illustrated in Def.[2.T] a HLS representation is such that the expected design ma-
trix associated to the optimal actions has a positive minimum eigenvalue. Unfortunately it is not pos-
sible to directly optimize for this condition, since we have access to neither the context distribution p
nor the optimal action in each context. Nonetheless, we can design a loss that works as a proxy for the
HLS property whenever 2 is a no-regret algorithm. Let V;(¢) = Mg, + ZZ:l d(ws,a5)p(xs,as)"
be the empirical design matrix built on the context-actions pairs observed up to time ¢, then we define
Leig t(¢) := —Amin (Vt(gi)) — Ay ¢) /L2, where the normalization factor ensures invariance w.r.t.
the feature norm. Intuitively, the empirical distribution of contexts (z;);>1 converges to p and the
frequency of optimal actions selected by a no-regret algorithm increases over time, thus ensuring
that V;(¢)/t tends to behave as the design matrix under optimal arms E,.,[¢(x, a%)d(z,a%)T]. As
discussed in Sect. [5 alternative losses can be used to favour learning HLS representations.

Mechanism  (line 5). While Papini et al. [L1] proved that LINUCB is able to exploit HLS
representations, other algorithms such as e-greedy may keep forcing exploration and do not fully
take advantage of HLS properties, thus failing to achieve constant regret. In order to prevent this, we
introduce a generalized likelihood ratio test (GLRT). At each round ¢, let ¢, be the representation
used at time ¢, then BANDITSRL decides whether to act according to the base algorithm 2 with
representation ¢,_; or fully exploit the learned representation and play greedily w.r.t. it. Denote
by 0411 = Vio1(p)~t 22;11 o(xs,as)ys the regularized least-squares parameter at time ¢ for
representation ¢ and by m;_; (2; ¢) = argmax,¢ 4 {¢(z,a)"6y,—1} the associated greedy policy.
Then, BANDITSRL selects the greedy action 7;_; (z; ¢r—1) when the GLR test is active, otherwise
it selects the action proposed by the base algorithm 2(. Formally, for any ¢ € ® and x € X, we define



the generalized likelihood ratio as

(@ (@:6) = 6(2,a)) Gpas
agni_ (x:9) ||o(z, m5_ 1 (25 0)) — D(s,a)|lv,_, (o)1

GLR;_1(z;¢) := 2)

and, given 3,_1 5(¢) = a\/2 log(1/6) + dg log(1 + (t — 1)Li/(>\d¢)) + V/ABy, the GLR test is

GLR;—1(x;¢) > Bi_1,5/0|(¢) [16,30L31]. If this happens at time ¢ and ¢, is realizable, then we
have enough confidence to conclude that the greedy action is optimal, i.e., 7 (2¢; ¢¢—1) = aj,.
An important aspect of this test is that it is run on the current context z; and it does not require
evaluating global properties of the representation. While at any time ¢ it is possible that a non-HLS
non-realizable representation may pass the test, the GLRT is sound as 1) exploration through 2( and
the representation learning mechanism work in synergy to guarantee that eventually a realizable
representation is always provided to the GLRT; 2) only HLS representations are guaranteed to
consistently trigger the test at any context x.

In practice, BANDITSRL does not update the representation at each step but in phases. This is
necessary to avoid too frequent representation changes and control the regret, but also to make the
algorithm more computationally efficient and practical. Indeed, updating the representation may be
computationally expensive in practice (e.g., retraining a NN) and a phased scheme with « parameter
reduces the number of representation learning steps to J ~ [log. (T")]. The algorithm 2/ is reset at the
beginning of a phase ;7 when the representation is selected and it is run on the samples collected during
the current phase when the base algorithm is selected. If 2l is able to leverage off-policy data, at the
beginning of a phase j, we can warm-start it by providing ¢; and all the past data (s, as, ys)s<t, -
While the reset is necessary for dealing with any no-regret algorithm, it can be removed for algorithms
such as LINUCB and e-greedy without affecting the theoretical guarantees.

Comparison to LEADER. We first recall the basic structure of LEADER. Denote by UCB,(z, a, ¢)
the upper-confidence bound computed by LINUCB for the context-action pair (z, a) and represen-
tation ¢ after ¢ steps. Then LEADER selects the action a; € argmax,c 4 minges, UCBy (¢, a, ¢).
Unlike the constrained optimization problem in BANDITSRL, this mechanism couples representation
learning and exploration-exploitation and it requires optimizing a representation for the current
z; and for each action a. Indeed, LEADER does not output a single representation and possibly
chooses different representations for each context-action pair. While this enables LEADER to mix
representations and achieve constant regret in some cases even when ® does not include any HLS
representation, it leads to two major drawbacks: 1) the representation selection is directly entangled
with the LINUCB exploration-exploitation strategy, 2) it is impractical in problems where ® is an
infinite functional space (e.g., a deep neural network). The mechanisms @ and @ successfully address
these limitations and enable BANDITSRL to be paired with any no-regret algorithm and to be scaled
to any representation class as illustrated in the next section.

3.1 Extension to Neural Networks

We now consider a representation space ® defined by the last layer of a NN. We denote by ¢ :
X x A — R the last layer and by f(x,a) = ¢(x,a)T the full NN, where 6 are the last-layer
weights. We show how BANDITSRL can be easily adapted to work with deep neural networks (NN).

First, the GLRT requires only to have access to the current context x; and representation ¢, i.e.,
the features defined by the last layer of the current network, and its cost is linear in the number of
actions. Second, the phased scheme allows lazy updates, where we retrain the network only logW(T)
times. Third, we can run any bandit algorithm with a representation provided by the NN, including
LINUCB, LinTS, and e-greedy. Fourth, the representation learning step can be adapted to allow
efficient optimization of a NN. We consider a regularized problem obtained through an approximation
of the constrained problem:

arg;nin {Ct(d)) — Creg ((r;/lier} {Ei(¢',0") + o 5(8)} — mein E, (o, 9)) }

= arg;nin Hbin {L4(¢) + creg Er(9,0)} 3)

where c;¢; > 0 is a tunable parameter. The fact we consider ¢,z constant allows us to ignore terms
that do not depend on either ¢ or . This leads to a convenient regularized loss that aims to minimize



the MSE (second term) while enforcing some spectral property on the last layer of the NN (first term).
In practice, we can optimize this loss by stochastic gradient descent over a replay buffer containing
the samples observed over time. The resulting algorithm, called NN-BANDITSRL, is a direct and
elegant generalization of the theoretically-grounded algorithm.

While in theory we can optimize the regularized loss with all the samples, in practice it is
important to better control the sample distribution. As the algorithm progresses, we expect the replay
buffer to contain an increasing number of samples obtained by optimal actions, which may lead the
representation to solely fit optimal actions while increasing misspecification on suboptimal actions.
This may compromise the behavior of the algorithm and ultimately lead to high regret. This is an
instance of catastrophic forgetting induced by a biased/shifting sample distribution [e.g.,[32]]. To
prevent this phenomenon, we store two replay buffers: i) an explorative buffer Dy ; with samples
obtained when %[ was selected; ii) an exploitative buffer Dgy,; ¢ with samples obtained when GLRT
triggered and greedy actions were selected. The explorative buffer Dy ; is used to compute the MSE
E:(¢,0). While this reduces the number of samples, it improves the robustness of the algorithm
by promoting realizability. On the other hand, we use all the samples D; = Dy( s U Dgyyt+ for the
representation loss £(¢). This is coherent with the intuition that mechanism @ works when the
design matrix V; drifts towards the design matrix of optimal actions, which is at the core of the HLS
property. Refer to App. |C|for a more detailed description of NN-BANDITSRL.

4 Theoretical Guarantees

In this section, we provide a complete characterization of the theoretical guarantees of BANDITSRL
when @ is a finite set of representations, i.e., |®| < co. We consider the update scheme with v = 2.

4.1 Constant Regret Bound for HLS Representations

We first study the case where a realizable HLS representation is available. For the characterization of
the behavior of the algorithm, we need to introduce the following times:

* Telim: an upper-bound to the time at which all non-realizable representations are eliminated, i.e.,
for all t > Telim, ®r = P*;

e 7yLs: an upper-bound to the time (if it exists) after which the HLS representation is selected,
ie., ¢ = ¢* for all t > s, where ¢* € ®* is the unique HLS realizable representation;

* Tgire: an upper-bound to the time (if it exists) such that the GLR test triggers for the HLS
representation ¢* for all £ > Tgiy¢.
We begin by deriving a constant problem-dependent regret bound for BANDITSRL with HLS
representations. The proof and explicit values of the constants are reported in App.

Theorem 4.1. Let A be any no-regret algorithm for stochastic contextual linear bandits, ® satisfy
Asm. |®| < 00, v =2 and Li(¢) = Leig,t(9) := —Amin(Vi(®) — Ma,)/LZ. Moreover, let
®* contains a unique HLS representation ¢*. Then, for any 6 € (0,1) and T € N, the regret of
BANDITSRL is bounded, with probability at least 1 — 40, aé]

RT S 27—elim + gé%)f EQ[((Topt - Telim) A T7 ¢a 6log2(7‘opt/\T)/|(bD 10g2 (Topt A T)»

where §; := 6/(2(j + 1)?) and

Topt = Tglrt V THLS V Telim g Talg

L3 log(|®|/6) (L3, do- |4 ) @
X\ N6 T AT (minggas )4 )

with T, a finite (independent from the horizon T') constant depending on algorithm A (see Tab. [Zl)

and Ry (1, ¢, ) an anytime bound (non-decreasing in T and 1/5) on the regret accumulated over T
steps by 21 using representation ¢ and confidence level 6.

'While Thm. @provides high-probability guarantees, we can easily derive a constant expected-regret bound
by running BANDITSRL with a decreasing schedule for § and with a slightly different proof.
2We denote by a A b (resp. a V b) the minimum (resp. the maximum) between a and b.



The key finding of the previous result is that BANDITSRL achieves constant regret whenever a
realizable HLS representation is available in the set ®, which may contain non-realizable as well
as realizable non-HLS representations. The regret bound above also illustrates the “dynamics”
of the algorithm and three main regimes. In the early stages, non-realizable representations may
be included in ®;, which may lead to suffering linear regret until time 7.};;,, when the constraint
in the representation learning step filters out all non-realizable representations (first term in the
regret bound). At this point, BANDITSRL leverages the loss £ to favor HLS representations
and the base algorithm 2 to perform effective exploration-exploitation. This leads to the second
term in the bound, which corresponds to an upper-bound to the sum of the regrets of 2 in each
phase in between Telim and 71t V Tars, Which is roughly Zj << Ro(tjy1 —tj,05) <

maxgea Ro(Topt — Telims @) 108 (Topt)- In this second regime, in some phases the algorithm
may still select non-HLS representations, which leads to a worst-case bound over all realizable
representations in ®*. Finally, after 7,1t V TuLs the GLRT consistently triggers over time. During
this last regime, BANDITSRL has reached enough accuracy and confidence so that the greedy policy
of the HLS representation is indeed optimal and no additional regret is incurred.

Telim

We notice that the only dependency on the number of representations |®| in Thm. is due to
the rescaling of the confidence level § — §/|®|. Since standard algorithms have a logarithmic
dependence in 1/4, this only leads to a logarithmic dependency in |®|. On the other hand, due to the
resets, BANDITSRL has an extra logarithmic factor in the effective regret horizon 7.

Single HLS representation. A noteworthy consequence of Thm. .T]is that any no-regret algorithm
equipped with GLRT achieves constant regret when provided with a realizable HLS representation.

Corollary 4.2. Let & = ®* = {¢*} and ¢* is HLS. Then, Telim = TaLs = 0 and, with probability
at least 1 — 49, BANDITSRL suffers constant regret: Ry < Ro(Tgie A T, ¢*,9).

This corollary also illustrates that the performance of 2l is not affected when ¢* is non-HLS (.e.,
Telrt = 00), as BANDITSRL achieves the same regret of the base algorithm. Note that there is no
additional logarithmic factor in this case since we do not need any reset for representation learning.

4.2 Additional Results

No HLS representation. A consequence of Thm. is that when |®| > 1 but no realizable HLS
exists (71, = 00), BANDITSRL still enjoys a sublinear regret.

Corollary 4.3 (Regret bound without HLS representation). Consider the same setting in Thm.
and assume that ®* does not contain any HLS representation. Then, for any 6 € (0,1) and T € N,
the regret of BANDITSRL is bounded, with probability at least 1 — 49, as follows:

Ry < 27¢im + ;%%}f Ry (T, ¢, Stog, (1) /|®]) logy (T').

This shows that the regret of BANDITSRL is of the same order as the base no-regret algorithm 2{ when
running with the worst realizable representation. While such worst-case dependency is undesirable, it
is common to many representation learning algorithms, both in bandits and reinforcement learning [e.g.
4, 33]E] In App. |Cl we show that an alternative representation loss could address this problem
and lead to a bound scaling with the regret of the best realizable representation (Rp < 27l +
mingear Ry (T, ¢,5/|P|) log,(T)), while preserving the guarantees for the HLS case. Since the
representation loss requires an upper-bound on the number of suboptimal actions and a carefully
tuned schedule for guessing the gap A, it is less practical than the smallest eigenvalue, which we use
as the basis for our practical version of BANDITSRL.

Algorithm-dependent instances and comparison to LEADER. Table[I|reports the regret bound of
BANDITSRL for different base algorithms. These results make explicit the dependence in the number
of representations |®| and show that the cost of representation learning is only logarithmic. In the
specific case of LINUCB for HLS representations, we highlight that the upper-bound to the time 7

3Notice that the worst-representation dependency is often hidden in the definition of ®, which is assumed to
contain features with fixed dimension and bounded norm, i.e., ® = {¢ : X x A — R%, sup, , ||¢(z,a)l|2 < L}.

As d and B are often the only representation-dependent terms in the regret bound Ry, no worst-representation
dependency is reported.



Algorithm Ra(T, ¢,6/|®]) Talg
L2, d Tog([2]/0)°

LINUCB d3 log(|®|T/5)*/A Oy
6 3)213 1, 3
e—greedy with €, = 2571/3 d¢|.,4‘ log(|<1>\/6)T2/3 Lgx (dlA)l\)* (¢*L)31A§(\<I>V6)

Table 1: Specific regret bounds when using LINUCB or e-greedy as base algorithms. We omit numerical
constants and logarithmic factors.

in Thm. improves over the result of LEADER. While LEADER has no explicit concept of 7,
a term with the same dependence of 7, in Tab. [T|appears also in the LEADER analysis. This term
encodes an upper bound to the pulls of suboptimal actions and depends on the LINUCB strategy. As
a result, the first three terms in Eq. [ are equivalent to the ones of LEADER. The improvement comes
from the last term (7e1;m ), Where, thanks to a refined analysis of the elimination condition, we are able
to improve the dependence on the inverse minimum misspecification (1/ minggqe+ €4) from quadratic
to linear (see App.[B|for a detailed comparison). On the other hand, BANDITSRL suffers from the
worst regret among realizable representations, whereas LEADER scales with the best representation.
As discussed above, this mismatch can be mitigated by using by a different choice of representation
loss. In the case of e-greedy, the 7%/3 regret upper-bound induces a worse Talg due to a larger
number of suboptimal pulls. This in turns reflects into a higher regret to the constant regime. Finally,
LEADER is still guaranteed to achieve constant regret by selecting different representations at different
context-action pairs whenever non-HLS representations satisfy a certain mixing condition [cf. |11}
Sec. 5.2]. This result is not possible with BANDITSRL, where one representation is selected in each
phase. At the same time, it is the single-representation structure of BANDITSRL that allows us to
accommodate different base algorithms and scale it to any representation space.

5 Experiments

We provide an empirical validation of BANDITSRL both in synthetic contextual linear bandit
problems and in non-linear contextual problems [see e.g., 6} 27].

Linear Benchmarks. We first evaluate BANDITSRL on synthetic linear problems to empirically
validate our theoretical findings. In particular, we test BANDITSRL with different base algorithms and
representation learning losses and we compare it with LEADERE] We consider the “varying dimension”
problem introduced in [[11] which consists of six realizable representations with dimension from 2
to 6. Of the two representations of dimension d = 6, one is HLS. In addition seven misspecified
representations are available. Details are provided in App.|[D| We consider LINUCB and e-greedy
as base algorithms and we use the theoretical parameters, but we perform warm start using all the
past data when a new representation is selected. Similarly, for BANDITSRL we use the theoretical
parameters (y = 2) and £,(¢) := Leig+(¢). Fig.|1|shows that, as expected, BANDITSRL with both
base algorithms is able to achieve constant regret when a HLS representation exists. As expected from
the theoretical analysis, e-greedy leads to a higher regret than LINUCB. Furthermore, empirically
BANDITSRL with LINUCB obtains a performance that is comparable with the one of LEADER
both with and without realizable HLS representation. Note that when no HLS exists, the regret of
BANDITSRL with e-greedy is 7%/3, while LINUCB-based algorithms are able to achieve log(T)
regret. When ® contains misspecified representations (Fig. [T(center-left)), we can observe that in
the first regime [1, Tejim ] the algorithm suffers linear regret, after that we have the regime of the base
algorithm ([Telim, Tolrt V THLs]) up to the point where the GLRT leads to select only optimal actions.

Weak HLS. Papini et al. [11]] showed that when realizable representations are redundant (i.e., \*(¢*) =
0), it is still possible to achieve constant regret if the representation is “weakly”-HLS, i.e., the features
of the optimal actions span the features ¢(x, a) associated to any context-action pair, but not necessar-
ily R%#. To test this case, we pad a 5-dimensional vector of ones to all the features of the six realizable
representations in the previous experiment. To deal with the weak-HLS condition, we introduce the
alternative representation 10ss Lyeak,:(¢) = — ming<y {gf)(xs, as)T(Vi(¢) — Mg, )d(xs, as)/Li}.
Since, V;(¢) — Mg, tends to behave as E,[¢* (x)¢* ()], this loss encourages representations where
all the observed features are spanned by the optimal arms, thus promoting weak-HLS representations

*We do not report the performance of model selection algorithms. An extensive analysis can be found in [11],
where the author showed that LEADER was outperforming all the baselines.



(see App. |gf0r more details). As expected, Fig. Ekright) shows that the min-eigenvalue loss Leig ;
fails in identifying the correct representation in this domain. On the other hand, BANDITSRL with
the novel loss is able to achieve constant regret and converge to constant regret (we cut the figure for
readability), and behaves as LEADER when using LINUCB.

Realizable and one HLS Misspecified and one HLS Realizable, no HLS Weak HLS
180 f t t t — 1,000 150 1 T T T

2
550 140 800
@ 600 H, wmawnasnns
e 400 [t%xa X =6 o= X =X= 50 |
3 200 f i
o 0
| | |
0 0 05 1 15 2
Time 104 Time 104 Time 104
=> BanditSRL-LinUCB (L(eig)) = = BanditSRL-e-greedy (L(eig)) LR Leader
=== BanditSRL-LinUCB (£(weak)) =@= BanditSRL-e-greedy (L(weak)) =—— LinUCB with HLS

Figure 1: Varying dimension experiment with all realizable representations (left), misspecified representations
(center-left), realizable non-HLS representations (center-right) and weak-HLS (right). Experiments are averaged
over 40 repetitions.
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Figure 2: Average cumulative regret (over 20 runs) in non-linear domains.

Non-Linear Benchmarks. We study the performance of NN-BANDITSRL in classical benchmarks
where non-linear representations are required. The code is available at the following URL. We only
consider the weak-HLS 10ss Lyeak,:(¢) as it is more general than full HLS. As base algorithms we
consider e-greedy and inverse gap weighting (IGW) with ¢, = t~/3, and LINUCB and LINTS with
theoretical parameters. These algorithms are run on the representation ¢; provided by the NN at each
phase j. We compare NN-BANDITSRL against the base algorithms using the maximum-likelihood
representation (i.e., Neural-(e-greedy, LINTS) [6] and Neural-LINUCB [28]]), supervised learning
with the IGW strategy [e.g.,[7, [10] and NeuralUCB [Iﬂlﬂ See App. for details.

3For ease of comparison, all the algorithms use the same phased schema for fitting the reward and recomputing
the parameters. NeuralUCB uses a diagonal approximation of the design matrix.


https://github.com/facebookresearch/xbanditsrl

In all the problemsﬁ] the reward function is highly non-linear w.r.t. contexts and actions and we use
a network composed by layers of dimension [50, 50, 50, 50, 10] and ReLu activation to learn the
representation (i.e., d = 10). Fig. |2 shows that all the base algorithms (e-GREEDY, IGW, LIN-
UCB, LINTS) achieve better performance through representation learning, outperforming the base
algorithms. This provides evidence that NN-BANDITSRL is effective even beyond the theoretical
scenario.

For the baseline algorithms (NEURALUCB, IGW) we report the regret of the best configuration
on each individual dataset, while for NN-BANDITSRL we fix the parameters across datasets
(i.e., agLrT = 5). While this comparison clearly favours the baselines, it also shows that NN-
BANDITSRL is a robust algorithm that behaves better or on par with the state-of-the-art algorithms.
In particular, NN-BANDITSRL uses theoretical parameters while the baselines use tuned configura-
tions. Optimizing the parameters of NN-BANDITSRL is outside the scope of these experiments.

6 Conclusion

We proposed a novel algorithm, BANDITSRL, for representation selection in stochastic contextual
linear bandits. BANDITSRL combines a mechanism for representation learning that aims to recover
representations with good spectral properties, with a generalized likelihood ratio test to exploit the
recovered representation. We proved that, thanks to these mechanisms, BANDITSRL is not only able
to achieve sublinear regret with any no-regret algorithm 2( but, when a HLS representation exists, it
is able to achieve constant regret. We demonstrated that BANDITSRL can be implemented using
NNs and showed its effectiveness in standard benchmarks.

A direction for future investigation is to extend the approach to a weaker misspecification assumption
than Asm.[3] Another direction is to leverage the technical and algorithmic tools introduced in this
paper for representation learning in reinforcement learning, e.g., in low-rank problems [e.g.38].
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A Notation

Symbol Meaning
X Set of contexts
A Finite set of arms
Context distribution
p:XxA—->R Mean-reward function
P Set of representations
o~ Subset of realizable representations
T X > A A policy
Fi o-algebra generated by (1, a1,y1, ..., Tt, G, Yt)
A : X > A Bandit algorithm (measurable mappings w.r.t. F¢_1)
Vi(9) := k) @k, ar)p(wr, ar)’ + Ma, Design matrix for representation ¢
0s,c = Vi(¢) P 38, P, a)re Regularized least-square estimate for representation ¢
7} (25 ¢) := argmax,c 4 ¢(z,a) Oy Empirical optimal arm for context = and representation ¢
A(z,a) = maxycq p(z,a’) — u(x,a) Sub-optimality gap of arm a in context x
ay Optimal arm for context
m*(x) = argmax,c 4 u(z, a) Optimal policy
N (¢) 1= Eunpld(z, 7 (2)) O (z, 7 (2))7] Minimum eigenvalue on optimal arms
Ei(¢,0) =230 (¢(zr,ar)"0 — yk)2 Mean square error of model (¢, §) at time ¢
E; and V, Expectation and variance conditioned on F;_1

Pi(¢,0) =3, _, Ex [((;S(xk, ar)'0 — p(zy, ak))z] Sum of mean prediction errors of model (¢, 0)
8|®|2(12L 4 Byt) o +3

ars(¢) = L log =420 — 4 2 Threshold for MSE elimination
Dy (¢) := 160dy log(12L 4 Byt) Dimension factor for representation ¢
Rr = 23:1 Az, ar) Pseudo-regret
t; =27 Time at which the (j + 1)-th phase ends (with to := 0)
N;(T) := EtT:th 1{G+} Number of calls to 2( in phase j up to time 7' < ;41

¢t := {GLRt—1(x¢; pt—1) < Be—1,6/10/(P:—1)} Event under which the GLRT does not trigger at time ¢
Sri=31_, 1{as # 7" (21)} Total number of sub-optimal pulls at time T’
Ro(T, ¢,9) Regret bound of algorithm 2 over 1" steps when using ¢
gr (P, A, 6) Bound on the sub-optimal pulls of 2 (see Th.
§;:=0/(2( +1)%) Confidence level for the base algorithm

Table 2: The notation adopted in this paper.

B Analysis of BANDITSRL

B.1 Assumptions
The analysis works under the assumptions stated in Section[2]and for any no-regret base algorithm 2.
Here we formally state the conditions required on the

Assumption 4 (No-regret algorithm). For any ¢ € ®* and 6 € (0, 1), if we run algorithm 2 with
representation ¢ and confidence 6§, with probability at least 1 — § we have, for any T € N,

T
Z A(:I;tamt(xt; ¢7 6)) S RQ[(T, ¢7 5)7

t=1

where A (x; ¢, §) denotes the policy played by 2 at time t when instantiated with representation ¢ and
confidence 0, while the function Ry (T, ¢,0) is sub-linear and non-decreasing in T and logarithmic
and non-decreasing in 1/4.

B.2 Controlling the MSE
The following is an extension of Lemma 4.1 in [4] and Lemma 20 in [11]. Differently

from their results, which relate the empirical MSE of any model (¢,6) with that of a re-
alizable model, we also include the sum of conditional mean prediction errors P;(¢,0) :=
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2221 Ex [(d)(wk, ar)0 — p(xy, ak))z] , which roughly quantifies the misspecification of model

(¢, 0). This shall be crucial for improving the elimination times of misspecified representations later.

Lemma B.1. Let ¢ € ®,0 € R%. Take any realizable representation ¢* € ®* and let 0* := 0%
Then, for eacht > 1 and § € (0,1),

4 4 P,
P (B0 0) > Bi(0.0) + Frony - T2 <5 ®

Proof. Define Zj, := (¢(xx, ar)T 0—yr)?—(¢* (w1, ar )T 0* —yi)?. Note that, since |¢(xy, ax)T 0] <
1, |¢* (xr, ar)T0*| < 1, and |yx| < 1, we have | Z;| < 4. Thus, (Ex[Z;] — Zy)k>1 18 a martingale
difference sequence bounded by 8 in absolute value. Then, using Freedman’s inequality (Lemma
, with probability at least 1 — 4, for any ¢,

4t

t
ZEk[Zk sz<2 kazk logg+3210g6

k=1

Using Lemma 4.2 in [4], we have that V[Z;] < 4E;[Zk]. Solving the resulting inequality in
S5y Ex[Z4] and using (z + y)? < 222 + 242,
2

iE [Zi] < [ 24/1o ﬁ+ 3610 ﬁJriZ <80lo ﬁ+2iZ
k4K < g5 g(S k = g(5 k-

k=1 k=1 k=1

The proof is concluded by using Z};zl Zy, = t(Ey(¢,0)— E¢(¢*,6%)) and ZZ:l Ex[Zk]) = Pi(9,0).
O

Lemma B.2. Foreach ¢ € (0,1),

Pt (¢7 0)
4t

P <Elt >1,0€®,¢0" € ®*,0 € By : E(¢",05.) > Ei(,0) — + at75(¢)> < 4.

Proof. We shall use a covering argument for each representation ¢ € ®. First note that, for any £ > 0,
there always exists a finite set C;, C R% of size at most (3B,/€)% such that, for each 6 € By, there
exists 0’ € Cy, with ||0 — 6'||2 < £ (see e.g. Lemma 20.1 in [13]). Moreover, suppose that all vectors
in Cy have £2-norm bounded by By (otherwise we can always remove vectors with large norm). Now
take any two vectors 6,8’ € By, with ||§ — 6'[|2 < . We have

Ei(¢,0) = (6(xk, ar) 70 + G, ar) 0 — yi)’

~+ | =
MH

=
= |l
—_

(p(zn, ar)T (0 — 9/))2 + (¢(wp,ar) "0 — Z/k>2

1
t

S
M“

k

Il
-
~
=
=

+ (¢(zk,an)T (0 — 0") (d(2k,ar) 0" — yi)

SRS

b
I
—

> Ey(9,0") + (p(zhyar) (0 —0)) (¢(z, ar) "0 — yi)

[-1<2

~ | Do
(-

=~
Il
—

o~

>Ef ¢a

wu;

16 (zr, ar)ll2ll — O'll2 = Be(¢,0") — 4L4E.
k=

—
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Similarly, one can prove that

= ZEk [(¢(mk7ak)T9 — /L(xk,ak))ﬂ
k=1

t

<2 ZEk {(¢($k,ak)T9 - ¢(xr, ak)TQ/)Q} + 2Z]Ek [(Gﬁ(mk, ar)"0 — M(l“k,ak))ﬂ

k=1

¢
<2P(9,6) +2) Ep [ ¢(zr, an)l3] 16 — 0I5 < 2Pi(4,6") + 2L3E%.
k=1
Let us define a sequence of deterministic covers (Cgp 1 )>1 such that Cy ; is a &-cover with £ = ﬁ.
/7 ) 40
Let 675 = W and note that Oétﬁ((ﬁ) log + Then

+— log — +

]P(Ht>1,¢e<1>,¢*e<1>*,968¢:Et(¢*,9**)>Et(¢,9) p 5,

3 P(¢,0) 40 43 2
<3y > P(3968¢:Et(¢*,0;*)>Et(¢,0)_ (¢, )+71g5i/+ )

4t t
t=1 pcd p* €D+

o) / 3
<3N P<30’€C¢:Et(¢*,0;*)>Et(¢,0’)—1—2Pt(¢’0)+1/(8t) 401 it +2>

4t 5’ t
t=1 pcd ¢* cd+

/ 3
I ID WD I CITCAREINIREL ORI

t=1 ¢pcP p*€P* '€Cy

ZZZ Z §|<I’|Z 12L¢B¢td¢<5

t=1 ¢ped ¢* cD* 9’6C¢

Py(¢,0) 40 4t 2)

Here the first inequality is from the union bound, the second one follows by relating 6 with its closest
vector in the cover as above, the third one is from another union bound, the fourth one uses Lemma
B.1| the fifth one is from the maximum size of the cover, and the last one uses the definition of 6;. O

Corollary B.3. Foreach§ € (0,1),

P(3t>1,6 € ®, ¢" € d*,0€By: By(¢*,05) > Ei(,0) + ars(e)) <.

Proof. This is trivial from Lemma[B.2]since P (¢, ) > 0. O

B.3 Decomposition into phases

Forj >1,lett; = 27 be the time at which the (j + 1)-th phase ends (i.e., when the algorithm selects
a new representation for the (j + 1)-th time). Let ¢ty = 0. Note that, on the interval [t; + 1,¢,11]
the algorithm uses a fixed representation ¢; selected at time ¢;. In the remaining, we shall overload
the notation used in the main paper and denote all quantities with a time subscript. Therefore, for
te [tj +1, tj+1], ¢¢—1 = ¢y, denotes the representation used a time ¢, i.e., ¢;.

Recall that GG; denotes the event under which the GLRT does not trigger at round ¢ (i.e., the base
algorithm is called). Then, for each j > 0, the quantity

tjt1

> 1{Gi} Alar, ar)

t=t;+1

denotes the regret suffered by the base algorithm in phase j.
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B.4 Good events

We define the following events
& ={VteN,¢ged® :0s:—0llv,) < Brsnal(®)}
£2 = {Vt € N,6 € ©: V5(6) = tEpn, [l 7" (@) 6 (7 ()]

+ ()\ — I35, — 8L tlog(4d¢|<1>|t/5)> Id¢},
£ = {Wt E€N.¢ € ©: Vi(9) X tE,n, [p(a, 7 (2) (e, 7" (2))]

+ ()\ + LiSt + 8[@ tlog(4d¢|q>|t/5)) Id¢},

P,
fi={wenoc ot co e B, B60) < Blod) - 0D a0,
T —
E=SVieENT <tj1: > L{Gi}Alw,ar) < Ra(N;(T), ¢r,.6;/|®]) ¢,
t=t;+1

We define the good event £ := &, NE NE3NELNEs.
Lemma B.4 (Good event). We have P(E) > 1 — 44.

by Lemmal[F.1] P(E, N E3) > 1 — 4. Event & holds with probability at least 1 — § by Lemma
We finally bound the probability of &5 failing. We have

Proof. By using Theorem 2 in [13] together with a union bound over ®, P(£1) > 1 — 4. Similﬂ,

T
P(~&) <Y PRIT<tj1: Y 1{G:} Azs,ar) > Ra(T, ¢r,,6;/1®]) p <> 65 <6,
jEN t=t;+1 jeN

where the first inequality is from a union bound over 7, the second holds from the anytime no-regret
assumption (Assumption[d) together with a union bound over ®, while the last one holds by definition
of J;. A union bound over the 5 events proves the statement. O

Lemma B.5. [Correctness of MSE elimination] Under event &, for each t > 1 any realizable
representation ¢* € ®* satisfies the constraint, i.e., p* € ®,.

Proof. Under &,

Jmin Bi(¢7.0) < E(6.63,.) < min min (E(6.0) + 015(6).

This implies the statement. O

B.5 Generalized Likelihood Ratio Test

For any ¢ € ® and = € X, let us define the generalized likelihood ratio as

(6(x, 77 (2:0)) — d(x,0)) 04,

GLRy(x;9) := i .
(@0) = i o, 7 @ 8)) — (5, i ey

It is known [e.g.,[16,[30] that

GLRy(z;¢) = inf Op:—0 ,
t(@0) = inf 106 = Ollvico)
where Ay(z;¢) = {0 € RY% | Ja # 77 (z;¢) : ¢(x,a)T0 > ¢(z, 75 (x;¢))T0} is the set of
parameters for which the optimal arm in context x is different from the one of 6 ;. In turns, the
squared objective above is equivalent to

t

1 2
§||9¢,t - ‘9||%/t(¢) e Z (¢(Ik7ak)T9¢,t - ¢(93k»ak)T‘9) )
k=1

—_
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which is equal to the expected (under the conditional reward distribution) log-likelihood ratio between
the observations in the bandit model given by (¢, 6, ;) and the one given by (¢, 6) if these were
Gaussians with unit variance. This is the reason why GLR:(z; ¢) is called the generalized likelihood
ratio between the bandit model (¢, 84 ;) and any other bandit model with a different optimal arm in
context x. The generalized likelihood ratio test (GLRT) consists in checking whether

GLR¢(x; ¢) > f1,5(¢).
When this happens, we have enough confidence to conclude that 07 ¢ A¢(7; ¢), i.e., that 7*(x) =
i (5 ).
BANDITSRL computes, at each step, the GLRT for the currently selected representation. We can
easily prove that the test is correct under the good event £ if the selected representation is realizable.

Lemma B.6 (Correctness of GLRT). Under the good event &, for any time t, if GLRt_1(z+; pr—1) >
ﬂt—l,é/\¢>|(¢’t71) and ¢y € O, then w (xy) = 7/ (T4; ).

Proof. By contradiction, suppose that the statement does not hold. This means that there exists a
time ¢, realizable feature ¢ € ®*, and context x such that 7 (z) # 7/ (x; ¢) while the test triggers
for context x and feature ¢. By definition, this implies that 6 € A, (z; ¢) since 7* is the greedy

policy for the (realizable) model (¢, 9*). Thus,

Brs/1a)(9) < GLR¢(z; 0) = 9e/§nf 10,6 — Ollviey < 106t — O5llvice) < Br.ssal(®),

where the last inequality is from event &;. This is clearly a contradiction. [

B.6 Eliminating misspecified representations

Lemma B.7. Let ¢ € ® be any misspecified representation (i.e., ¢ ¢ ®*). Under event &, if ¢ € P,
for some t, then
P6,6) < Dy(6) + min Dy(6") + 3281og LY
min min 0
GeB, t\P, t S e t g 5

where Dy(¢) := 160d log(12Ly Byt).

Proof. Recall that, from Lemma [B.5] under &, any ¢* € ®* is always in ®;. Take any arbitrary
¢* € ®* and let 0* := 0**. Then, by definition of &,

52}% Ey(¢,0) < gggegun {Eu(¢',0) + ars(¢')} < E(¢%,0%) + a 5(¢).

Similarly, under £, we have that

Pt(¢7 0)
41

mingeg,, Pi(¢,0)

1 + Oét,5<¢)~

B0 0%) < uip (5:00.6) - 00 ) a5(6) < guin E0,0) -

Combining these two inequalities, we find that

w < aps(9) + ars(07)-

Expanding the definition of «, rearranging, and optimizing over ¢*,

LR

, . 8|®
Jnin Pi(¢,0) < Di(¢) + min Dy(¢") +320log =

+ 16.

. . 8|2t 8|®|%¢3
The proof is concluded by noting that log ——— =2 and, thus, 16 < 8log — O

Lemma B.8 (Elimination). Under event £, we have ®; = ®* for all t > Tejin,, where

1 ) . 8|®|%t3
Telim 1= Itrélgll {t |3j €ENsg:t =27t > r%%)f ; (Dt(qﬁ) +¢r*nelg* Dy (¢*) + 3281og | 5| )}

Let Telim = 0 when & = &*.
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Proof. Let m; be the policy played by the algorithm at round k. First note that,

i P0.0) = iy 3 B[00 70~ o )]
2
= in Y 1Ew~p [(6(w, m4(2))76 = pu(r, me(2))) ]
> min mlnETNp [(gb(z,ﬂ'(x))Tﬂ — ,u(x,ﬂ'(x)))z}

0eBy 1

= tenelgl mT}nIEwNp [((b(x, m(z))10 — p(x, 77(90)))2] > teg.

Then, under €, from Lemma[B.7] if ¢ € ®; and ¢ ¢ ®*,

1 . 8|® %3
t<— (D Dy (¢*) + 2001 .
Sy < «(9) + min Dy(¢") +200log ==
The result follows by finding the first time ¢ at which a representation update is performed (i.e.,
t = 27 for some j5) and the condition above is violated for all ¢ ¢ ®*. O

B.7 Regret bound without HLS representations

We first prove a general regret bound that holds for any realizable problem (in the sense of Assumption
[T) without requiring the presence of HLS representations.

Theorem B.9. Under event £ (i.e., with probability at least 1 — 46), for any T € N, the regret of
Algorithmwith v = 2 and arbitrary loss Li(¢) can be bounded as

Ry < 27e1im + gg}{)}f EQ{ (T = Telim; 6log2 (T)/|q)|) 1Og2 (T)v

where Tein, is defined in Lemma[B.3]

Proof. Let j be such that 7oy, = 2J (which exists by definition). Using the decomposition into
phases of Appendix[B.3]

T Jj=1tjanT [logy (T) ] 51 AT
Ry = E A(wg,ar) = E E Az, ap) + E E A(xt, at)
t=1 §=0t=t,;+1 j=j t=t;+1

[loga(T)] t5+1 AT

S 2’7—elim + Z Z A(xtvat)y

j=j t=tj+1

where the second inequality holds by definition of_j and because the rewards are bounded in [—1, 1].
It only remains to bound the regret on phases after j. By Lemma we have ¢, € ®* at all times in
such phases.

Let Gy := {GLR¢_1(xt; #t—1) < Bi—1,5/|0|(¢t—1)} be the event under which the GLRT does not
trigger at time ¢. For any j > 7,

tj+1/\T tj+1/\T tj+1/\T tj+1/\T
Z Alzy, ae) = Z L{G:} A(ze, a¢) + Z L{=G} Ay, ar) = Z L{G:} Ay, ay),
t=t;+1 t=t;+1 t=t;+1 t=t;+1

where the last equality holds since, under &, if G does not hold, then the GLRT triggers, a; =
i1 (@y; Pe—1), and w5y (v45 Pp—1) = () by Lemma Let N; := :J:tl]{g 1 {G.} be the
total number of times the base algorithm £l is called in phase j. By event &5, the regret of 2( on such
steps is bounded as

t]‘+1/\T

Z ]I{Gt}A(act,at) R ( ( 7+1 /\T) (Z)tja(s /|(I)D
t=t;+1



Note that, for all j > 7, Nijtji ANT) <t AT —t; <T— t; = T — Telim. Morevoer, the number

of phases is j < log, (7). Therefore, by the fact that Ry (-, ¢, -) is non-decreasing in the first and
third argument,

lloga (1))
Rp < 27qim + Z Ro(T — Tetim, ¢ 5 S1og, (1) / | @)
Ji=J
< 27elim + gé%)f Ry (T = Telim; 6log2 (T)/|q)|) 1Og2 (T)

O

Lemma B.10 (Bound on sub-optimal pulls). Under the same conditions as Theorem|B.9| under event
& (i.e., with probability at least 1 — 46), for any T € N,

; -
Ot + Ra(T, 6,51, o)) log, (T

Sr.= 301 (0 (o < Tt OO nIRD RS 4y, 0.0),

t=1

Proof. Note that, since the minimum gap is at least A, the event {a; # 7*(z:)} implies that
A((I}t, at) > A. Then,

d a $t7at
<D 1{A@na) Z
t=1 t=1

< 2Telim + manﬁE(I)* a(T, ¢, 5log2 (T) /|(I)|) log,(T')
— A b
where the last inequality holds by Theorem [B.9] O

B.8 Regret bound with HLS representations

Lemma B.11 (Selecting the HLS representation). Suppose Algorithm [I]is run with v = 2 and
Li(p) = =Amin(Vi(d) — )\Idd))/L2 Suppose that there exists a unique ¢* € ®* such that ¢* is HLS.
Then, under event £ (i.e., with probability at least 1 — 40), ¢ = ¢* for all t > This V Telim, Where

) 212, 4|P|t maxpepr d
s = mi d5 =2 e P, A \/ 1 o2 ¢ .
Th Itrélél{ﬂ j€Nsg:t b > ) <gt( ,A) + 84/ tlog 5

Proof. Take any time t > 7¢)i- By Lemma L, we have @, = ®* and, thus, ¢* is the only active
HLS representation. By the min-max theorem, A = B implies A\t (A) < g (B) where )y, is the k-th
largest eigenvalue of the matrix. Then, from event £, we have that, for all £,

Amin(Ve(") = M, ) > tN(6%) — L3.5; — 8L2.\[tlog(4dy. |2]t/5),
Amin (Ve(8) — Ma,) < L2S, + 8L3\/tlog(4dy|®[t/5) V¢ € ®*, ¢ # ¢*.

If t = 27 for some j € N (i.e., a time where representation selection is performed), ¢* is selected if

* 2 2
)\min(‘/t(d) ) - )‘Idd,*)/L x> ¢€£§i§;¢* )\mln(‘/t((zs) - )‘Id¢)/L¢

A sufficient condition based on the bounds above is

A (¢%)
) log(4ds|® .
Iz, It/5)+¢6£}%§¢* (8 tlog(4dy| t/5)>

t > 25; + 8\/75 log(4d 4

This, in turns, yields the simpler sufficient condition

A* (¢ 4|t «d
t (j) ) > 28; + 16\/t10g < [2lt maxseq ¢>.
L3. 0
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Finally, using Lemma [B.10|to bound S, it is sufficient that

tAL(j ) > 2g:(P, A, 5) + 16\/tlog <4|<I>|tma;(¢€q>* d¢>.
¢*

The right-hand side is a sub-linear function of ¢. The proof is concluded by rearringing this inequality
and defining the first update time that satisfies it. O

Lemma B.12 (Trlggermg the GLRT). Suppose Algorithm I is run with v = 2 and L(¢) =
—Amin(Vi(0) — AId¢)/L¢ Suppose that there exists a unique ¢* € O* such that ¢* is HLS. Then,

under the good event &, the GLRT triggers for all for all t > Tgir¢ V This V Telim, Where

L2, /168 (¢*)?
, s £,5/19|
Telrt == 10 {t 2 ( A

+ (@, A, 8) + 8/ tlog(4dy- |¢)t/5)> + 1} :

Proof. From Lemma|[B.11] we know that ¢ = ¢* for all ¢ > 715 V Telim. For simplicity, let us call
¢ = ¢*. Take any time step t > This V Telim (for which ¢, = ¢), any x € X, and any a # 77 (x; ).
Then, by the good event &,

2L,

o (2:0)) = 65, @llvigor s < s

2Ly

< .
\/t)\*(gb) + X — L25, — 8L2\/tlog(4d,[3[t/3)

Similarly,
(6@, 77 (250)) — d(z,a)) b0 > (B, 7 (x)) — P, a)) Op.s
=A<x,a>+< (.7 (@) — $l,)) " (Bps — 0)
> Az, a) — [|¢(z, 7 (2)) — d(x, a)|lv, (@)1 1108t — O5llvi ()
> Alz.a) — 2L4B4 50| (})
Amin(V2(9))

> Alz,a) — 2LyBys/10|(P)

\/t)\* )+ A — L3S — 8L \/tlog(4dy|®[t/9)
S A 2Ly Bt s/19|(9)

\/W(cb) +A— L3S, — 8L /tlog (dd,[0[¢/3)

Now suppose ¢ is large enough so that the right-hand side is at least A/2. Then, using the two
inequalities above,

o (6(x, 7} (23 8)) — b(x,a)) 04,
CLRi(w59) = min ol (5 9)) = é(5,a) v, (o)1

A
> iL, tA*(¢) + A — L3S, — 8L\ [tlog(4dy| @[t /9).

Thus, a sufficient condition for the test trigger at time ¢ + 1 (recall that at time ¢ 4+ 1 we perform
the test with the statistics up to time t) is that the right-hand side above is larger than j3; 5/5|(¢).
Therefore, for the test to trigger forever, we need simultaneously that

A

1\ V(@) + A= LES; — 8L, [tlog(4dy|@[t/5) = B, 5/10/(4)
[

and that ¢t > 7,15 V Telim- Note that this condition implies that the empirical gap is at least A /2 as we
required above. Using Lemma to bound S; and rearranging concludes the proof. O
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Theorem B.13 (Regret bound with HLS representation). Suppose Algorithm|l|is run with v = 2
and L4(¢) = —Amin(Vi(@) — Ma, )/Li Suppose ¢* is the unique HLS representation in ®*. Under
event & (i.e., with probability at least 1 — 46), forany T € N,

Ry < 27etim + max Rou(T — Telim» @ O1og, (r)/|®|) logy (1),
where T := Tglrt V This V Telim-
Proof. Under £, Lemma [B.12] ensures that the GLRT triggers for ¢ > Tgirs V This V Telim With a

realizable representation and, thus, the regret is zero for those times. Then, the result follows by using
Theorem [B.9]to bound the regret up to time g1 V This V Telim- O

B.9 Finding explicit bounds

Lemma B.14. For z € R and c1,ca,c3,¢4 > 0, consider the inequality v < c¢1 + co\/T +

csv/xlog(z) + calog(x). Then, © < ¢ + c3 + 2 + cy, where the < notation hides constant
and logarithmic terms.

Proof. We can start by finding a crude bound on « by using the inequality log(z) < 2%/« for any
x,a > 0. Using it for « = 1/2, we obtain

T < ¢1 + VT + V20323 + 2e40/7.

Suppose that = > 1. Then, z < (¢1 + ¢a + V/2¢3 + 2¢4)2%/%, which implies that z < (¢; + ¢ +
V2¢3 + 2¢4)*. Therefore, we have 2 < C for C' := max{(c; + ¢z + v/2c3 + 2¢4)*, 1}. Plugging
this into the logarithms in our initial inequality,

r < e1+ (ca+ e3v/10g(C))vVa + calog(C).

Solving this second-order inequality in y/z and using (a + b)? < 2a? + 2b2, we obtain

c2 + e3\/log(C) + \/(62 + e51/10g(C))?
2 4

+ ¢1 + c4log(O)

< (co 4+ c3y/10g(C))? + 2¢1 4 2¢410g(C) < ¢y + ¢34 + ¢y

Lemma B.15. The elimination time Tejim defined in Lemma[B.8| satisfies
_ dlog(|1/9)

elim ~> . .
mlnd,gq)* €p

Proof. We know that 7o, = 27 for some specific j. Let t = 27~ be the time at which the last
update before 71i,, Was performed. By definition, we have that

t < max 1 <Dt(¢) + min D:(¢*) + 328log 8(I)|2t3>
T 9¢D* €4 Pred* )
< 320dlog(12BL) + 320d log(t) + 328d log(8|®|2/J) + 984 log(t)
- min¢¢¢* € ’
where we used some simple crude bounds in the second inequality. Then, by Lemma[B.14] ¢ <
dlog(I®1/9) 414 the same holds for Telim SINCE Telim = 2t. O

minggex €4

Lemma B.16. The time Ty defined in Lemma|B.11]satisfies

L. log(|®[/d) N Telim L3+
)\*(¢*>2 )\*(q!)*)A’

Thls ,S 7'alg

where

e c=min< t | 3j =2 > & 2=
Talg Itgg{ | 3j € N> T A

8L2, log,(t) —
4 2 max RQ[(L ¢7 5log2(t)/|(1)|) :
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Proof. By definition of 7,

) 2L2, 1612, \/ 4|D|t maxpepr d
. < mi 35 =2 t>2 0 5(D,A o [t S N
Th]b — Itréll{]l {t | ] 6 N>O t 7t > max (}\*(qs*)gt( ) )6)? )\*(d)*) t Og 5

/ "
Thus, This S T + This» Where

2
This ::%iél{t|3j€N>0:t:2J’t> (qﬁ*)gt(q) AJ)}
) 3212, 4|D|t maxpeps d
Tihs ::rtnem{ﬂﬂjer t= 2J,t>/\*(¢¢i)\/tlog 6¢€ o

We now bound 7} We know that 7/}, = 27 for some specific j. Let ¢ = 27! be the time at which
the last update before s Was performed. By definition, we have that

3212 \/ 4Dt maxpepr dy _ 32L3. [ ] Lj. log(|[/9)
¢ pED* Lo ¢
t < tlo < tlo +\/t10 t)| < :
A (%) & 5 ) g 5 g(t) A ()2

where we used Lemma The same holds for 7{), since 7y, = 2¢t. We can now apply the same
trick to 71, by expanding the definition of ¢;(®, A, 0). This yields

TelimLi*
This S Talg + (o)A
O
Lemma B.17. The time Ty, defined in Lemma|[B.12|satisfies
S L;l)* log(|®]/4) N TelimLi* Li*dd,* log(|®|/9)
B R TTN (92 T M (90)A A (gr)AT
where T, is defined in Lemma|[B.16]
Proof. As we did in the proof of Lemma L we can bound 71, S glrt + 7! lrt + glrt, where
L3 (¢*)?
. o+ Pt,0/|2|
oo {1112 BT
L3
"o *
Tglrt = Itl'élél {t | t 2 Wgt(®’ A, 6)} 5
Li*
Talrt = Itréln t]t> (6] tlog(4dy«|@[t/d) ¢ .
As before, we have
2 4
" Telieri?* " L¢* 10g(|®‘/6)
Telet S Talg T (M)A and T, S T2
Regarding the first term, since 3 5/15|(¢*)? is of order dg+ log(t|®|/4), by Lemma
) L. dg log(|®]/6)
Tglrt ~ A (¢") A2
O

B.10 Proof of the main theorems
The proof of Theorem.T|easily follows by using Lemma[B.15}[B.16] [B.17]to simplify the expressions
of the constant times in Theorem [B.13]

Corollary |4.2{can be proved analogously to Theorem [B.9|and while noting that, since |®| = 1,
the base algorithm is never reset (hence we can simply use confidence ¢ and remove the extra log, (T")
term) and Tejjm = This = 0.

Corollary [#3]is simply a restatement of Theorem [B.9]
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C Variants of BANDITSRL

C.1 BANDITSRL: alternative losses

C.1.1 Obtaining best-in-class regret

Suppose that the upper bound Ry (T, ¢, §) to the regret of the base algorithm contains only known
quantities (e.g., it could be a worst-case regret bound). Moreover, assume that the minimum gap A is
known. This is only to simplify the notation in what follows, as we shall see at the end of this section
that A can be estimated with a decreasing schedule without significantly altering the results. We
consider the following alternative representation selection loss. For j € N,

Amin (Vi (9) = Ma,) _ 9, (®,A,6) — 8\/tj 1og(4d¢q>|tj/5)]

Ebic,tj (¢) = RQ‘ (tj7 ?, 5]/|(I)|) - L2
¢ +
where [z]1 := max(z,0). We show that with this selection loss we can achieve the best-in-class
regret bound when no HLS realizable representation exists while preserving the constant-regret result
when such a representation does exist.
Theorem C.1. Suppose that ®* does not contain any HLS representation. Under event € (i.e., with
probability at least 1 — 46), for any T € N, the regret ofAlgorithmwith v = 2 and loss Lvic ()
can be bounded as

Ry < 27eim + dIvlellbn* EQ[ (Ta o, 510g2 (T)/|(I)|) 1Og2 (T)v

where Telim is defined in Lemma|B.8]|

Proof. Using exactly the same steps as in the proof of Theorem[B.9] we have
[logo(T)]
RT < 27—elim+ Z RQ((Nj(tj—i-l AT)7¢tja5j/|q)|)7
i=j
where we recall that_j is such that 7o, = 27, Note that N;(tj41 ANT) < tjp1 —t; = t;. Moreover,
under &, for all j > j, we have that (I>tj = ®* and, since ®* does not contain any HLS representation,

Amin(Vz, (¢) — AL,
:,(9) ) _ gt, (P, A, 0) — 8\/tj log(4dg|®|t;/8) < 0.

L2
¢
This implies that Lyic,¢,(¢) = Ra(t;, ¢,6;/|®|) in such phases. Therefore,
Loz (1)) [logo(T)]
Rr < 27aim+ Y Ralty, ¢1,,6;/|1®) = 27ctim + > Loics, (1)
3= i=3
[log,(T)] [log,(T)] -
= 27elim + Z dfrelg{ Lyic,t; (¢) = 2Telim + Z d{relgl* Ro(t;,¢,0;/]®]).
J=J 3=J
The proof is concluded by noting that §; > d)o4,(7) and t; < T, so that, by the properties Ry,
S min g Ba(ty, 6,6;/|9]) < mingea: Ba(T, 6, g, (r)/|®]) logs (T). O

Let us now derive the constant regret bound when a HLS representation exists. Note that, since we
only changed the selection loss, Theorem [B.9]and Lemma [B.10|still hold. The only change is in the
time 73,35 at which the HLS representation is selected. Theorem E] also continues to hold with the
following redefinition of such time.

Lemma C.2 (Selecting the HLS representation with BIC loss). Suppose Algorithm|[I]is run with
v =2and L($) = Luic,t(¢). Suppose that there exists a unique ¢* € O* such that ¢* is HLS. Then,
under event £ (i.e., with probability at least 1 — 40), ¢ = ¢* for all t > This V Telim, Where

2

, L —
— mi ; R ¢* *
Thls = ItrgI{Il {t | JjENsg:t = 2.t > )\*(¢*) (Rﬁl(tvgb a(slogz(t)/|<p‘)

+ (P, A,0) + 8\/15 log 4\(I>|tma;(¢€q>* d¢) }
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Proof. Take any time t; > Telim. By Lemma we have ®;, = ®* and, thus, ¢* is the only active

HLS representation. Using the good event £, we can easily see that Lyici, (¢) < Ra(t;, ¢,6;/|P|)
for all ¢ € ®*, p # ¢*. Moreover,

Amin(‘/tj (¢) - )‘Id¢) > tA*((rb*)

— 91, (B, A,6) — 8 /t; log(4dy- Dt /)

L - L.
and, thus,
Lo, (0%) > Ralty, ¢*,6,/1®]) — |¢; A*L(;;) —2g,,(D,A,5) — 16\/tj log A 21 mzx¢€¢* ds
Therefore, a sufficient condition for selecting ¢* is
’ )\*L(;**) 2, (0.8.8) — 16yt 1og Dz o e 5 ).
The proof is concluded by rearringing this inequality. O

Dealing with unknown A If the minimum gap A is unknown, it can be easily guessed by a
decreasing schedule (1/t*);>1. Then, we can replace the unknown term g, (®, A, §) in Luic,i, (¢)

with g, (®,1/t5,6). Since

9t ((P’ l/tf, 5) = 2t§7—elim + t? dI)Ié%)E ﬁgl(tj, o, 6log2(tj)/‘(1)|) IOgQ(fj),

we only need tg- maxyeca+ Ra(l), ¢, dlog,(t;)/|®]) to be sub-linear to derive our constant-regret result.
For instance, if Ra((t;, @, d10g,(1,)/|®|) is an O(y/T;) regret bound, we can set £ = 1/4. Then, the
proofs of the two results above are the same except that we add a linear regret term 1/ AY? for the
first time steps where 1/t > A.

C.1.2 Weak-HLS Loss

In Section [S| we introduced an alternative 108s Lyeak,t(¢) = —ming<; {(zs,as)T(Vi(¢) —
Mg, )o(xs,as)/ Li}, which is motivated by the notion of “weak-HLS” representations from [11]]
and appears to perform well in practice. In this section, we will consider a slight variant

Eweak,t(¢) = —min {Qb(xaw as)T(Vt(QS) - >\Id¢)¢(xsv CLS)/ ||¢($év a8)||2 }

s<t
where the features are normalized to have norm equal to one. The loss used in the experiments is
Lweak,+ as defined in the main text.

We will show that Zweak,t does indeed select weak-HLS representations. We will assume throughout
this section that both X and A are finite and supp(p) = X. Let us first recall the definition of weak
HLS. We abbreviate span(¢) = span{¢(z,a) | z € X,a € A} and span(¢*) = span{¢(z,a}) |
x € X}

Definition C.1 (Weak-HLS Representation). A representation ¢ is weak-HLS if span(¢*) =
span(o).

The following characterization of the weak HLS property will be useful. We abbreviate Mj =
Eonp [0(2, a})d(x, a})T].

Lemma C.3. A representation ¢ is weak-HLS if and only if

T *
. {W,a) M¢¢(2x,a)} o, ©)
reX,acA Hd)(wva)”

Proof. We denote by Im(A) the column space of a symmetric matrix A, and by ker(A) its kernel.
Under our assumption that p is full-support, it is easy to see that span(¢*) = Im(MJ). If ¢ is
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weak-HLS, then

z,a)TM*d(x,a
min 9z, ) ¢¢(2 ) > min {’UTM;;U} @)
T€X,a€A ||¢(gj, a)” vespan(¢),|lv]|=1

: Tarx
min v Miv (8)
uespanw*),uvn:l{ ol

{vTM}v}, 9)

min
vEIm(My),llv||=1

and the latter is positive since it is the definition of the minimum nonzero eigenvalue of a positive
semidefinite matrix.

Now assume (6)) holds. We just need to show span(¢) C span(¢*), since the other inclusion is trivial.
By diagonalization, it is easy to show that the solution space of ¢(z,a)" M s0(x,a) = 0is ker(Mp).
Hence, (6) implies ¢(z,a) € Im(Mj) = span(¢*) forall z € X' and a € A. In turn, this implies
span(¢) C span(¢*), concluding the proof.

O

We can now show that our alternative loss does indeed select weak-HLS representations.
Lemma C4. Assume puin > 0 is the minimum probability p assigns to any context, and K = | Al.
For any representation ¢, e-greedy with ¢, =t~/ guarantees that the following hold simultaneously

3/2
with probability 1 — 56 for all t > (% log %) :

— . o(z,a)T M3 (x, a)
Lyeak,t(¢) < —t min A{ 15 } +o(t) and (10)
— . o(z,a)T M3o(x, a)
Lyeak,t(¢) = _tzegflgleA{ ool } —o(t) (11)

Proof. From Lemma [B.4] the good event & holds with probability 1 — 44. By &, since Loewner
ordering induces the same ordering on all quadratic forms:

o 00 TVE) — Ma )6l a)
Lvenic(9) = %?é?{ 6z as)]? } -
<~ min o(x,a)" (Vi(p) — A£d¢)¢(x, a) 13)
TEX,aEA H(b(%a)H
T *
< —t min ¢, a) M¢¢(2x’a) + o(t), 14
vEX,acA oz, a)ll

where we have also used Lemma to bound the number of suboptimal pulls. Similarly, by E3:

T *
Tuenis(6) > - min { d(xs,as) M¢¢(J¢s,as)} —olt). (15)

||¢(ms,a8)”2

. )T Mo (x, .
Let (Z,a) € argmingex qca {W} Under our assumption, e-greedy selects each

context-action pair with probability at least ¢ = pmin/(Kt'/?). After ¢ rounds, the probability that it
3/2
has not yet selected (7, @) is at most (1—¢q)*. A simple calculation shows that, by ¢t > (me log %) ,

in

the algorithm has selected (T, @) at least once with probability 1 — §, hence
| dlws,a) M B(3s,0.) | 6@, @) Mz, ) [ éla, )T Mz6(x, a)
mi 5 = — = min ) .
[¢(2s, as)| lo(z,a)| weX,aed oz, a)l

s<t

A union bound concludes the proof with an overall probability of 1 — 54. O
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Now let ¢y be a weak-HLS representation. Lemma [C.3| and Equation [I0] show that, with high
probability, Lyeak :(¢1) < —th + o(t) for some constant A > 0. From the proof of Lemmawe
can deduce that this ) is the minimum nonzero eigenvalu of Mgl . On the other hand, consider a
representation ¢, that does not have the weak-HLS property. The other direction of Lemma[C.3|
and Equation [11{show that, with high probability, Lyeax.:(¢1) > —o(t). Hence, the loss for the
weak-HLS representations decreases (towards —oo) much faster than representations that do not
have this property. This justifies the use of £ as a loss in the BANDITSRL algorithm, when e-greedy
is used as a base algorithm. A more sophisticated argument allows to extend this result to any

no-regret algorithm, by using the fact that they eventually sample all (finite) state-action pairs to
ensure sufficient exploration.

When span(¢) = R4, there is no distinction between HLS and weak-HLS. Moreover, [11] show that
weak-HLS is enough for LINUCB to achieve constant regret. We could generalize the constant-regret
result from this paper to weak-HLS in a similar fashion.

Empirical evaluation. We empirically compare Zweak’t and Lyeak,+ on the same set of experiments
reported in the main article. Fig. E| shows that the loss Lyeak, ¢ outperforms the theoretically grounded

Leak,+ loss. We leave as open question whether the 10ss Lyeak ¢ is theoretically sound or not.

Realizable and one HLS Misspecified and one HLS Realizable, no HLS Weak HLS
- ‘ ‘ ‘ 1,000 [ 400 ‘ ! T ] 600
© 400
&
~
[
= 200 >3 500
S

0 0
0 1 2 3 0 05 1 156 2

Time 104 Time 104 Time .10%
=% BanditSRL-LinUCB (L(weak)) BanditSRL-e-greedy (£(weak))
== BanditSRL-LinUCB (L(weak)) =@= BanditSRL-e-greedy (L(weak))
Figure 3: Varying dimension experiment with all realizable representations (left), misspecified representations
(center-left), realizable non-HLS representations (center-right) and weak-HLS (right). Experiments are averaged
over 40 repetitions as in the main paper.

C.2 NN-BANDITSRL: representation learning through neural networks

We recall that we consider a representation space ® defined by the last layer of a Neural Network
(NN). We denote by ¢ : X x A — R? the last layer and by f(x,a) = ¢(x, a)"w the full NN, where
w are the last-layer weights. We report the pseudo code of NN-BANDITSRL in Alg.[2] The structure
of NN-BANDITSRL is identical to the one of BANDITSRL, showing the generality and flexibility of
the theoretical algorithm.

The GLRT is the same reported in Eq. It leverages the current representation ¢; learnt by
the NN and the regularized least squares parameters V;(¢;) and 6y, ;. Note that, similarly
to [28], we keep a separate estimate of the weights of the linear fitting (f vs. w). While
the NN weights w are learnt through the regularization loss (line [I6] in Alg. [2), we compute
04, = argming {% Sy (B4, (1, a0) T — y)? + )\||0||§} by RLS at each time t. This allows
us to compute the best linear fit at each time ¢ using efficient incremental updates (e.g., we can use
Sherman-Morrison formula for computing directly V;(¢;) ") and avoid to retrain the network after
observing a new sample (z¢, as, y:). An alternative approach is to train only the NN weights w (i.e.,

keeping fix the representation ¢) by stochastic gradient at each step, leading to an approximation of
the RLS solution.

"0Of course, an HLS representation is also weak-HLS, and X = A* > 0. The converse is not true. Note also

that the minimum nonzero eigenvalue X is well-defined and positive for all representations, but it can only play
the role of A* when the representation is weak-HLS.
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Algorithm 2 NN-BANDITSRL

1: Input: Neural network f with last layer ¢ : X x A — R?, no-regret algorithm 2, confidence
0 € (0, 1), update schedule v > 1, regularizer A > 0 and ¢;cg > 0

2: Initialize j = 0, f; arbitrarily, b,(¢,;) = 0, Vo(¢;) = Al

3: fort=1,...do

4:  Observe context x;

5. if GLR¢—1(x4; ¢5) > Bi—1,5/|0|(#;) then

6: Play a; = argmax,c 4 {qu (24, a)TG(z,j,t,l} and observe reward y;
7 Dglrt,t = Dglrt,tfl ) {l’t7 G, yt}

8: else

9: Play a; = ¢ (z4; ¢;,9), observe reward y;, and feed it into 2
10: Do,y = Daup—1 U {xe, ar, ye }

11:  endif

12: Let Dt = DQ[yt U Dglrt,t

13:  Compute Vi(¢;) = Vi(¢;) + ¢j(xe,a)d(ae,a0)T, be(¢;) = bi(9;) + ¢j(w¢,ar)ys and
0s,1 = Vi(¢;) " b:(6;)

14:  if t = [+t;] then

15: Setj=j+1landt; =1t
16: Compute ¢; = argmin, miny {L¢(¢) + creg E¢(f) } (see Eq.[17) and reset 2
17: Recompute least-square on the linear embedding ¢; using all samples
Vi(g)) =M+ Y ¢i(w,a)d(z,a)T, bile) = D b(z,a)y
z,a,yEDy z,a,y€Dy
and 0y, ; = V;(¢;) ' be(9;5)
18:  end if
19: end for

The phases scheme of BANDITSRL pairs very well with NN since it allows to perform the com-
putationally costly operation of full NN training only log,, (T) times. The NN is trained through a
regression problem with an auxiliary representation loss promoting HLS-like representations. At the
beginning of phase j, we solve the following problem

f,¢j = ar%r?in {Ef(¢) + C1'eg Ef(f)}

) 2
= argmin ¢ L;(¢) + u;!eg | Z (¢($7 G)TW —y)
bw At (#,0,y) €D ¢ =f(z,a) (17)
. 1 T ?
= argmin < Cyeg,c L£1(¢) + —— Z <¢(1‘a a) w _3/)
b | Da | —
(2,0,y) €D ¢ =f(z,a)

for some Creg, £y Creg > OE] We recall that we compute the MSE regression loss using the explorative
samples Dy ¢, collected when playing the base algorithm 2[. As mentioned in the main paper, we
use this separation to prevent the NN f(x, a) to focus only on predicting optimal rewards when the
the empirical distribution of the samples collapses towards the optimal actions (i.e., catastrophic
forgetting). On the other hand, we can use all the samples D; = Dy ; U Dy, to compute the loss,
where we want to leverage the bias/shift of the empirical distribution towards optimal actions to
compute the empirical design matrix V;(¢).

Concerning the loss L, we leverage the same concepts used in BANDITSRL but we slightly modify
them to make it more amenable for NN training. To optimize Leis :(¢) we leverage the fact that
Amin (M) = min, R(M, z), where R(M, z) = 2 Mz g the Rayleigh quotient. We thus threat z as a

z2Tz

8In the experiments, we use scaling of the representation loss instead of MSE.
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parameter and optimize it by gradient descent, leading to

— T T
Eray,t(¢) = 71 m % )\Id + Z ¢($7a)¢ (m,a) z (18)

in
Dy, ezt | P 0] R B B P

We normalize the empirical design matrix to prevent features norms to grow unbounded. On the other
hand, since the idea behind Lyeax,:(¢) is to force the optimal features to span all the features we use
a mixed approach to compute the loss. We leverage all the samples to compute the matrix V;(¢),
while we use the explorative samples Dy ; to compute the quadratic form in V; and avoid it collapses
to evaluate only optimal actions. Then,

Leak,t (@) 1 min  stop-grad (qb(x,a)T) Mg+ Z #z,0)¢" (z o)

T = A 2
Dy,] 72 5)eDa. [ 0l P X0

¢(z,a)
stop-grad <||¢(x7a)||2> (19)

Where we apply the stop-grad operator on the outer features to only backpropagate gradient through
the covariance matrix. We notice that the loss Lycak ¢ resemble the L, ¢ loss with the difference of
being evaluated on the observed features rather than all the possible vectors in R, We can optimize

Eq.[I7)by stochastic gradient descent using mini-batches but we don’t compute the gradient w.r.t. the
outer features ¢(T,a).

Finally, nothing changes in term of base algorithm 2( that now receives in input the trained NN f; that
can be used to extract the representation ¢; (that is fix through the entire phase). In the experiments,
we use the standard LINUCB and e-greedy algorithms to perform exploration given the representation

?;-
D Experiments

In this section, we report additional information about the experiments. We recall that in all the
experiments, we do a warm start of the base algorithm 2( every time the representation changes using
all the samples D;.

D.1 Linear Benchmarks

Parameters. In all the experiments, we consider all the theoretical parameters, e.g., v = 2,
§ = 0.01 and \ = 1. For e-greedy we use the schedule e, = t~1/3. For all the algorithms based on
upper-confidence bound, we use the theoretical UCB value:

UCBq¢(z,a,¢) = ¢(z, a)T9¢,t—1 + Cucs,t

|¢($7G)H\/;11(¢) (20)

det(Vi— 1/2 det(XI4,)—1/2 .
where Cycp: = qucB o 2111( tVia (9) 3 t(May) ) + \Aqu, aycs = 1 and o is the

standard deviation of the reward noise.

Varying dimension experiment. We providing additional information about the “varying dimen-
sion” problem introduced in [11]. This problem consists of six realizable representations with
dimension from 2 to 6. Of the two representations of dimension d = 6, one is HLS. In addition
seven misspecified representations are available: one considering half of the features of the HLS
representation, one with a third of the same representation, and the five remaining are randomly
generated representations with dimensions 3, 9, 12, 12, 18. The reward noise is drawn from a
zero-mean Gaussian distribution with standard deviation o = 0.3. All the results of the experiments
can be found in the Sec.

Mixing Representations. To provide a fair and comprehensive analysis, we also report the per-
formance of the algorithms when none of the representations is HLS but a combination of them is.
We consider the same problem in [11], where there are six realizable representations of the same
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Figure 4: Cumulative regret of the algorithms in the mixing representation experiment, averaged over
40 repetitions.

dimension d = 6, none of which is HLS, but a mixture of them is HLS. We set ¢ = 0.3 for the
reward noise. In this case, LEADER outperforms BANDITSRL and achieves constant regret (see
Fig.[d). While LEADER is able to select a different representation for each context and mix them,
BANDITSRL is only able to select a single representation for all the contexts and suffers sublinear
regret. As mentioned before, this is both an advantage and drawback of LEADER since it needs to
solve an optimization problem over representations for each context.

D.2 Non-Linear Benchmarks

Baselines. As baselines we consider LINUCB and e-greedy with neural network and Random
Fourier Features, the inverse gap weighting (IGW) strategy [e.g.,[7, [10], NeuralUCB [27]] and Neural-
ThomposonSampling [6]. All the algorithms are implemented using the same phased schema of
NN-BANDITSRL.

Neural-LinUCB fits a model to minimize the MSE and compute the UCB on the last layer of the NN.

NeuralTS performs randomized exploration on the last layer of the neural network, trained to minimize
the MSE or our regularized problem. The exploration strategy is defined by the following two steps:

0~ N(Opi-1,C2cp, Vi1 (9)),

a; = argmax ¢(xy, a)Tg

The IGW strategy [e.g.,[7,[10] trains the network to minimize the MSE and, at each time ¢, it plays an
action a; sampled from the following distribution

1 - +._ ,
() = | AT L ) ey 1@ 7 dy 1= argmaxy i, (@, @)
1—=>" 2t pe(a) otherwise

Note that the network is kept fix during a phase, i.e., we do not refit the linear part at each step. We
also tested the variant of IGW where we refit the last layer at each time step (see Fig.[6). We did not
use the theoretical scaling factor (encoded here by 1 and ~5) since it would be prohibitively large.

NeuralUCB [27] is similar to Neural-LINUCB but uses a bonus constructed with the whole gradient
of the neural network. It thus selects the action that maximizes the following index

UCBY* ™V (,a) = fj, (2, a) + a5 PV £, (2, @)y, 21

where V,"1(f) = 2;11 diag (ijk_ (xk, ax)V fj, (T, ak)T). While we use the theoretical bonus
factor for Neural-LINUCB and NN-BANDITSRL, here we treat the bonus factor completely as an
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hyperparameter since the true factor is prohibitively large. This is a clear advantage we provide to
NeuralUCB.

We further compare our algorithm against stochastic linear bandit algorithms (i.e., e-greedy and
LINUCB) using random Fourier features [39]. We define ¢(z,a) = W [z, a] + b with [z, a] € R™
being the vector obtained from the concatenation of x and a, W € R4*™ ig random matrix and
b € R? is a random vector.

NN-BANDITSRL. We tested our algorithm with standard baseline methods: LinUCB, e-greedy
and IGW. LinUCB uses the theoretical parameters (see (20)) while the parameters for the other
methods are reported below. As explained, we fix the representation ¢; for the epoch but we refit the
linear parameter at each step.

Parameters. In all the experiments, we used the following parameters:

Name Value

Phase schedule ~ 1.2

Bonus parameter o 0.2 for wheel, 0.5 for datasets
Scale factor GLRT (i.e., agLrT Bt—1.5(9)) {1,2,5,10, 15}

Scale factor UCB (i.e., aucs in Eq. [20) 1,2

e for e-greedy {t=1V/3 712}

Loss regularization for NN-BANDITSRL (creg, )

NN layers [50, 50, 50, 50, 10, 1]

NN activation ReLu

Batch size 128

Optimizer SGD with learning rate 0.001 (0.0001 for Covertype)
Regularizer least-square A=1

Buffer capacity T

Scale factor for IGW (i.e., 1) {1, 10, 50,100}
Exploration rate for IGW (i.e., v2) {1/3,1/2}

Scale factor for NeuralUCB (aygs>'UCB in Eq. {0.1,1,2,5}
Random Fourier Features dimension (d) {100, 300}

All the algorithms are implemented using Pytorch [40].

Domains. We considered the standard domains used in previous papers [e.g., 6l 27]].

Wheel domain. In [6], the authors designed a synthetic non-linear contextual bandit problem where
exploration is fundamental. Contexts are samples uniformly from the unit circle in R? and | A| = 5
are available. The first action a1 has reward u(x,a;) = pq for all . The other actions have reward
w; when ||z||2 < C,.. If ||z||2 > C,., the sign of x1 x5 defines the optimal action. For example, as is
optimal when x1, x5 > 0, ag if z1 > 0 and x5 < 0 and so on. When an action a; # a; is optimal
the reward is 3, otherwise is po (aq has always reward ). We set 3 = 1, o = 0.8, u3 = 1.2 and
C, = 0.5. The reward noise is drawn from a zero-mean Gaussian distribution with standard deviation
o = 0.2. For the experiments, we consider a finite subset of contexts by sampling X = 100 contexts
at the beginning of the experiment. All the repetitions are done with the same bandit problem (i.e.,
contexts are fix). We samples contexts accordingly to a uniform distribution p = U ({1, ..., X'}). The
features ¢ are obtained by concatenating the context with a one-hot encoding of the action (dg = 7).
Let 1, be the vector of dimension 5 with all zeros except a one in position 4, then ¢(z, a;) = [z, 1;—1],
forallz,i=1,...,5.

Dataset-based domain. We evaluate our algorithm on standard dataset-based environments [e.g 6, [27]]
from the UCI repository [34H37]]: MAGIC Gamma Telescope Data Set, Mushroom, Statlog (Shuttle)
Data Set, Covertype Data Set. We use the classical multiclass-to-bandit conversion. We use noisy
rewards with Bernoulli distribution Bern(p) where p = 0.9 if the action is equal to the correct label
for the sample x, p = 0.1 otherwise. The features are obtained by replicating the context |.A|-times,
leading to a dimension d = dx|.A| where dx is the dimension of the context. We samples contexts
accordingly to a uniform distribution p = U (X’). We report the characteristic of the datasets after an
initial preprocessing.

9Note that in the code we add the regularization on the loss £; and not on the MSE.

32



Covertype Magic Mushroom Statlog (Shuttle)

Number of contexts |[X| 581012 19020 8124 58000
Context dimension d x 54 10 22 9
Number of actions |.A| 7 2 2 7

Feature dimension d 378 20 44 63

D.2.1 Additional Experiments and Ablation

In this section we provide additional experiments and comparisons for NN-BANDITSRL. The overall
message is that there always exists a configuration of NN-BANDITSRL that works well across
domains and outperforms the base algorithms.

We start noticing that e-greedy often outperforms LINUCB. Randomization at the level of actions is
particularly efficient in these domains since the dimension of the output layer of the NN is always
larger than the number of actions. This provides an advantage to e-greedy since it needs to perform
less exploration. Furthermore, the GLRT prevents e-greedy to over explore.

In the main paper we have only reported results using the theoretical configurations of the base
algorithms (¢, = t~/3 and aycp = 1). Fig. shows that NN-BANDITSRL with agrrr = 5 is
robust to variations of the base algorithm. In particular, it outperforms or performs comparably to the
base algorithm and the baselines in all the experiments. The interesting thing to notice is that the
different domains require a different level of exploration. The wheel domain requires a high level of
exploration (cycp = 2 and €, = t~1/3), while the algorithms performs better with little exploration
in mushroom (awycp = 0.1 and €, = t—1/2). We can notice that Random Fourier Features performs
poorly in almost all the experiments, supporting the need of representation learning. It may be
however possible to obtain better performance by using a much higher number of features. Finally,
Fig. [6] shows the behavior of NN-BANDITSRL with IGW strategy for different values of ; and ~».
Interestingly, it outperforms the best version of the IGW strategy based MSE.

The second experiment aims to highlight the impact of the GLRT on the behavior of NN-BANDITSRL
(Fig.[8). We can notice that the GLRT plays an important role in Neural-e-greedy (see also Fig.[9),
in particular when using the theoretical exploration rate t~'/3 where it significantly improve the
performance. On the other hand, the GLRT may trigger too many times when agrrr = 1, leading to
under-exploration and worse regret. Note that there are potentially other confounding factors leading
to this undesired behavior. For example, the fact we use only exploratory data may lead to suboptimal
fitting of the reward if the GLRT triggers too early. Indeed, as soon as we increase the GLRT scale
factor (i.e., agLrT > 2), we do not see anymore a negative impact. In general, better and more
consistent results are obtained with the theoretical exploration rate ¢~/ where over exploration
is prevented by the GLRT. The GLRT plays a milder role for LINUCB-based algorithms (see also
Fig.[9). Indeed, [[L1]] showed that LINUCB is able to take advantage of the HLS property and does
not requires a GLRT mechanism to achieve constant regret. The overall message is to set the GLRT
scale factor to a value larger than the theoretical one (and larger than the one used for LINUCB-based
algorithms). Similar results can be derived for Thompson Sampling.

To further investigate the behavior of NN-BANDITSRL, we performed an ablation study w.r.t. the
losses Lyay and Lyeax (see Eq. and the contribution of the GLRT (i.e., agrrr € {0,5}), see
Fig. OHI0] We can see for Neural-e-greedy that the GLRT plays a fundamental role in avoiding over
exploration. Furthermore, the regularization improves or at least does not degrade the performance
of the algorithm. As mentioned before for LINUCB-based algorithms, the GLRT does not play
an important role. On the other hand, these experiments show the importance of the spectral
regularization. We can indeed notice a clear separation between the performance of the algorithm
with and without regularization.
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Figure 5: Ablation study of NN-BANDITSRL with agrrr = 5 and different base algorithms

(.e., aucn € {0.1,1,2}, ¢ € {t1/3,t71/}). Results are averaged over 20 runs. We report the
performance of NN-BANDITSRL against the best configuration of the baselines.
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Figure 6: Ablation study of NN-BANDITSRL with agrrr = 5 and IGW strategy for different values

of v; and 9 IGW-REF denotes the variant of IGW where we refit the last layer of the NN at each
time step. Results are averaged over 20 runs.
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Figure 9: Ablation study of NN-BANDITSRL with different GLRT values (agLrr € {0,5}), base
algorithms (i.e., aycn € {1,2}, ¢ € {t~'/3,t=1/2}) and regularization loss. Results are averaged

over 20 runs.
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D.2.2 Network study on the Wheel Domain

To further investigate the behavior of NN-BANDITSRL, we performed an ablation study w.r.t. the
network structure.

Let’s start considering e-greedy algorithms. Fig. [T that the performance of these algorithms does
not vary much across the experiments. However, there are interesting things to notice. When the
embedding layer is large (1000,100), the regularization and GLRT do not help and NN-BANDITSRL
behaves as the Neural-e-greedy algorithm. Indeed it may be difficult to recover spectral properties
for such a large representation (the original feature dimension is 7). Similarly the GLRT scales with
the dimension d, the higher d the larger may be the time to trigger the test. When the embedding
dimension is smaller, we can see an improved performance for NN-BANDITSRL compared to
the base algorithm. The best regret is obtained with the deepest network and smallest embedding
dimension (i.e., 10). In particular, we can see a flattening curve for NN-BANDITSRL with net
[50, 50, 50, 50, 10] that is not observe with embedding dimension 50.

LINUCB-based algorithms suffer when the embedding dimension is large (i.e., 1000, 100) since it
needs to perform much more exploration compared to e-greedy. Indeed, e-greedy only needs to do
exploration at the level of the 5 actions, while LINUCB needs to explore the d-dimensional space. An
interesting behavior is observed with deeper networks. In particular, we observe a better performance
with embedding dimension 50 rather than 10. We think that with dimension 10 the network has a
larger misspecification that compromises the exploration performed by LINUCB-based algorithms.
Indeed, Fig.[12|shows that both NN-BANDITSRL and Neural-LINUCB show a linear regret. This
demonstrates that i) LINUCB-based algorithms are much more sensible to the misspecification than
e-greedy; ii) it is important to carefully select the embedding dimension d (the larger the higher the
level of exploration but the smaller the misspecification). On the other hand, when d = 50, LINUCB-
based algorithms perform comparably to e-greedy. While with a shallow network (i.e., [50, 50, 50])
we observe a small improvement in using NN-BANDITSRL, the advantages of NN-BANDITSRL
becomes extremely clear with the deep network (i.e., [50, 50, 50, 50, 50]) where it achieves more than
half of the regret of Neural-LINUCB.

Finally, Fig. [12] shows that, similarly to e-greedy, Thompson Sampling works better with smaller
dimensions (in particular 10) where we can always observe a smaller regret for NN-BANDITSRL.

E Examples of No-regret Algorithms

We prove that LinUCB and e-greedy satisfy Assumption {4 Then, we instantiate our general regret
bounds (i.e., we bound 7, defined in Lemma[B.16) for these specific algorithms.

E.1 LinUCB

Theorem E.1 (Regret bound of anytime LinUCB, Prop. 1 in [L1l]). Let ¢ € ®* be any realizable
representation. With probability 1 — §, for any T € N, the regret of anytime LinUCB run with
representation ¢, confidence 6, and threshold B, s(¢) is bounded as

2
128)B20? (2 log(1/8) + dy log(1 + TL? /(Ad¢)))

R < Rrimucs(T, ¢,90),=: A

Proof. Just apply Proposition 1 in [11] while noting that the maximum per-step regret is 2 in our
context. O

Lemma E.2. When using the LinUCB algorithm, we have
2 12 2
. L3.d*log(|®|/9)
TN )A

Proof. First note that, by Theorem[E.T]

_ d? log(t|®|/6)?
Ryinucs(t, ¢, 010g,1)/1P]) S %-

Then, the result follows by applying Lemma O

39



x103 1000 x103 100,100 x104 50,50,10
6.0 6.0
1.8 -
5.0 5.0 o
1.5 ’
p
E 4.0 E 4.0 E 1.2 4
g g g
o o o
5 3.0 5 3.0 ° Lo
E E E
@ a 208 -
820 2 2.0 o -
0.5
1.0 1.0/ 02
099 2 3 5 90 2 3 4 5 %% 2 3 4 5
Time le5 Time le5 Time le5
6.0 x103 50,50,50 6.0 6.0 x103 50,50,50,50,50
5.0 5.0/ 5.0
JQ' 4.0 = E 4.0+ § 4.0
o ” o o
g srEes & g e
o 3.0 o 3.01 o 3.0 =
e} el ke
> > 3
@ ] @
2.0 8 2.0 a2.0
1.0 1.0 1.0
09 1 2 3 4 5 00 0.0, 1 2 3 4 5
Time le5 Time 1le5
= = = Neural-e-greeedy =« == Neural-LinUCB

—#— NN-BanditSRL-e-greedy (GLRT 5; Lyeak,t)
==+ NN-BanditSRL-e-greedy (GLRT 5; Lyray, )

==o——=NN-BanditSRL-LinUCB (GLRT 5; Lyeak,t)
=== NN-BanditSRL-LinUCB (GLRT 5; Luray,t)

Figure 11: Ablation study of NN-BANDITSRL with e-greedy and LINUCB on the Wheel domain.
Results are averaged over 20 runs. The figure title corresponds to the network dimension.

E.2 e-greedy

Theorem E.3 (Regret bound of e-greedy). Let ¢ € ®* be any realizable representation. With
probability 1 — 0, for any T € N, the regret of e-greedy run with representation ¢, confidence 6, and
forcing schedule (e;)1>1 with €, = 1/t1/3 is bounded as

_ 12812 A\ /Tog(12d4/8) \ ° AT2/3
RT S Rs—greedy(Ta (125,6)7 = 2BT,5/3(¢) % ( ¢ 1—\(25( ¢/ )> % %
+ 2y/T1og(6T/8) 4 3123,
where  T'(9) = Amin (EmNP [ZaeA o(z,a)p(x, a)T}) and  Brs(¢) =

J\/Q log(1/8) + dylog(1 + TL2/(Ady)) + VABs.

Proof. Let F; be the event under which the algorithm plays greedily at time ¢. Then,

Rr =Y 1{F} Az, a)+ > 1{~F} Az, ar).

T

t=1

T

t=1

(@)

(b)
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Figure 12: Ablation study of NN-BANDITSRL with LINUCB and TS on the Wheel domain. Results
are averaged over 20 runs. The figure title corresponds to the network dimension.

Let us start from (a). With probability at least 1 — §, we have that, under F7,

Az, ar) = max p(ze, ) — p(a, ar)
< max (<9¢>,t—17 d(xt,a)) + 5t—1,6(¢)|\¢(33t,a)||v;ll(¢)) —(Op,t—1,P(xs,a1)) + Bi—1,5(0)||d(2¢, at)||vt:11(¢)

gleaj(<0¢,t—la P(x,a)) = (Opi—1, d(2e, ae)) + 21&%@—1,5(‘1’”@@&a)||vt-_11(¢)
2%16%@71,5(@”(15(%7a)”vt—_ll((p)a

IN

where the last equality is because a; is greedy w.r.t. 4 ;1 under F;. Then,

Ly

T T
(a) <2B14(¢) Y 1 (£} max [|¢(ze, a)lly-1 (4) < 267.6(9) ;1 {ri} Mo

t=1

Let E, be the expectation operator conditioned on the full history up to round ¢ — 1 and 7, (a|x) =
(1 — )1 {a = argmax,c 4(0p,t—1, P(xs,a)) } + ﬁT be the stochastic policy played at time ¢. By
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Matrix Azuma inequality (Lemma[F.4) and a union bound on time, with probability at least 1 — 4,
t—1

)\min(‘/;gfl((b)) > A+ Anin <Z E [(;5(33, a)(b(x7 a)T]> — 8L \/ t— ]_ 10g(4d¢(t — 1)/(5)

= A+ Amin ( 3 E:v~p7a~7rk(~|:v) [¢($, a)¢(x’ a)T}> - 8Li\/(t - 1) 10g(4d¢(t - 1)/5)

> A+ Amin (Z e Eompanui(a) [0(z,a)0(z, a)T]> —8L% \/ t —1)log(4dy(t —1)/6)

— At % > - 812/ (t — 1) log(4dy(t — 1)/6)
>\t @(t — 13— 8L2,/(t — 1) log(4d(t — 1)/5),

where in the last step we used the definition of €,. We now seek a condition on ¢ such that

SLi\/(t —1)log(4d,(t —1)/0) < W, so that we have Apin (Vie1(0)) > )\+t7;)2/3
By the crude bound log(z) < 2®/a, we have

812/t — 1) log(4dy(t — 1)/6) < 8L3\/(t — 1) log(4dy/8) + 8L3\/(t — 1)+ /a

Thus, a sufficient condition is that

2 6
F(¢)(t—1)2/3 -1 (32L¢A\/10g(4d¢/5)> 7

8L3/ (¢ — 1) log(4dy/0) < = r()

2 A T\ TEOE
L2V{i—1)Fe/a < 715;1)2/3 — (t—1)> (3%‘;‘?@ 1/a> :

Setting « = 1/12, we have m = 8. Then, a sufficient condition is

(o .. (128134105 (4d,/0) b
=T r(9)
Then,
Zﬂ{Ft —S Ly i _(z+1)ﬁ i—d’
Amm(‘/t 1( ) f t=1 \/W f t=1 /
Ly LoVAT?/3
<(z+41) iy + )

Thus,

(a) <2B75(0)

Ly (128L2A log(4dy /) ) 2Ly | 3LoVAT/?

VA I(¢) Va9

Let us bound (b). By Azuma’s inequality (Lemma[F.2), with probability at least 1 — ¢,

b <23 1{-F} =2 (1{-F} -P(-F)) +2> P(-F)
t=1 t=1 t=1

T T
1
< 2y/Tlog(2T/8) + 2> e = 2y/Tog(2T/6) + 2 75 <2VT1og(2T/0) + 37?3,
t=1 t=1

Summing the bounds on (a) and (b) yields a regret bound that holds with probability at least 1 — 36
by the three concentration events used above. Then, the result follows by a union bound, i.e., by
re-defining § — /3. O
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Lemma E.4. When using the e-greedy algorithm (same conditions as in Theorem|E.3), we have

- L. (dA)32 L log(|®|/6)*
Talg ~ )\*(¢*)3A3

Proof. First note that, by Theorem

Eefgrccdy(t ¢> 510g2(t)/|q)|) S L¢ V d¢A 10g(t|q)|/5)t2/37

where we kept only the higher-order dependences. Then, with similar steps as in the proof of Lemma
[B.14} one can easily show that 7,1, requires solving the inequality

L3,
< ——2— max Lg+/dyAlog(|®|/8)t*/?,
¢ ~ )\*((ZS*)A pcd a'X @ d¢ 0g | |/6)t

which proves the statement. O

F Auxiliary Results

F.1 Bounding the eigenvalues of the design matrices

The following result holds for any algorithm (i.e., any arm selection rule) any any representation ¢
(even non-realizable). It is an extension of Lemma 9 in [[L1].

Lemma F.1. Under the assumption that the optimal policy is unique, with probability 1 — §, for all t
and ¢ € P,

Vi(@) = t By pd(, 7 (2)) (2, 7 (2))T] + ()\ — L3S — 8L} tlog(4d¢|<1>|t/5)) Ii,, (22)

Vi(¢) = tEgmpd(a, 7 (2))(a, 7% (2)) 1] + (A + L2S, + 8L} tlog(4d¢|q>|t/6)) I, (23)
where S; := 22:1 1{ax # 7 (zx)}-

Proof. The lower bound holds with probability 1 — 6/2 by [T, Lemma 9]. Let us prove the upper
bound. We have

Vi(®) — Ma, = Z(bmk»ak (x, ax) "

L {ag # 7 (1)} dlar, ap)p(ar, )T + Y 1 {an = 7* ()} dla, an)p(wr, ax)T

k=1

1 {ay # 7 (zx)} ¢(zk, ar)d(k, ar) +Z¢ T, ™ (k) p(g, 7 (k)

|
PTM“

=l
i

IA
bl

t

X L3Seda, + > bk, 7 () dlak, 7 (z1)) T

k=1
X L3S0, + tEenp[d(z, 7 (2))(x, 7% (2))T] + 8L3 1 /tlog(4dyt /8)1a,,
where the second-last inequality uses the boundedness of ¢, while the last one holds with probability

1 —6/2 for all t by Lemma and a union bound. The result follows by a union bound on ® and on
the two sides of the inequality. O

F.2 Martingale concentration

We restate some well-known martingale concentration bounds.
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Lemma F.2 (Azuma’s inequality). Let {(Z;, Ft) }ten be a martingale difference sequence such that
|Z:| < a almost surely for all t € N. Then, for all § € (0,1),

< a\/tlog(2t/6)> >1-0.

t

PIEL

P (Vt >1:
k=1

Lemma F.3 (Freedman’s inequality). Let {(Z:, J;) }ten be a martingale difference sequence such
that | Zy| < a almost surely for all t € N. Then, for all 6 € (0,1),

t
>z

k=1

t
PlVt>1: <2, | Y Vi[Zi]log(4t/0) + dalog(4t/d) | > 1-4.

k=1

Lemma F.4 (Matrix Azuma’s inequality). Ler { X}, _, be a finite adapted sequence of symmet-
ric matrices of dimension d, and {Cy}}._, a sequence of symmetric matrices such that for all k,
Ex[Xx] = 0and X7 < C% almost surely. Then, with probability at least 1 — 6,

t t
- (z xk> < ls[>e
k=1

k=1

log(d/9). (24)
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