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Abstract

The task of infomin learning aims to learn a representation with high utility while
being uninformative about a specified target, with the latter achieved by minimis-
ing the mutual information between the representation and the target. It has broad
applications, ranging from training fair prediction models against protected at-
tributes, to unsupervised learning with disentangled representations. Recent works
on infomin learning mainly use adversarial training, which involves training a
neural network to estimate mutual information or its proxy and thus is slow and
difficult to optimise. Drawing on recent advances in slicing techniques, we pro-
pose a new infomin learning approach, which uses a novel proxy metric to mutual
information. We further derive an accurate and analytically computable approx-
imation to this proxy metric, thereby removing the need of constructing neural
network-based mutual information estimators. Experiments on algorithmic fair-
ness, disentangled representation learning and domain adaptation verify that our
method can effectively remove unwanted information with limited time budget.

1 Introduction

Learning representations that are uninformative about some target but still useful for downstream
applications is an important task in machine learning with many applications in areas including
algorithmic fairness [1, 2, 3, 4], disentangled representation learning [5, 6, 7, 8], information bottle-
neck [9, 10], and invariant representation learning [11, 12, 13, 14].

A popular method for the above task is adversarial training [1, 3, 4, 7, 15, 2, 11], where two neural
networks, namely the encoder and the adversary, are trained jointly to compete with each other.
The encoder’s goal is to learn a representation with high utility but contains no information about
the target. The adversary, on the contrary, tries to recover the information about the target from the
learned representation as much as possible. This leads to a minmax game similar to that in generative
adversarial networks [16]. Adversarial training is effective with a strong adversary, however, it
is often challenging to train the adversary thoroughly in practice, due to time constraints and/or
optimisation difficulties [17, 18]. In fact, recent studies have revealed that adversarial approaches
may not faithfully produce an infomin representation in some cases [19, 20, 18, 21, 22]. This
motivates us to seek a good, adversarial training-free alternative for scalable infomin learning.

In this work, we propose a new method for infomin learning which is almost as powerful as using
a strong adversary but is highly scalable. Our method is inspired by recent advances in information
theory which proposes to estimate mutual information in the sliced space [23]. We highlight the
following contributions:

• We show that for infomin learning, an accurate estimate of mutual information (or its bound) is
unnecessary: testing and optimising statistical independence in some sliced spaces is sufficient;

• We develop an analytical approximation to such sliced independence test, along with a scalable
algorithm for infomin learning based on this approximation. No adversarial training is required.
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Importantly, the proposed method can be applied to a wide range of infomin learning tasks without
any constraint on the form of variables or any assumption about the distributions. This contrasts our
method to other adversarial training-free methods which are either tailored for discrete or univariate
variables [24, 25, 25, 26, 22] or rely on variational approximation to distributions [10, 27, 19, 12].

2 Background

Infomin representation learning. Let X ∈ RD be the data, Y ∈ RD′
be the target we want to

predict from X . The task we consider here is to learn some representation Z = f(X) that is useful
for predicting Y but is uninformative about some target T ∈ Rd. Formally, this can be written as

min
f
L(f(X);Y ) + β · I(f(X);T ) (1)

where f is an encoder, L is some loss function quantifying the utility of Z for predicting Y and
I(f(X);T ) quantifies the amount of information left in Z about T . β controls the trade-off between
utility and uninformativeness. Many tasks in machine learning can be seen as special cases of this
objective. For example, by setting T to be (a set of) sensitive attributes e.g. race, gender or age, we
arrive at fair representation learning [28, 1, 2, 21]. When using a stochastic encoder, by setting Y to
be X and T to be some generative factors e.g., a class label, we arrive at disentangled representation
learning [5, 6, 7, 8]. Similarly, the information bottleneck method [9, 10] corresponds to setting
T = X , which learns representations expressive for predicting Y while being compressive about X .

Adversarial training for infomin learning. A key ingredient in objective (1) is to quantify
I(f(X);T ) as the informativeness between f(X) and T . One solution is to train a predictor for
T from f(X) and use the prediction error as a measure of I(f(X);T ) [1, 3, 4, 29]. Another ap-
proach is to first train a classifier to distinguish between samples from p(Z, T ) vs. p(Z)p(T ) [7, 15]
or to distinguish samples Z ∼ p(Z|T ) with different T [2, 11], then use the classification error
to quantify I(f(X);T ). All these methods involve the training of a neural network t to provide a
lower-bound estimate to I(f(X);T ), yielding a minmax optimisation problem

min
f

max
t
L(f(X);Y ) + β · Ît(f(X);T ) (2)

where Ît(f(X);T ) is an estimator constructed using t that lower-bounds I(f(X);T ). The time
complexity of optimising (2) is O(L1L2) where L1 and L2 are the number of gradient steps for the
min and the max step respectively. The strength of t is crucial for the quality of the learned repre-
sentation [19, 20, 18, 21, 22]. For a strong adversary, a large L2 is possibly needed, but this means
a long training time. Conversely, a weak adversary may not produce a truly infomin representation.

3 Methodology

We propose an alternative to adversarial training for optimising (1). Our idea is to learn representa-
tion by the following objective, which replaces I(f(X);T ) in objective (1) with its ‘sliced’ version:

min
f
L(f(X);Y ) + β · SI(f(X);T ), (3)

where SI denotes the sliced mutual information, which was also considered in [23]. Informally, SI
is a ‘facet’ of mutual information that is much easier to estimate (ideally has closed form) but can
still to some extent reflect the dependence between Z and T . Optimising (3) is then equivalent to
testing and minimising the dependence between Z and T from one facet. Importantly, while testing
dependence through only a single facet may be insufficient, by testing and minimising dependence
through various facets across a large number of mini-batches we eventually see I(Z;T )→ 0.

We show one instance for realising SI whose empirical approximation ŜI has an analytic expres-
sion. The core of our method is Theorem 1, which is inspired by [4, 23].

Theorem 1. Let Z ∈ RD and T ∈ Rd be two random variables that have moments. Z and T are
statistically independent if and only if SI(Z, T ) = 0 where SI(Z, T ) is defined as follows

SI(Z;T ) = sup
h,g,θ,ϕ

ρ(h(θ⊤Z), g(ϕ⊤T )), (4)

where ρ is the Pearson correlation, h, g : R→ R are Borel-measurable non-constant functions, and
θ ∈ SD−1, ϕ ∈ Sd−1 are vectors on the surfaces on D-dimensional and d-dimensional hyperspheres.
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Proof. See the Appendix.

We sketch here how this result relates to [4, 23]. [23] considers SI(Z;T ), defined as the expected
mutual information E[I(θ⊤Z, ϕ⊤T )] of slices of Z and T , where the expectation is taken over
respective Haar measures θ ∈ SD−1, ϕ ∈ Sd−1. Instead of considering the mutual information
I(θ⊤Z, ϕ⊤T ) in the average case, we handle Pearson correlation over the supreme functions h, g as
defined above, which links to Rényi’s maximal correlation [4, 30, 31, 32] and has some interesting
properties suitable for infomin representation learning (explained later).

We call θ and ϕ the slices for Z and T respectively, and θ⊤Z, ϕ⊤T the sliced Z and T respectively.

Intuitively, Theorem 1 says that in order to achieve I(Z;T ) → 0, we need not estimate I(Z;T ) in
the original space; rather we can test (and optimise) independence in the sliced space as realised by
(4). Note other realisations of the sliced mutual information SI can also be used. The major merit
of the realisation (4) is that (a) it is bounded in [0, 1], which eases hyperparameter tuning and makes
learning stable; (b) it allows an analytic expression for its empirical approximation, as shown below.

Analytic approximation to SI. An empirical approximation to (4) is

SI(Z;T ) ≈ sup
i,j

sup
hi,gj

ρ(hi(θ
⊤
i Z), gj(ϕ

⊤
j T )),

where θi ∼ U(SD−1), i = 1, ..., S, ϕj ∼ U(Sd−1), j = 1, ..., S. (5)
i.e., we approximate (4) by randomly sampling a number of slices θ, ϕ uniformly from the surface
of two hyperspheres SD−1 and Sd−1 and pick those slices where the sliced Z and the sliced T
are maximally associated. With a large number of slices, it is expected that (5) will approximate (4)
well. We refer to [23] for a theoretical analysis on the number of required slices in estimator-agnostic
settings. In Appendix B we also investigate empirically how this number will affect performance.

For each slicing direction, we further assume that the supreme functions hi, gj : R → R for that
direction can be well approximated by K-order polynomials given sufficiently large K, i.e.

hi(a) ≈ ĥi(a) =

K∑
k=0

wikσ(a)
k, gj(a) ≈ ĝj(a) =

K∑
k=0

vjkσ(a)
k,

where σ(·) is a monotonic function which maps the input to the range of [−1, 1]. Its role is to ensure
that σ(a) always has finite moments, so that the polynomial approximation is well-behaved. Note no
information is lost by applying σ(·). Here we take σ(·) as the tanh function. Other approximations
can also be used (e.g. those based on random features [33]), which can be explored in the future.

One may wonder if ignoring the higher-order terms σ(a)k
′
, k′ > K will cause inaccuracy in depen-

dence modelling. In Appendix A we show that if |ĥi(a) − hi(a)| ≤ ϵ and |ĝj(a) − gj(a)| ≤ ϵ for
∀i, j, a, then as ϵ → 0 we have |ρ∗ij − ρ̂∗ij | = o(ϵ) where ρ∗ij = ρ(hi(θ

⊤
i Z), gj(ϕ

⊤
j T )) is the true

correlation and ρ̂∗ij is its K-order approximation. In such case we have ρ̂∗ij ≈ 0 whenever ρ∗ij ≈ 0.

With this polynomial approximation, the solving of hi, gj reduces to finding their weights wi, vj :

wi, vj = argmax
w,v

ρ(w⊤Z ′
i, v

⊤T ′
j),

Z ′
i = [σ(θ⊤i Z), ..., σ(θ⊤i Z)K ], T ′

j = [σ(ϕ⊤
j T ), ..., σ(ϕ

⊤
j T )

K ]

This is known as canonical correlation analysis [34] and can be solved analytically by eigendecom-
position. Hence we can find the weights for all pairs of hi, gj by doing S2 eigendecompositions.

In fact, the functions hi, gj for all i, j can be solved simultaneously by performing a larger eigende-
composition only once. We do this by finding w, v that maximise the following quantity:

ŜIΘ,Φ(Z;T ) = sup
w,v

ρ(w⊤Z ′, v⊤T ′), (6)

where Z ′
i = [σ(θ⊤i Z), ..., σ(θ⊤i Z)K ], T ′

j = [σ(ϕ⊤
j T ), ..., σ(ϕ

⊤
j T )

K ]

θi ∼ U(SD−1), i = 1, ..., S, ϕj ∼ U(Sd−1), j = 1, ..., S.

The benefits for solving fi, gj for all slices jointly are two-fold. The first is better computational
efficiency in practice, as it avoids invoking a for loop and has better affinity to modern deep learning
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infrastructure and libraries (e.g. Tensorflow [35] and PyTorch [36]) which are optimised for matrix-
based operations. We highlight that this joint-solving strategy will not violate our original objective
(i.e. minimising (5)), as backed up by Theorem 2 below. The intuition behind Theorem 2 is that if
all Z ′

i and T ′
j together cannot achieve a high correlation, they alone can not either:

Theorem 2. Provided that each hi, gj in (5) are K-order polynomials , given the sampled Θ =

{θi}Si=1,Φ = {ϕj}Sj=1, we have ŜIΘ,Φ(Z;T ) ≤ ϵ⇒ supi,j suphi,gj ρ(hi(θ
⊤
i Z), gj(ϕ

⊤
j T )) ≤ ϵ.

Proof. See Appendix A.

Theorem 2 says that the solution of (6) yields an upper bound of (5). This essentially means that we
are safe to replace (5) with (6). In addition to computational efficiency, another benefit for solving
gj , hj jointly is stronger power in independence testing. More specifically, it allows us to unify the
power of different slices: while some sliced directions may be weak for detecting dependence, they
together as a whole (by treating them as a ‘big slice’ [37]) can compensate for each other, yielding
a more powerful test. For these reasons, we use ŜIΘ,Φ(Z;T ) as the approximation to SI(Z;T ).

Algorithm 1 Adversarial Infomin Learning

Input: data D = {X(n), Y (n), T (n)}Nn=1
Output: Z = f(X) that optimises (1)
Hyperparams: β, N ′, L1, L2

Parameters: encoder f , MI estimator t

for l1 in 1 to L1 do
sample mini-batch B from D
sample D′ from D whose size N ′ < N
▷ Max-step
for l2 in 1 to L2 do

t← t+ η∇tÎt(f(X);T ) with data in D′

end for
▷ Min-step
f ← f−η∇f [L(f(X);Y )+βÎt(f(X);T )]
with data in B

end for
return Z = f(X)

Algorithm 2 Slice Infomin Learning

Input: data D = {X(n), Y (n), T (n)}Nn=1
Output: Z = f(X) that optimises (1)
Hyperparams: β, N ′, L, S
Parameters: encoder f , weights w, v in ŜI

for l in 1 to L do
sample mini-batch B from D
sample D′ from D whose size N ′ < N
▷ Max-step
sample S slices Θ = {θi}Si=1,Φ = {ϕj}Sj=1

solve the parameters w, v in ŜI analytically
with Θ,Φ,D′ by eigendecomposition
▷ Min-step
f ← f−η∇f [L(f(X);Y )+βŜI(f(X);T )]
with data in B

end for
return Z = f(X)

Mini-batch learning algorithm. Given the above approximation (6) to SI , we can now elaborate
the details of mini-batch learning. For each mini-batch B, we execute the following steps:

• Max-step. Sample S slices Θ = {θi}Si=1,Φ = {ϕj}Sj=1 and a subset of the data D′ ⊂ D (here
|D′| can be larger than |B|). Learn the weights w, v of (6) with Θ,Φ,D′ by eigendecomposition;

• Min-step. Set ŜI(Z, T ) = ρ(w⊤Z ′, v⊤T ′) with w, v solved in the max-step and Z ′, T ′ defined in
(6). Update f by SGD: f ← f − η∇f [L(f(X), Y ) + βŜI(f(X), T )] with the mini-batch data.

The whole learning procedure is shown in Algorithm 2. Compared to that of adversarial methods
[2, 11, 1, 3, 21, 4] as shown in Algorithm 1, we replace the optimisation of neural net in the max step
with an analytical eigendecomposition step. The time complexity of eigendecomposition is O(S3).

As an optional strategy, during mini-batch learning, one may actively seek more informative slices
for independence testing by optimising the sampled slices with a few gradient steps (e.g. 2-5):

Θ← Θ− ξ∇ΘŜIΘ,Φ(Z, T ), Φ← Φ− ξ∇ΦŜIΘ,Φ(Z, T ) (7)
which is still very cheap to execute. Such a strategy is may be useful when most of the sampled
slices are weak in detecting dependence, which typically happens in later iterations of learning
where I(Z;T ) ≈ 0. We can activate such strategy whenever the estimated SI is very low (e.g.
ŜI(Z;T ) < 0.05). Since the optimisation of slices only happens in late learning iterations, and we
only apply a small number of gradient steps, the overall execution time will only increase negligibly.
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4 Related works

Neural mutual information estimators. A set of neural network-based methods [38, 39, 40, 41]
have been proposed to estimate the mutual information (MI) between two random variables, most
of which work by maximising a lower bound of MI [42]. These neural MI estimators are in general
more powerful than non-parametric methods [43, 44, 45, 46] when trained thoroughly, yet the time
spent on training may become the computational bottleneck when applied to infomin learning.

Upper bound for mutual information. Another line of method for realising the goal of infomin
learning without adversarial training is to find an upper bound for mutual information [10, 19, 12,
47, 48]. However, unlike lower bound estimate, upper bound often requires knowledge of either
the conditional densities or the marginal densities [42] which are generally not available in practice.
As such, most of these methods introduce a variational approximation to these densities whose
choice/estimate may be difficult. Our method on the contrary needs not to approximate any densities.

Slicing techniques. A series of successes have been witnessed for the use of slicing methods in
machine learning and statistics [49], with applications in generative modelling [50, 51, 52, 53],
statistical test [54] and mutual information estimate [23]. Among them, the work [23] who proposes
the concept of sliced mutual information is very related to this work and directly inspires our method.
Our contribution is a novel realisation of sliced mutual information suitable for infomin learning.

Fair machine learning. One application of our method is to encourage the fairness of a predictor.
Much efforts have been devoted for the same purpose, however most of the existing methods can
either only work at the classifier level [25, 24, 4, 55], or only focus on the case where the sensitive
attribute is discrete or univariate [22, 56, 26, 55, 28], or require adversarial training [2, 11, 1, 3, 21, 4].
Our method on the contrary has no restriction on the form of the sensitive attribute, can be used in
both representation level and classifier level, and require no adversarial training of neural networks.

Disentangled representation learning. Most of the methods in this field work by penalising the
discrepancy between the joint distribution P = q(Z) and the product of marginals Q =

∏D
d q(Zd)

[6, 57, 27, 58, 7].1 However, such discrepancy is often non-trivial to estimate, so one has to resort
to Monte Carlo estimate (β-TCVAE [27]), to train a neural network estimator (FactorVAE [7]) or to
assess the discrepancy between P and Q by only their moments (DIP-VAE [57]). Our method avoids
assessing distribution discrepancy directly and instead perform independence test in the sliced space.

5 Experiments

We evaluate our approach on four tasks: independence testing, algorithmic fairness, disentangled
representation learning, domain adaptation. Code is available at github.com/cyz-ai/infomin.

Evaluation metric. To assess how much information is left in the learned representation Z ∈ RD

about the target T ∈ RK , we calculate the Rényi’s maximal correlation ρ∗(Z, T ) between Z and T :

ρ∗(Z, T ) = sup
h,g

ρ(h(Z), g(T )) (8)

which has the properties ρ∗(Z, T ) = 0 if and only if Z ⊥ T and ρ∗(Z, T ) = 1 if h(Z) = g(T )
for some deterministic functions h, g [30]. One can also understand this metric as the easiness of
predicting (the transformed) T from Z, or vice versa.2 As there is no analytic solution for the supre-
mum in (8), we approximate them by two neural networks h, g trained with SGD. Early stopping
and dropout are applied to avoid overfitting. The reliability of this neural approximation has been
verified by the literature [4] and is also confirmed by our experiments; see Appendix B.

This metric is closely related to existing metrics/losses used in fairness and disentangled represen-
tation learning such as demographic parity (DP) [24] and total correlation (TC) [7]. For example,
if ρ∗(Z, T ) → 0 then it is guaranteed that Ŷ ⊥ T for any predictor Ŷ = F (Z), so ρ∗(Z, T ) is an
upper bound for DP . Similarly, ρ∗(Z, T ) coincides with TC which also assesses whether Z ⊥ T .
In additional to this metric, we will also use some task-specific metric; see each experiment below.

Baselines. We compare the proposed method (denoted as “Slice”) with the following approaches:

1Note there exist methods based on group theory [59, 60, 61] which do not assess distribution discrepancy.
2It can be shown ρ∗(Z, T ) is equivalent to the normalised mean square error between h(Z) and g(T ).
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(a) a (b) a2 (c) sin(a) (d) tanh(a)

Figure 1: Comparison of the test power of different independence test methods. The x-axis corre-
sponds to different values for the dependence level α and the y-axis corresponds to the test power.

• Pearson, which quantifies I(Z;T ) by the Pearson correlation coefficient 1
DK

∑D
d

∑K
k ρ(Zd;Tk).

It was used in [5, 57] as an easy-to-compute proxy to MI to learn disentangled representations;
• dCorr, i.e. distance correlation, a non-parametric method for the quantifying the independence

between two vectors [46]. It was applied in [41] as a surrogate to MI for representation learning;
• Neural Rényi, an adversarial method for fair machine learning [25] which quantifies I(Z;T ) by

the Rényi correlation ρ∗(Z, T ) = suph,g ρ(h(Z), g(T )) with h, g approximated by neural net-
works. It can be seen as training a predictor to predict (the transformed) T from Z and is closely
related to many existing methods in algorithmic fairness and domain adaptation [1, 2, 3, 4, 29];

• Neural TC, an adversarial method for learning disentangled representation [7, 62] which quanti-
fies I(Z;T ) by the total correlation TC(Z, T ) = KL[p(Z, T )∥p(Z)p(T )]. To computes TC, a
classifier is trained to classify samples from p(Z, T ) and samples from p(Z)p(T ). This method
can also be seen as a variant of the popular MINE method [38] for mutual information estimate.

• v-CLUB, i.e. variational contrastive log upper bound, which introduces a (learnable) variational
distribution q(T |Z) to form an upper bound of MI [47]: I(Z;T ) ≤ Ep(Z,T )[log q(T |Z)] −
Ep(Z)p(T )[log q(T |Z)]. Like adversarial method, q(T |Z) can be learned by a few gradient steps.

For a fair comparison, for adversarial training-based approaches (i.e. Neural Rényi, Neural TC),
we ensure that the training time of the neural networks in these methods is at least the same as the
execution time of our method or longer. We do this by controlling the number of adversarial steps
L2 in Algorithm 1. The same setup is used for v-CLUB. See each experiment for the detailed time.

Hyperparameter settings. Throughout our experiments, we use 200 slices. We find that this setting
is robust across different tasks. An ablation study on the number of slices is given in Appendix B.
The order of the polynomial used in (6) namely K is set as K = 3 and is fixed across different tasks.

Computational resource. All experiments are done with a single NVIDIA GeForce Tesla T4 GPU.

5.1 Independence testing

We first verify the efficacy of our method as a light-weight but powerful independence test. For
this purpose, we investigate the test power of the proposed method on various synthetic dataset with
different association patterns between two random variables X ∈ R10, Y ∈ R10 and compared
to that of the baselines. The test power is defined as the ability to discern samples from the joint
distribution p(X,Y ) and samples from the product of marginal p(X)p(Y ) and is expressed as a
probability p ∈ [0, 1]. The data is generated as Y = (1− α)⟨t(AX)⟩+ αϵ,Xd ∼ U [−3, 3],Add =
1,Adk = 0.2, ϵ ∼ N (ϵ;0, I), α ∈ (0, 1) and ⟨·⟩ is a scaling operation that scales the operand to
the range of [0, 1] according to the minimum and maximum values in the population. The function
t(·) determines the association pattern between X and Y and is chosen from one of the following:
t(a) = a, a2, sin(a), tanh(a). The factor α controls the strength of dependence between X and Y .

All tests are done on 100 samples and are repeated 1,000 times. We choose this sample number as
it is a typical batch size in mini-batch learning. For methods involving the learning of parameters
(i.e. Slice, Neural Rényi, Neural TC), we learn their parameters from 10,000 samples. The time for
learning the parameters of Slice, Neural Rényi and Neural TC are 0.14s, 14.37s, 30.18s respectively.
For completeness, we also compare with the ‘optimal test’ which calculates the Rényi correlation
ρ∗(X,Y ) = ρ(h(X), g(Y )) with the functions h, g exactly the same as the data generating process.
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Table 1: Learning fair representations on the US Census Demographic dataset. Here the utility of
the representation is measured by ρ∗(Z, Y ), while ρ∗(Z, T ) is used to quantify the fairness of the
representation. Training time is also provided as the seconds required per max step.

N/A Pearson dCorr Slice Neural Rényi Neural TC vCLUB
ρ∗(Z, Y ) ↑ 0.95± 0.00 0.95± 0.00 0.95± 0.00 0.95± 0.01 0.95± 0.01 0.95± 0.02 0.94± 0.02

ρ∗(Z, T ) ↓ 0.92± 0.02 0.84± 0.08 0.47± 0.08 0.07± 0.02 0.23± 0.10 0.27± 0.03 0.16± 0.10

time (sec./max step) 0.000 0.012 0.087 0.102 0.092 0.097 0.134

Table 2: Learning fair representations on the UCI Adult dataset. Here the utility of the representation
is measured by ρ∗(Z, Y ), while ρ∗(Z, T ) is used to quantify the fairness of the representation.

N/A Pearson dCorr Slice Neural Rényi Neural TC vCLUB
ρ∗(Z, Y ) ↑ 0.99± 0.00 0.99± 0.00 0.97± 0.01 0.98± 0.01 0.97± 0.01 0.98± 0.02 0.97± 0.02

ρ∗(Z, T ) ↓ 0.94± 0.02 0.91± 0.06 0.71± 0.06 0.08± 0.02 0.17± 0.08 0.36± 0.13 0.26± 0.12

time (sec./max step) 0.000 0.015 0.071 0.112 0.107 0.131 0.132

Figure 1 shows the power of different methods under various association patterns t and dependence
levels α. Overall, we see that the proposed method can effectively detect dependence in all cases, and
has a test power comparable to neural network-based methods. Non-parametric tests, by contrast,
fail to detect dependence in quadratic and periodic cases, possibly due to insufficient power. Neural
TC is the most powerful test among all the methods considered, yet it requires the longest time to
train. We also see that the proposed method is relatively less powerful when α ≥ 0.8, but in such
cases the statistical dependence between X and Y is indeed very weak (also see Appendix B). The
results suggest that our slice method can provide effective training signals for infomin learning tasks.

5.2 Algorithmic fairness

For this task, we aim to learn fair representations Z ∈ R80 that are minimally informative about
some sensitive attribute T . We quantify how sensitive Z is w.r.t T by Rényi correlation ρ∗(Z, T )
calculated using two neural nets. Smaller ρ∗(Z, T ) is better. The utility of the learned representation
i.e., L(Z;Y ) is quantified by ρ∗(Z, Y ). This formulation for utility, as aforementioned, is equivalent
to measuring how well we can predict Y from Z. In summary, the learning objective is:

max ρ∗(Z;Y )− βÎ(Z;T ),

where Î(Z;T ) is estimated by the methods mentioned above. For each dataset considered, we use
20,000 data for training and 5,000 data for testing respectively. We carefully tune the hyperparameter
β for each method so that the utility ρ∗(Z;Y ) of that method is close to that of the plain model (i.e.
the model trained with β = 0, denoted as N/A below; other experiments below have the same setup).
For all methods, we use 5, 000 samples in the max step (so N ′ = 5, 000 in Algorithm 1, 2).

US Census Demographic data. This dataset is an extraction of the 2015 American Community
Survey, with 37 features about 74,000 census tracts. The target Y to predict is the percentage of
children below poverty line in a tract, and the sensitive attribute T is the ratio of women in that tract.
The result is shown in Table 1. From the table we see that the proposed slice method produces highly
fair representation with good utility. The low ρ∗(Z, T ) value indicates that it is unlikely to predict
T from Z in our method. While adversarial methods can also to some extent achieve fairness, it is
still not comparable to our method, possibly because the allocated training time is insufficient (in
Appendix B we study how the effect of the training time). Non-parameteric methods can not produce
truly fair representation, despite they are fast to execute. v-CLUB, which estimates an upper bound
of MI, achieves better fairness than adversarial methods on average, but has a higher variance [63].

UCI Adult data. This dataset contains census data for 48,842 instances, with 14 attributes describ-
ing their education background, age, race, marital status, etc. Here, the target Y to predict is whether
the income of an instance is higher than 50,000 USD, and the sensitive attribute T is the race group.
The result is summarised in Table 2. Again, we see that the proposed slice method outperforms
other methods in terms of both fairness and utility. For this dataset, Neural Rényi also achieves good
fairness, although the gap to our method is still large. Neural TC, by contrast, can not achieve a
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(a) Adversarial training

(b) Slice

Figure 2: Label swapping experiments on Dsprite dataset. Left: the original image X . Middle:
reconstructing X ≈ G(Z, T ) using Z = E(X) and the true label T . Right: reconstructing X ′ =
G(Z, T ′) using Z = E(X) and a swapped label T ′ ̸= T . Changing T should only affects the style.

(a) Adversarial training

(b) Slice

Figure 3: Label swapping experiments on CMU-PIE dataset. Left: the original image X . Middle:
reconstructing X ≈ G(Z, T ) using Z = E(X) and the true label T . Right: reconstructing X ′ =
G(Z, T ′) using Z = E(X) and a swapped label T ′ ̸= T . Changing T only affect the expression.

comparable level of fairness under the time budget given — a phenomenon also observed in the US
Census dataset. This is possibly because the networks in Neural TC require longer time to train. The
v-CLUB method does not work very satisfactorily on this task, possibly because the time allocated
to learn the variational distribution q(Z|T ) is not enough, leading to a loose upper bound of I(Z;T ).

5.3 Disentangled representation learning

We next apply our method to the task of disentangled representation learning, where we wish to
discover some latent generative factors irrelevant to the class label T . Here, we train a conditional
autoencoder X ≈ G(Z, T ) to learn representation Z = E(X) which encodes label-irrelevant in-
formation of X . The target to recover is Y = X . The utility of Z is therefore quantified as the
reconstruction error: L(Z;Y ) = E[∥G(Z, T )−X∥22], resulting in the following learning objective:

maxE[∥G(Z, T )−X∥22]− βÎ(Z;T ).

The conditional autoencoder uses a architecture similar to that of a convolutional GAN [64], with
the difference being that we insert an adaption layer Z ′ = MLP(Z, T ) before feeding the features
to the decoder. See Appendix B for the details of its architecture. All images are resized to 32 × 32.
For all methods, we use 10, 000 samples in the max step (so N ′ = 10, 000 in Algorithms 1 and 2).

Dsprite. A 2D shape dataset [65] where each image is generated by four latent factors: shape,
rotation, scale, locations. Here the class label T is the shape, which ranges from (square, ellipse,
heart). For this dataset, we train the autoencoder 100 iterations with a batch size of 512. The dimen-
sionality of the representation for this task is 20 i.e. Z ∈ R20. As in the previous experiments, we
provide quantitative comparisons of the utility and disentanglement of different methods in Table 3.
In addition, we provide a qualitative comparison in Figure 2 which visualises the original image, the
reconstructed image and the reconstructed image with a swapped label. From Table 3, we see that
the proposed method achieve very low ρ∗(Z, T ) while maintaining good MSE, suggesting that we
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Table 3: Learning label-irrelevant representations on the Dsprite dataset. Here the utility of the
representation is measured by MSE, while ρ∗(Z, T ) is used to quantify the level of disentanglement
of the representation. Training time is also provided as the seconds needed per max step. Acc(T̂ ) is
the accuracy trying to predict T from Z. As there are 3 classes, the ideal value for Acc(T̂ ) is 0.33∗.

N/A Pearson dCorr Slice Neural Rényi Neural TC vCLUB
MSE ↓ 0.37± 0.01 0.44± 0.02 0.55± 0.03 0.50± 0.01 0.61± 0.04 0.49± 0.03 0.65± 0.04

ρ∗(Z, T ) ↓ 0.91± 0.03 0.81± 0.07 0.62± 0.07 0.08± 0.02 0.48± 0.05 0.34± 0.06 0.22± 0.08

Acc(T̂ ) 0.98± 0.01 0.89± 0.03 0.76± 0.05 0.32± 0.02 0.55± 0.04 0.54± 0.04 0.48± 0.03

time (sec./max step) 0.000 0.201 0.412 0.602 0.791 0.812 0.689

Table 4: Learning label-irrelevant representations on the CMU-PIE dataset. Here the utility of the
representation is measured by MSE, while ρ∗(Z, T ) is used to quantify the level of disentanglement
of the representation. Training time is also provided as the seconds needed per max step. Acc(T̂ ) is
the accuracy trying to predict T from Z. As there are 2 classes, the ideal value for Acc(T̂ ) is 0.50∗.

N/A Pearson dCorr Slice Neural Rényi Neural TC vCLUB
MSE ↓ 1.81± 0.04 1.85± 0.05 2.08± 0.08 2.15± 0.07 2.46± 0.06 1.99± 0.12 2.02± 0.10

ρ∗(Z, T ) ↓ 0.76± 0.04 0.55± 0.03 0.27± 0.07 0.07± 0.01 0.36± 0.04 0.39± 0.06 0.16± 0.06

Acc(T̂ ) 0.91± 0.00 0.76± 0.03 0.71± 0.06 0.51± 0.03 0.73± 0.03 0.76± 0.04 0.68± 0.05

time (sec./max step) 0.000 0.184 0.332 0.581 0.750 0.841 0.621

*For the plain model, Acc(T̂ ) is not necessarily around 1.0, as Z needs not encode all content of the image.

may have discovered the true label-irrelevant generative factor for this dataset. This is confirmed vi-
sually by Figure 2(b), where by changing T in reconstruction we only change the style. By contrast,
the separation between T and Z is less evident in adversarial approach, as can be seen from Table
3 as well as from Figure 2(a) (see e.g. the reconstructed ellipses in the third column of the figure.
They are more like a interpolation between ellipses and squares).

CMU-PIE. A colored face image dataset [66] where each face image has different pose, illumina-
tion and expression. We use its cropped version [67]. Here the class label T is the expression, which
ranges from (neutral, smile). We train an autoencoder with 200 iteration and a batch size of 128. The
dimensionality of the representation for this task is 128 i.e. Z ∈ R128. Figure 3 and Table 4 shows
the qualitative and quantitative results respectively. From Figure 3, we see that our method can well
disentangle expression and non-expression representations: one can easily modify the expression of
a reconstructed image by only changing T . Other visual factors of the image including pose, illu-
mination, and identity remain the same after changing T . Adversarial approach can to some extent
achieve disentanglement between Z and T , however such disentanglement is imperfect: not all of
the instances can change the expression by only modifying T . This is also confirmed quantitatively
by Table 4, where one can see the relatively high ρ∗(Z, T ) values in adversarial methods. For this
task, v-CLUB also achieves a low ρ∗(Z, T ) value, though it is still outperformed by our method.

5.4 Domain adaptation

We finally consider the task of domain adaptation, where we want to learn some representation Z
that can generalise across different datasets. For this task, a common assumption is that we have
assess to two datasetDs = {X(i), Y (i)}ni=1 andDt = {X(j)}mj=1 whose classes are the same but are
collected differently. Only the data in Ds has known labels. Following [47], we learn Z as follows:

Zc = fc(X), Zd = fd(X)

Lc = EX,Y ∈Ds
[Y ⊤ logC(Zc)], Ld = EX∈Ds

[logD(Zd)] + EX∈Dt
[log(1−D(Zd))],

minLc + Ld + βÎ(Zc, Zd),

where Zc, Zd are disjoint parts of Z that encode the content information and the domain information
of X separately. C is the content classifier that maps X to a (K − 1)-simplex (K is the number of
classes) and D is the domain classifier that distinguishes the domain from which X comes. Since the
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(a) M → MM, adversarial (b) M → MM, slice (c) C → S, adversarial (d) C → S, slice

Figure 4: T-SNE plots of the learned content representations Zc in domain adaptation tasks. (a)(c)
show the cases when the adversary is not trained thoroughly (i.e. L2 in Algorithm 1 is set too small).

Table 5: Learning domain-invariant representations. Here Acc(Ŷs) and Acc(Ŷt) are the classifica-
tion accuracy in the source and the target domains respectively. Time used per max step is given.

MNIST→MNIST-M
N/A Slice Neural TC vCLUB

Acc(Ŷs) ↑ 99.3± 0.04 99.2± 0.02 99.2± 0.04 99.0± 0.03

Acc(Ŷt) ↑ 46.3± 0.03 98.5± 0.45 80.1± 0.17 93.8± 0.10

ρ∗(Zc, Zd) ↓ 0.86± 0.05 0.06± 0.01 0.64± 0.04 0.49± 0.12

time (sec./step) 0.000 2.578 3.282 3.123

CIFAR10→ STL10
N/A Slice Neural TC vCLUB

Acc(Ŷs) ↑ 93.0± 0.03 92.5± 0.03 92.4± 0.03 92.1± 0.04

Acc(Ŷt) ↑ 75.9± 0.09 82.3± 0.03 80.8± 0.08 78.5± 0.11

ρ∗(Zc, Zd) ↓ 0.43± 0.05 0.08± 0.01 0.39± 0.07 0.42± 0.09

time (sec./step) 0.000 3.146 3.222 3.080

classifier C only sees labels in Ds, we call Ds the source domain and Dt the target domain. For the
two encoders fc and fd, we use Resnets [68] with 7 blocks trained with 100 iterations and a batch
size of 128. Here Zc, Zd ∈ R256. We use N ′ = 5, 000 samples in the max step for all methods.

MNIST → MNIST-M. Two digit datasets with the same classes but different background colors.
Both datasets have 50,000 training samples. Table 5 shows the result, indicating that our method can
more effectively remove the information about the domain. This is further confirmed by the T-SNE
[69] plot in Figure 4, where one can hardly distinguish the samples of Zc from the two domains.
This naturally leads to a higher target domain accuracy Acc(Ŷt) than other methods.

CIFAR10→ STL10. Two datasets of natural images sharing 9 classes. There are 50,000 and 5,000
training samples in the two datasets respectively. Following existing works [70, 71, 47], we remove
the non-overlapping classes from both datasets. Table 5 and Figure 4 show the result. Again, we see
that our method can more effectively remove domain information from the learned representation.

6 Conclusion

This work proposes a new method for infomin learning without adversarial training. A major chal-
lenge is how to estimate mutual information accurately and efficiently, as MI is generally intractable.
We sidestep this challenge by only testing and minimising dependence in a sliced space, which can
be achieved analytically, and we showed this is sufficient for our goal. Experiments on algorithmic
fairness, disentangled representation learning and domain adaptation verify our method’s efficacy.

Through our controlled experiments, we also verify that adversarial approaches indeed may not pro-
duce infomin representation reliably – an observation consistent with recent studies. This suggests
that existing adversarial approaches may not converge to good solutions, or may need more time for
convergence, with more gradient steps needed to train the adversary fully. The result also hints at the
potential of diverse randomisation methods as an alternative to adversarial training in some cases.

While we believe our method can be used in many applications for societal benefit (e.g. for promot-
ing fairness), since it is a general technique, one must always be careful to prevent societal harms.
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