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Abstract

Incrementality, which measures the causal effect of showing an ad to a potential
customer (e.g. a user in an internet platform) versus not, is a central object for
advertisers in online advertising platforms. This paper investigates the problem of
how an advertiser can learn to optimize the bidding sequence in an online manner
without knowing the incrementality parameters in advance. We formulate the offline
version of this problem as a specially structured episodic Markov Decision Process
(MDP) and then, for its online learning counterpart, propose a novel reinforcement
learning (RL) algorithm with regret at most Õ(H2

√
T ), which depends on the

number of roundsH and number of episodes T , but does not depend on the number
of actions (i.e., possible bids). A fundamental difference between our learning
problem from standard RL problems is that the realized reward feedback from
conversion incrementality is mixed and delayed. To handle this difficulty we
propose and analyze a novel pairwise moment-matching algorithm to learn the
conversion incrementality, which we believe is of independent interest.

1 Introduction

Nowadays, online advertising systems (e.g. Google, Facebook, and Amazon) have demonstrated
their significant power for connecting advertisers and potential customers. Moreover, automated
auctions are widely used in online ad platforms for matching advertisers and users, and for price
discovery [23, 8]. Many advertisers are bidding repeatedly online to show ads to users. Therefore,
an important problem for advertisers is to design efficient bidding algorithms to maximize their
accumulated utility. Moreover, this is also an important problem for online ad platforms, because
auto-bidding — i.e., the advertisers authorize ad platforms to bid on behalf of them —has become
prevalent in online advertising [9, 11].

A growing body of work is investigating the problem of learning to bid in repeated auctions [25, 10,
5, 13, 12, 4, 20, 19]. However, existing work assumes that the value of showing ads to a user (after
winning the auction) comes from either an oblivious adversary or is sampled from an underlying
fixed distribution. Unfortunately, this ignored the crucial causal effect of showing an ad to a potential
customer and cannot capture how much an ad will change the user’s conversion rate, which should
have been what the advertiser is bidding for. For example, if a user sees the same ad multiple times in
a very short time period, then the conversion 1 of this user may not be much better — in fact, may

1A conversion represents a desired interaction between the user and advertiser, e.g., download the App or
buy the products from the advertiser.
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even be worse — than that of showing ads to this user only once within this period. Such multiple
redundant ad placements are commonly known in reality to be cost-inefficient for the advertisers,
but cannot be captured by previous models of learning to bid with either random or completely
adversarial ad values. To overcome the drawbacks of previous approaches in measuring the value of
an advertising opportunity, a recent visionary whitepaper by Lewis and Wong [18] introduced the
important notion of incrementality, which properly quantifies this causal effect of showing an ad to
the user as validated by massive real data from leading advertising platforms. However, [18] focuses
on the offline learning problem of estimating incrementality from past data. The online learning of
incrementality parameters, as well as how to utilize it to optimize bidding sequences, has not been
studied; this is what we embark on in this paper.

In Figure 1, we visualize the conversion incrementality caused by three ad placements and used
the colored areas to capture the incrementality caused by each ad placement. There are two main
challenges in learning incrementality, i.e., delayed and mixed conversion feedback. First, the conver-
sion may not happen immediately when the ad is shown to the user, even though the conversation
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Figure 1: Toy example: visualization of the
conversion incrementality triggered by three
ad impressions. The rate of conversion in-
crementality of each ad follows Gamma(2,
2), Exp(0.5) (shifted right by 3) and Exp(1)
(shifted right by 8) distributions, respectively.

rate may quickly peak after showing the ad (see Ad 2 and
Ad 3 in Figure 1). Such delayed conversion feedback in
online advertising is studied only recently in offline setups,
e.g., [6, 21, 22, 3]. Second, when a conversion happens,
it is a mixed effect from multiple previous ad placements
before the conversion. In this work, we formulate incre-
mentality bidding as an episodic Markov Decision Process
(MDP), where each episode represents an interaction with
a single user drawn from a population of the same charac-
teristics (and thus assumed to have the same incrementality
parameters). The advertiser wants to learn the incremental-
ity and optimize bidding for this user population. This is
hardly possible in general given the two difficulties above
as well as the potentially complex dependence of incre-
mentality on the entire history. We thus make a Markovian
assumption that the conversion incrementality of an ad
placement at each round h only depends on its last ad
impression shown before this round. In addition, we in-
troduce the heterogeneous Poisson process to formally
capture the mixed and delayed rewards feedback in the conversion process (Poisson process is also
mentioned by Lewis and Wong [18], but only qualitatively).

To optimize the sequential strategy for incrementality bidding in online learning, there is an intrinsic
exploration versus exploitation tradeoff. On one hand, the advertiser needs to bid high in order to win
the ad placement opportunity and also to learn the conversion incrementality. On the other hand, she
also doesn’t want to bid too high such that her conversion reward may be less than her cost, i.e., the
payment due to winning the auction. This observation naturally motivates our design of a model-based
RL algorithm that adopts a UCB-style approach to balance exploration and exploitation.2

Our Results and Contributions. The main contributions of this paper are two folds: (1) we intro-
duce an episodic MDP, coupled with a heterogeneous Poisson process, to capture the incrementality
bidding problem; (2) we design a novel reinforcement learning algorithm for the advertiser to optimize
her sequential bidding while learning incrementality simultaneously. Technically, our main result is
the design of an RL algorithm for incrementality bidding that provably has regret at most Õ(H2

√
T )

and is near-optimal in terms of the dependence on T . Conceptually, our result demonstrates the
possibility of designing highly-efficient RL algorithms for incrementality bidding despite its various
challenges. To the best of our knowledge, this is the first work that analyzes incrementality bidding
in an online setting theoretically.

Notably, our regret bound is independent of the number of possible bids (equiv. actions in standard
RL). This is due to the special structures of the incrementality bidding problem, which has a small
effective action space. Specifically, there are only two effective outcomes for an advertiser—winning

2We remark that designing model-free no-regret RL algorithms is an intriguing open problem. Due to delayed
and mixed reward feedback, it appears challenging to use algorithms like Q-learning in the incrementality
bidding problem.
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or losing— that eventually affect the state transitions. The conversion incrementality only happens
if the learner wins. Finally, we remark that our results are independent of auction formats and all
our results hold for second price auctions, first price auctions, and other standard single-item auction
formats. To achieve this regret bound, we provide a novel regret decomposition to incorporate with
the convergence rate analysis of our novel parameter estimation method.

One key technical novelty of this paper is a new parameter estimation method, Pairwise Moment-
Matching (PAMM) algorithm, that can estimate reward parameters under mixed and delayed conversion
feedback. In this type of models with mixture effects, standard likelihood-based model fitting
procedure would lead to solving non-convex optimization problems resulting in difficulties for
computation and analysis, as well as unpleasant gap between theory and algorithm [15]. However,
PAMM estimates incrementality parameters in an online and computationally efficient manner without
the need of solving nonconvex optimization problems. The estimators are provably consistent with a
nearly-optimal convergence rate. We believe this novel technique will be of independent interest for
other online learning problems with delayed and mixed reward feedback.

Related Work. As mentioned in the introduction, our work is highly inspired by the visionary work
of Lewis and Wong [18], who firstly proposed incrementality bidding (and attribution). However,
the method proposed in [18] lacks a theoretical guarantee and cannot be adapted to online learning
settings. Our work is generally related to the learning to bid literature [25, 10, 5, 13, 12, 4]. However,
all these existing papers usually model this problem as (contextual) bandits and don’t consider the
causal effect of showing an ad to the user captured by incrementality (i.e., the additional value or
conversion given the ad placements in previous rounds), which causes the main difference from this
paper. Specifically, in all these previous works [25, 10, 5, 13, 12, 4], the reward for an ad impression
is realized immediately at the current round whereas, in our model, any ad impression only increases
the rate of conversions, which however may be realized in any later time following a Poisson process
and, more importantly, is mixed with the incrementality of other ad impressions. We believe our
model captures the effect of advertising more realistically. Some other less related works include
delayed feedback in other different RL problems, which have only been studied recently [17, 14]. We
handle delayed conversion feedback through a parametric inhomogeneous Poisson process, which is
different from these works.

2 The Sequential Optimization Problem of Incrementality Bidding (IB)

This paper adopts the perspective of an online advertiser, and studies the advertiser’s learning
problem of optimizing her sequential bidding policy. Next, we will first describe the background and
motivation of this problem and then introduce the formal model.

We consider the sequential bidding problem for a single advertiser — i.e., the decision maker or
learner — in online advertising systems. The advertiser participates online advertising auctions
in order to win opportunities for showing ads to Internet users and, ultimately, gain conversions
(i.e., purchases of products or services) from Internet users. The interaction between the advertiser
and Internet users happens in an episodic manner; each episode corresponds to one Internet user.
Specifically, each episode has H rounds, during which the advertiser (learner) will interact with
the user of that episode for at most H times. Notably, H is a finite number since (1) an interaction
happens only when a user visits a particular webpage and (2) if an advertiser already bids for a user
for sufficiently many times and still was not able to get conversion, the advertiser typically will cease
to advertise to this user (at least for some time). We use T to denote the total number of episodes.3
To focus on the fundamentals of the problem, this work studies the basic setup with T i.i.d. episodes
(i.e., Internet users) that occur sequentially and evenly distributed H rounds at integer time point
1, 2, · · · , H within each episode. Interesting future directions include examining the more general
settings in which each Internet user in the corresponding episode may depend on a context feature,
the time points of the H rounds are different for different episodes, and the episodes may happen in
batch (i.e., multiple similar users arrive at the same time).

Conversion incrementality. Central to our bidding optimization problem is the notion of “conver-
sion incrementality” [18]. Intuitively, incrementality captures how much increase the advertiser’s
ads can boost the user’s conversion rates. Notably, the reward of showing an ad is the incrementality

3In reality, H is usually at the scale of around 50 (the number of times an advertiser would like to interact
with a user), whereas the number of similar Internet users (i.e., episodes) T is of the scale of millions.
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while not the conversion rate itself. This is very different from the previous learning to bid literature
since they assume the conversion (or value) comes independently with the previous ad placements
(i.e., from oblivious adversary or an underlying distribution). This is why previous studies almost all
use the (contextual) bandits setup, while not MDP.

We now formally describe the model of incrementality bidding, following [18]. Within any episode
t ∈ [T ], each round h ∈ [H] has an incrementality rate function dh(τ ;Ah, θh) for any continuous
time τ ∈ [h,∞) which is the “density” of the conservation incrementality at any time τ ∈ [h,∞).
Intuitively, dh(τ ;Ah, θh) models how much an ad shown at round h boosts the conversion rate
density at any future time τ > h. Notably, the integral of this rate function dh(τ ;Ah, θh) does not
need to be 1 as there may be many conversions per user impression. We assume that dh(τ ;Ah, θh)
depends on an to-be-learnt unknown parameter θh and additionally a subset Ah ⊂ [h] containing all
previous rounds, at which our learner’s ads were shown to the corresponding user of this episode. Let
θ = (θ1, θ2, · · · , θH) denote all the to-be-learnt parameters.

It is generally intractable to learn an arbitrary rate function dh(τ ;Ah, θh). Next, we introduce a
natural parameterized family of functions for dh(τ ;Ah, θh), with to-be-learnt parameters, in order to
capture advertising applications. First, we have the following assumption for dh,

Assumption 1 (Markovian Incrementality). dh is only affected by the learner’s last ad impression
before h, rather than the entire history Ah of the learner’s advertising performance. Formally, at
current round h, suppose the last round at which the learner’s ad was shown is h − l, then the
incrementality function dh(τ ;Ah, θh) = dh(τ ; `, θh). 4

The above assumption is built upon the sense that the users normally weighs more on the recently
visited ads and are generally memory-less. Moreover, we assume each incrementality rate function
dh(τ ; `, θh) for any h ∈ [H] has the following parametric form:

dh(τ ; `, θh) =

{
βh(`)λhe

−(τ−h)λh ∀τ ∈ [h,∞),

0 otherwise,
(1)

in which θh = {βh(`)}h−1
`=1 ∪ {λh} contain all the parameters at round h of the given IB instance.

In other words, the incrementality rate is a re-scaled exponential distribution and the re-scaling is
due to fact that each user impression may lead to more (or less) than one user conversions. In our
RL formulation of the problem, these are all the to-be-learnt parameters. The Markovian property is
reflected in βh(`). Note that

∫∞
τ=h

dh(τ ; `, θh)dτ = βh(`). So βh(`) can be viewed as the expected
number of conversions triggered by the ad impression at round h, given the last time for showing the
learner’s ad is ` rounds before. In this paper, we assume ∀h, `, cβ ≤ βh(`) ≤ Cβ for some positive
constants cβ and Cβ . Without loss of generality, we assume Cβ ≤ 1. 5

Remark 1. The assumption of exponential decaying rate in Equation (1) is not necessary for our
approach to work, and is primarily for the exposition. Our techniques can be applied to most
parametric family of rate functions such as truncated exponential, logistic, Beta, and Gamma
distributions [18], as long as the CDF function is invertible.

From conversion incrementality to realized conversions. While incrementality captures how
the rate of conversions increases, it did not model how conversions are realized in reality. This would
be important when we introduce our reinforcement learning problem — after all, in real applications,
the only observations our learner (an advertiser) can see are the realized conversions at different
time, rather than the continuous conversion rate function. To capture this, we adopt the standard
assumption that conversions are realized based on a continuous-time inhomogeneous Poisson process
[18]. More specifically, let the ordered subset W = {w1, w2, · · · , wn} ⊆ [H] denote the rounds at
which the learning agent wins within the episode (for convenience, let w0 = 0). Then the conversions
arrive according to a Poisson process with a time-varying rate r(τ), defined as follows

4It is possible to have more features of the last ad impressions (instead of just the time gap `) in the state and
our analysis will still go through as long as the number of states is still finite. For theoretical simplicity, in this
paper, we focus on the case that the state is just `.

5In this paper, we assume βh(`) to be strictly positive, however, the conversion incrementality can be negative
in practice, e.g., keep seeing the same ads very often may decrease the conversion from the users. Indeed, our
results still hold when allowing negative βh(`), as long as βh and the time-varying rate r(τ) are bounded from
zero. See the discussion in the proof of Theorem 1 in Appendix B.
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r(τ ;w, θ) =

n∑
i=1

dwi(τ ;wi − wi−1, θwi), ∀τ ∈ [0, H]. (2)

More details of inhomogeneous Poisson process is deferred to Appendix A.

The optimization problem of bidding for incrementality. While the above incrementality mod-
eling of user conversions originates from the influential idea of [18], our following formulation of the
optimal bidding problem under their user modeling is new to the best of our knowledge, and so is its
reinforcement learning solutions presented in this paper for addressing the situations with unknown
environment parameters.

Following current practice, we assume online ad opportunities are sold to advertisers by auctions,
and our learner is one of these advertisers. For the ease of presentation, we restrict our descriptions
to the widely adopted second price auctions; however, all our results can be easily adapted to any
single-item auction format without entry fees (e.g., the first price auction). Let B denote the bidding
space, which may be continuous. Notably, 0 ∈ B, meaning the bidder/learner can choose to not
participate this round’s auction. Moreover, denote the distribution of the highest bid among other
bidders (HOB) at round h as Fh (the cumulative distribution function or CDF). For any episode t
(corresponding to an Internet user), at each round h, the learner submits a bid b ∈ B and wins the
opportunity to show its ad to the user if her bid is the highest. Let ph : B → R≥0 represents the
average (conditional) payment function of the learner if she wins. Let v denote the learner’s average
value per conversion, which is known to the learner. We assume v is bounded, w.l.o.g., within [0, 1].
Moreover, we can assume B ⊆ [0, 1]. Then for any bid b ∈ B, given the current state `, the immediate
expected utility of the learner at round h (for any episode) is,

uh(b; `, θh) = Fh(b) ·
(∫ ∞

h

vdh(τ ; `, θh)dτ − ph(b)

)
= Fh(b) · (βh(`) · v − ph(b)) (3)

The astute reader may already find the expected utility function of the learner doesn’t depend on
parameter λh. This raises the question why we still need to know the function class of dh (i.e.,
exponential function) and why we still need to learn parameter λ. As we will see later in Section 4,
due to the complexity of inhomogeneous Poisson process, it is crucial to know the function class
of dh and we have to learn parameters λ first in order to get a good estimator to β afterwards. In
second price auctions, ph(b) is the expected second highest bid conditioning on winning, which can
be computed as follows

ph(b) =
1

Fh(b)

∫ b

0

vdFh(v) = b− 1

Fh(b)

∫ b

0

Fh(v)dv. (4)

As mentioned above, our techniques apply to other auction formats as well. For example, in first
price auctions, ph(b) = b has an even simpler format.

3 The Optimal Policy of IB and its Reinforcement Learning

While it may not appear obvious at the first glance, we explain how IB can be reduced to a finite-
horizon Markov Decision Process (MDP) in this section and then introduce the corresponding
reinforcement learning problem for IB when the environment parameters — namely, the incremen-
tality parameters θh = {βh(l)}h−1

l=1 ∪ {λh} and HOB distribution Fh — are unknown.

3.1 The Offline Optimal Policy of IB

We now formulate the optimal planning problem for the IB problem in its offline version, i.e., when
all environment parameters are known. We start by defining what is a policy for the IB problem.
Definition 1 (Policy). A deterministic (dynamic) policy is a sequence of mappings π = (π1, · · · , πH),
in which mapping πh : [h] → B maps any ` ∈ [h] to a bid. Here, ` is chosen such that the last
winning of the learner happens at round h− `.

Note that it suffice to consider policies that depend only on the number of consecutive loses ` due to
the Markovian property of incrementality as mentioned above.
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The MDP re-formulation of IB. The MDP will have H states, with state ` ∈ [H] denoting that
the last winning round is ` rounds ago from current round. The action set is B, containing all possible
bids. Both the state and action space are the same for each round h, however the transition and
rewards are different for different rounds. Specifically, at round h, the transition probability from
state l and action b is to enter state 1 at round h+ 1 with probability Fh(b), i.e., the probability of
winning the auction, and to enter state `+ 1 with probability 1− Fh(b). The immediate reward from
transitioning is rh(`, b, 1) =

∫∞
h
v(τ)dh(τ ; `, θh)dτ − ph(b) for tuple (`, b, 1) (the winning case)

and rh(`, b, `+ 1) = 0 for tuple (`, b, `+ 1) (the losing case). This last statement depends crucially
on the independence of the incrementality across different winning rounds. The initial state of this
MDP is always the lowest state, i.e., `1 = 1.

Consequently, the optimal policy in IB can be computed via standard dynamic programming.
Specifically, when the action set B has finite support (i.e., the advertiser has finite bids to choose
from), the following proposition follows from the fact that MDPs with finite states, actions and
horizons can be solved efficiently by dynamic programming [1].

Proposition 1. The offline optimal policy π for any IB instance can be computed by dynamic
programming in poly(|B|, H) time.

We remark that even when B ⊆ R is continuous with upper bound B, an ε-optimal policy can be
computed in poly(Bε , H) time since the reward function is continuous in b ∈ B and an ε-optimal
action can be found at each round during the backward induction by discretizing the entire line of bid
into ε segments. This ε-optimal action choices lead to an approximately optimal policy [1].

3.2 Reinforcement Learning of IB with Unknown Parameters

We now turn to the much more interesting and realistic situation of the online learning, particularly
reinforcement learning, of the optimal IB solution. While we have shown that the offline version of
IB problem can be viewed as an MDP, its online counterpart cannot be similarly tackled by standard
reinforcement learning techniques due to the following novel challenges specific to the IB problem:

• Challenge 1: mixed reward feedback. Any realized learner reward, arising from a user conver-
sion, is naturally a mixture effect of all the previous winning rounds, as modeled by the accumulated
incrementality rate in Equation (2). This is in contrast to standard MDP, in which the reward of
this round is realized independently, conditioned on its state. It is not difficult to see that the
loglikelihood of our mixed rewards model is non-convex, which renders the standard RL techniques
based on maximum likelihood estimation for reward parameter estimation not applicable.

• Challenge 2: delayed reward realizations. Moreover, the conversions in the IB problem follow
a intricate Poisson process with heterogeneous rate and thus has delays. That is, showing an ad may
not immediately lead to conversions. Such lack of immediate reward feedback renders standard
Q-learning style of algorithms not easily applicable to our setup since we cannot use immediate
reward feedback to update Q-functions any more.

To overcome the first challenges above, we design a novel parameter estimation methods based on
moment matching to estimate θh’s from mixed reward feedback, and prove its convergence rate in
Section 4. To address the second challenge above, we design a model-based no-regret RL algorithm
that integrate the parameter estimation above, and analyze its regret in Section 5.

Learner’s Observations. We now formalize our learning setup. We consider the episodic online
learning setting, where the learner does not know the IB parameters θh = {βh(`)}h−1

`=1 ∪ {λh} for
each h ∈ [H] neither the distribution of the highest other bid (HOB) Fh. Following the typical
practice, we assume that the learner can always observe the realized HOB at any round h in each
episode, denoted as mt

h, regardless whether the learner wins or loses. This is usually termed as “full
information feedback” in the literature of learning to bid.6 Moreover, the learner also knows the set
of its winning rounds denoted by an ordered setWt ⊂ [H] as well as the set of the time stamps of all
conversions Ct (a subset of R) from each episode.

6This assumption is practical. First, in online ad systems, the manual bidder can always get this feedback
(also known as “minimum bid to win”) no matter she wins or not, e.g., in Google Ad exchange platform [7].
Second, for the auto bidding algorithms, they are designed by the platform and it does know the realized bids at
each round.
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In the online learning setting, the learner aims to design a bidding algorithm A to minimize the
expected regret defined in the following,

Regret(T ) = T ·OPT(θ, F )− E
(π1,π2,··· ,πT )∼A

[
T∑
t=1

R(πt; θ, F )

]
, (5)

where OPT(θ, F ) represents the optimal expected utility achieved by the learner at each episode if
the ground-truth parameters θ and F are given (recall that the MDP always starts from state ` = 1),
E represents the expectation over the randomness of algorithm A, and πt is the policy in the tth

episode generated by the algorithm A. Here, we slightly abuse the notation to denote R(π; θ̂, F̂ ) as
the expected utility achieved by policy π for estimated parameters θ̂ and F̂ .

R(π; θ̂, F̂ ) = E
(`1,··· ,`H)∼P̂π

[
H∑
h=1

(
β̂h(`h) · v − p̂h(πh(`h))

)
· F̂h(πh(`h))

]
, (6)

where P̂π represents the joint distribution of states (`1, · · · , `H) induced by a bidding policy π in
the MDP formulated in Section 3.1 with estimated parameters θ̂ and F̂ . Note, for second price
auctions, p̂h(b) = b− 1

F̂h(b)

∫ b
0
F̂h(v)dv (replacing F by F̂ in Eq. (4)). In other words, R(π; θ̂, F̂ )

captures the expected total reward in the MDP when the reward function and transition probability
are parameterized by θ̂ and F̂ .

Remark on a non-degeneracy assumption on the learner. We assume that the learner’s bidding
space B is upper bounded away from extreme bids. More formally, there exists a small constant c0
such that F (b) ≤ 1− c0 for any b ∈ B (i.e., no feasible bids guarantee sure winning). We call such
learner c0-bounded. There are two reasons for making this assumption. The first is a technical reason:
it makes sure that the learner always has at least c0 probability to lose, which turns out to be crucial
to estimate the incrementality parameters, as we do in the next section. This is because incrementality
captures the difference between winning and losing. If the probability of losing is extremely small,
there is generally no way to accurately estimate their differences (though it turns out that we can
afford small winning probabilities). The second reason for assuming c0-bounded learners is realistic
motivations since in auto bidding practice, bidders typically explicitly specify upper bounds of their
bids, under which the bidder’s winning probability is almost always capped strictly below 1.

4 Incrementality Parameter Estimation via Pairwise Moment-Matching

Though maximum likelihood estimation (MLE) is a natural and straightforward parameter estimation
strategy, it comes with many drawbacks we want to avoid. First, the MLE criterion under our model of
mixed rewards is not a convex problem and optimizing the likelihood would suffer from multiple local
optimal or saddle point issues. The theoretical claims may not match the true algorithm performance.
Secondly, the computational efficiency of the MLE problem is worse than what we will introduce
next, which makes it less attractive in large-scale problems. Our algorithm is carefully tailored for
estimating parameters of our model, given the observed trajectories of first t rounds. Specifically,
the trajectory of each episode t ∈ [T ] can be described by two sequences: (1) the time stamps Ct of
realized conversions within time [0,∞]; and (2) the ordered subsetWt = {wt1, · · · , wtnt} ⊆ [H]
which contains all the winning steps within this episode (for convenience, we extend the above
notations and by letting wt0 = 0, wtnt+1 = H + 1), where nt denotes the number of winning events
(showing the ad) in the episode t. Equivalently, we can also represent Wt by a H-length binary
sequence ζt ∈ {0, 1}H such that ζth = 1 if and only if episode t wins at time h. Notably, both
Ct and Wt may be empty if there is no conversion nor winning. Our estimation is based on an
online algorithm: from a high-level perspective, it progresses by time intervals [h, h+ 1) sequentially
to produce estimates of parameters θh, by pairwisely coupling episodes and matching statistical
moments. Therefore, we call it the pairwise moment-matching (PAMM) algorithm, described in
Algorithm 1.

The PAMM algorithm is specifically designed for estimating parameters from mixed reward signals,
each drawn from a Poisson process. Its primary advantage lies in its online nature, guaranteed
convergence and efficient computation. This is achieved by the following observations. First, all
information about reward scale parameter βh and reward variance parameter λh is intrinsically
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Algorithm 1 Pairwise Moment-Matching (PAMM) Algorithm

1: Input: A sample of episodes (Ct,Wt), t ∈ [T ] up to time [0, h+ 1).
2: Output: the estimates of parameter θh, denoted by {β̂h(`),∀` ∈ [h]; λ̂h}.
3: For any t, define N t

h and N
t

h to be the number of conversions of episode t within [h, h+ 1
2 ) and

[h+ 1
2 , h+ 1), respectively.

4: for For each given h of interest, do
5: Define nh to be the total number of episodes with winning bid at time h. Define Ψ = {0, 1}h−1

be the set of all possible winning sequences before time h. For each winning sequence φ ∈ Ψh,
define

Ωφ = {t ∈ T : ζth = 1, ζtj = φj , 1 ≤ j ≤ h−1},Λφ = {t ∈ T : ζth = 0, ζtj = φj , 1 ≤ j ≤ h−1}.

Moreover, define nφ = |Ωφ|, n′φ = |Λφ|, and ñφ =
(n−1

φ +(n′φ)−1

2

)−1
as the harmonic mean

of nφ and n′φ.
6: For each φ ∈ {0, 1}h−1,

Xφ =
1

nφ

∑
t∈Ωφ

N t
h −

1

n′φ

∑
t∈Λφ

N t
h and Yφ =

1

nφ

∑
t∈Ωφ

N
t

h −
1

n′φ

∑
t∈Λφ

N
t

h. (7)

7: For each φ ∈ {0, 1}h−1, define

αφ =
ñφ∑

φ′∈Ψh
ñφ′

(8)

and set
µ̂h =

∑
φ∈Ψh

αφXφ and η̂h =
∑
φ∈Ψh

αφYφ. (9)

Estimate λh by
λ̂h = 2(log µ̂h − log η̂h). (10)

8: for 1 ≤ ` ≤ h do
9: Define the `th slice of Ψh as Ψh,` = {φ ∈ Ψh : φh−` = 1, φk = 0, h − ` < k ≤ h − 1}.

For each winning sequence φ ∈ Ψh,`, still define Xφ and Yφ following (7).
10: Define

µ̂h` =
∑

φ∈Ψh,`

αφ`Xφ and η̂h` =
∑

φ∈Ψh,`

αφ`Yφ. (11)

where αφ` is defined following (8) after replacing Ψh by Ψh,`.
11: Estimate βh(`) by

β̂h(`) =
µ̂2
h`

µ̂h` − η̂h`
. (12)

12: end for
13: end for

reflected only in the “differential behaviors” for those episodes which had conversions vs. those
episodes which did not have conversions at time step h, conditioning their matched history before
time h as defined in the sample matching step. This is due to the Markovian property for the Poisson
process, and our moment matching is hinged into this property. Second, for the Poisson distribution
(as a member of the exponential family), the method of matching the canonical parameter (mean)
gives an equivalent estimator as the MLE in a single Poisson case (but not necessary in our more
complicated model). These two ideas motivate our procedure, by matching the episodes, we precisely
locate the needed Poisson signals and solve the estimators by the mean value structure. Because of
this, the PAMM can recover the parameters with essentially optimal rate (in the online sense), even
though we do not use the full likelihood that would result in non-convexity and an unpleasant gap
between the theory and the practical algorithm.
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In practice, terms in (10) and (12) may result in ±∞, but such an event only happens with probability
tending to zero (which is why Theorem 1 has high probability guarantees). Standard numerical
protection can be introduced in practice which will not change our theoretical claims. Moreover, from
the implementation perspective, one start from the first interval [0, 1) and move forward by running
PAMM for each [h, h + 1). In each new interval, the matching step can be directly carried over by
further refining the matching of the previous interval. As a result, the whole estimation procedure
only involves one sweep of the data without the commuting back and forth between different time
intervals. We have introduced the PAMM algorithm in the current form as a self-contained algorithm
for estimating the inhomogeneous Poisson process, which can be of independent interest. However,
the steps of PAMM can be easily embedded in our online learning algorithm presented in Section 5
without losing its validity.

Theorem 1 (Estimation Errors with Finite Samples). Suppose there exist positive constants Cλ and
cβ , such that cλ ≤ λh ≤ 1/cλ and βh(`) ≥ cβ for any h and `, and the learner is c0-bounded. Also
assume that the expected number of total conversions for each episode within each interval [h, h+ 1)
is always bounded above by a constant CT . Let nh be the total number of winning episodes at time
h and nh(`) be the total number of winning episodes at time h with state `. Let λ̂h and β̂h be the
estimators obtained from Algorithm 1. Then, for any 0 ≤ h < H and any 0 ≤ ` < h, we have the
following guarantees for PAMM:

1. For any 4e−C0nh < δ < 1/2, with probability at least 1− δ, |λ̂h − λh| ≤ C1

√
log 1/δ
nh

.

2. For any 4e−C0nh(`) < δ < 1/2, with probability at least 1 − δ, |β̂h(`) − βh(`)| ≤
C2

√
log 1/δ
nh(`) .

In the above results, C0 = c′c0
2 , C1 = 4

√
C2
T

c2β(1−e−cλ/2)2c′c0
and C2 = 8

√
2C2

T

c′c0
, where c′ is the

Bernstein constant (see Lemma 1).

5 The Full RL Algorithm and its Regret Analysis

We propose a reinforcement learning algorithm by incorporating our parameter estimation method
PAMM and the optimal offline planning for the MDP mentioned in Section 3 to learn parameters θ, F
as well as the conversion incrementality and decide the bid at each round.

Our algorithm adopts a UCB-style procedure to handle the exploration-exploitation tradeoff in
incrementality bidding, which is summarized in Algorithm 2. The algorithm adopts pure explorations
in several beginning episodes so that we can get enough ad impressions for each state in every
round. These pure explorations are achieved by setting bids appropriately such that we can enforce
to explore one (h, `) pair in each exploration (Line 4 in Algorithm 2)7. In particular, we need
O(H2 log(T/δ)) explorations to make sure nh(`) ≥ log(4T/δ)

C0
so that we can provide a regret bound

with high probability, where C0 is a positive constant explicitly defined in Theorem 1. Recall nh(`)
is the total number of winnings at round h given the state is `.

After pure explorations, at each episode t, we use the PAMM algorithm to get an estimator θ̂t (resp.
β̂t) given the observed ad impression time Wt and the conversion time Ct up to episode t. In
addition, we can estimate F easily using empirical distribution function and this implies we can get a
uniform convergence for the transition probabilities for any action b ∈ B given any state `. Then we
apply UCB-style RL algorithm with estimated parameters θ̂t to decide the policy in next episode.
Specifically, given the estimated β̂t,∀h ∈ [H], we construct a confidence region centered at β̂t and
we do offline planning for the optimism in the confidence region to get the policy in next episode.

Remark 2 (Computational Efficiency of Alg. 2). An important observation is that R(π; θ̂, F̂ ) is
non-decreasing in β̂h(`) (see Eq. (6)) for any fixed π and F̂ . Therefore, the optimal choice of β̂ in

7When ` = h, setting bt0 = 1 means a “fake” winning at round 0 and it is consistent with our assumption
that initial state `1 = 1.
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Algorithm 2 Online Bidding algorithm

1: Input: Given δ, H , T , and C0, C2 defined in Theorem 1. Set nh(`) = 0,∀h ∈ [H], ` ∈ [h].
2: for Episode t = 1, · · · , T do
3: if ∃h, `, nh(`) < log(4T/δ)

C0
then

4: Set bids, s.t. bth = bth−` = 1, and bth′ = 0,∀h′ 6= h, h− `. [Pure Exploration]
5: else
6: For h ∈ [H], observe state `th and set the bid bth = πth(`th).
7: end if
8: Observe the set of the ad impression timeWt, the set of the conversion time Ct, and the vector

of HOBs mt = {mt
h,∀h ∈ [H]}.

9: Update nh(`) givenWt.
10: Update θ̂t = {β̂th(`),∀` ∈ [h]; λ̂th} through PAMM method (Algorithm 1) given (Wt, Ct).
11: Update F̂ th(b) = 1

t

∑t
s=1 I{ms

h ≤ b},∀b.
12: if ∀h ∈ [H], ` ∈ [h], nh(`) ≥ 1 then
13: Construct confidence region ĈR

t
for parameters θ, s.t.

ĈR
t

=

{
(β̂, λ̂) : ∀h, |β̂h(`)− β̂th(`)| ≤ C2

√
log(T/δ)

nh(`)

}
14: Compute the bidding policy πt+1 for (t+ 1)th episode, s.t.,

πt+1 = argmax
π

max
θ̂∈ĈR

t
R(π; θ̂, F̂ t) (13)

15: end if
16: end for

Eq. (13) in Algorithm 2 is to set β̂h(`) = β̂th(`) + C2

√
log(1/δ)
nth(`)

, and πt+1 will be the optimal policy

for the MDP parameterized by F̂ t and β̂, and thus can be computed efficiently (Proposition 1).

Regret Analysis. Combining the convergence rate analysis from Theorem 1 and a novel regret
decomposition technique (necessary for our particular setup), we are able to prove the regret guarantee
of our online bidding algorithm. Our regret bound is summarized in Theorem 2, the proof of which is
deferred to Appendix C.
Theorem 2. Under Assumption 1, for any fixed δ, we have with probability at least 1− δ, the regret
achieved by our Algorithm 2 is bounded by

Regret(T ) ≤ O(H2
√

log(HT/δ)T +H2 log(T/δ)).

6 Discussions and Future Work

Our RL algorithm lies in the model-based RL algorithm literature. The best known regret bound
for model-based RL is Õ(

√
H2SAT ) [2], where S is the number of states and A is the number of

actions. Since S = H in our case, our regret bound is slightly worse from the best possible by an
factor of

√
H , but is independent of the number of actions. This may be due to the complexity of our

model. Whether we can close this gap is an interesting open question. As we mentioned earlier, our
algorithm can be extended to handle continuous bidding space and our regret analysis still works.
In this paper, we assume the conversion rate function dh doesn’t depend on the shown ads of other
bidders but only on the learner’s last ad impression. Relaxing these assumptions may result in very
interesting future work.
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[19] T. Nedelec, C. Calauzènes, N. E. Karoui, and V. Perchet. Learning in repeated auctions.
Foundations and Trends® in Machine Learning, 15(3):176–334, 2022. ISSN 1935-8237. doi:
10.1561/2200000077.

11



[20] G. Noti and V. Syrgkanis. Bid prediction in repeated auctions with learning. In Proceedings of
the Web Conference 2021, WWW ’21, page 3953–3964, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450383127.

[21] Y. Saito, G. Morisihta, and S. Yasui. Dual Learning Algorithm for Delayed Conversions, page
1849–1852. 2020.

[22] Y. Su, L. Zhang, Q. Dai, B. Zhang, J. Yan, D. Wang, Y. Bao, S. Xu, Y. He, and W. Yan.
An attention-based model for conversion rate prediction with delayed feedback via post-click
calibration. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI’20, 2021.

[23] H. R. Varian. Position auction. International Journal of Industrial Organization, 2006.

[24] R. Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

[25] J. Weed, V. Perchet, and P. Rigollet. Online learning in repeated auctions. In 29th Annual
Conference on Learning Theory, pages 1562–1583, 2016.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

12


	Introduction
	The Sequential Optimization Problem of Incrementality Bidding (IB) 
	The Optimal Policy of IB and its Reinforcement Learning
	The Offline Optimal Policy of IB 
	Reinforcement Learning of IB with Unknown Parameters

	Incrementality Parameter Estimation via Pairwise Moment-Matching
	The Full RL Algorithm and its Regret Analysis
	Discussions and Future Work

