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Abstract

Biases in existing datasets used to train algorithmic decision rules can raise ethical
and economic concerns due to the resulting disparate treatment of different groups.
We propose an algorithm for sequentially debiasing such datasets through adaptive
and bounded exploration in a classification problem with costly and censored
feedback. Exploration in this context means that at times, and to a judiciously-
chosen extent, the decision maker deviates from its (current) loss-minimizing rule,
and instead accepts some individuals that would otherwise be rejected, so as to
reduce statistical data biases. Our proposed algorithm includes parameters that can
be used to balance between the ultimate goal of removing data biases — which will
in turn lead to more accurate and fair decisions, and the exploration risks incurred
to achieve this goal. We analytically show that such exploration can help debias
data in certain distributions. We further investigate how fairness criteria can work
in conjunction with our data debiasing algorithm. We illustrate the performance of
our algorithm using experiments on synthetic and real-world datasets.

1 Introduction

Data-driven algorithmic decision making is being adopted widely to aid humans’ decisions, in
applications ranging from loan approvals to determining recidivism in courts. Despite their ability to
process vast amounts of data and make accurate predictions, these algorithms can also exhibit and
amplify existing social biases (e.g., 11,123} 33]]). There are at least two possible sources of unfairness
in algorithmic decision rules: (data) biases in the training datasets, and (prediction) biases arising
from the algorithm’s decisions [29]. The latter problem has been receiving increasing attention, and
is often addressed by imposing fairness constraints on the algorithm. In contrast, in this paper, we are
primarily focused on the former problem of statistical biases in the training data itself.

The datasets used for training machine learning algorithms might not accurately represent the agents
they make decisions on, due to, e.g., historical biases in decision making and feature selection, or
changes in the populations’ characteristics or participation rates since the data was initially collected.
Such data biases in turn can result in disparate treatment of underrepresented or disadvantaged
groups; i.e., data bias can cause prediction/model bias, as also verified by recent work [[18} 40,43} [25]].
Motivated by this, we focus on data biases, and propose an algorithm which, while attempting to
make accurate (and fair) decisions, also aims to collect data in a way that helps it recover unbiased
estimates of the characteristics of agents interacting with it.

In particular, we study a classification problems with censored and costly feedback. Censored
feedback means that the decision maker only observes the true qualification state of those individuals
it admits (e.g., a bank will only observe whether an individual defaults on or repays a loan if the loan
is extended in the first place; an employer only assesses the performance of applicants it hires). In
such settings, any mismatch between the available training data and the true population may grow
over time due to adaptive sampling bias: once a decision rule is adopted based on the current training
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data, the algorithm’s decisions will impact new data collected in the future, in that only agents passing
the requirements set by the current decision rule will be admitted going forward. In response, the
decision maker may attempt to collect more data from the population; however, such data collection is
costly (e.g., in the previous examples, may require extending loans to/hiring unqualified individuals).
Given these challenges, we present an active debiasing algorithm with bounded exploration: our
algorithm admits some agents that would otherwise be rejected (i.e., it explores), yet adaptively and
judiciously limits the extent and frequency of this exploration.

Formally, consider a population of agents with features z, true qualification/labels y, and group
memberships g based on their demographic features. To design a (fair) algorithm that can minimize

classification loss, the decision maker (implicitly) relies on estimates fgt(x) of the feature-label dis-

tribution of agents from group g, obtained from the current training dataset H; = { (2, Yn, gn) }oL ;.
However, the resulting assumed distribution f é’7t (z) may be different from the true underlying dis-
tribution f¥ (x); this is the statistical data bias issue we focus on herein. Specifically, we consider
distribution shifts between the estimates and the true distributions (Assumption|I).

Our algorithm. We propose an active debiasing algorithm (Algorithm|l), which actively adjusts
its decisions with the goal of ensuring unbiased estimates of the underlying distributions f¥(z) over
time. In particular, at each time ¢, the algorithm selects a (fairness-constrained) decision rule that

would minimize classification error based on its current, possibly biased estimates f;t (x); adopting
this decision rule corresponds to exploitation of the current information by the algorithm. At the same
time, to circumvent the censored feedback nature of the problem, our algorithm also deviates from
the prescriptions of this loss-minimizing classifier to a judiciously chosen extent (the extent is chosen
adaptively, based on the current estimates); this will constitute exploration. Our algorithm includes
two parameters to limit the costs of this exploration: one modulates the frequency of exploration (an
exploration probability €; which can be adjusted using current bias estimates), and another limits
the depth of exploration (by setting a threshold LB; on how far from the classifier one is willing to
go when exploring). We show that these choices can strike a balance between the ultimate goal of
removing statistical biases in the training data — which will in turn lead to more accurate and fair
decisions, and the cost of exploration incurred to achieve this goal.

Summary of findings and contributions. Our main findings and contributions are as follows:

1. Comparison with baselines. We contrast our proposed algorithm against two baselines: an
exploitation-only baseline (one that does not include any form of exploration), and a pure
exploration baseline (which may randomly accept some of the agents rejected by the classifier,
but does not bound exploration). We show (Theorem|[T) that exploitation-only always leads to
overestimates of the underlying distributions. Further, while pure exploration can debias the
distribution estimates in the long-run (Theorem 2, it does so at the expense of accepting any agent,
no matter how far from the classifier’s threshold, leading to more costly exploration (Section [3).

2. Analytical support for our proposed algorithm. We show (Theorem 3) that our proposed active
debiasing algorithm with bounded exploration can correct biases in unimodal distribution estimates.
We also provide an error bound for our algorithm (Theorem [)).

3. Interplay with fairness criteria. We analyze the impact of fairness constraints on our algorithm’s
performance, and show (Proposition[I) that existing fairness criteria may speed up debiasing of the
data in one group, while slowing it down for another.

4. Numerical experiments. We provide numerical support for the performance of our algorithm using
experiments on synthetic and real-world (Adult and FICO) datasets.

Related work. Our paper is closely related to the works of [4} 20} 114116} [17], which study the impact
of data biases on (fair) algorithmic decision making. Among these works, Bechavod et al. [4]] and
Kilbertus et al. [20]] study fairness-constrained learning in the presence of censored feedback. While
these works also use exploration, the form and purpose of exploration is different: the algorithm in [4]]
starts with a pure exploration phase, and subsequently explores with the goal of ensuring the fairness
constraint is not violated; the stochastic (or exploring) policies in [20] conduct (pure) exploration
to address the censored feedback issue. In contrast, we start with a biased dataset, and conduct
bounded exploration to debias data; fairness constraints may or may not be enforced separately and
are orthogonal to our debiasing process. Also, as shown in Section[5] such pure exploration processes
can incur higher exploration costs than our proposed bounded exploration algorithm.



Our work is also closely related to [10, 13130, 41], which study adaptive sampling biases induced
by a decision rule, particularly when feedback is censored. Among these, Neel and Roth [30] also
consider an adaptive data gathering procedure, and show that no debiasing will be necessary if the
data is collected through a differentially private method. We similarly propose an adaptive debiasing
algorithm, but unlike [30], account for the costs of exploration in our data collection procedure. The
recent work of Wei [41] studies data collection in the presence of censored feedback, and similar
to our work, accounts for the cost of exploration in data collection, by formulating the problem as
a partially observable Markov decision processes. Using dynamic programming methods, the data
collection policy is shown to be a threshold policy that becomes more stringent (in our terminology,
reduces exploration) as learning progresses. Our works are similar in that we both propose using
adaptive and cost-sensitive exploration, but we differ in the problem setup and our analysis of the
impact of fairness constraints. More importantly, in contrast to both [30} 41], our starting point is
a biased dataset (which may be biased for reasons other than adaptive sampling in its collection,
including historical biases); we then show how, while attempting to debias this dataset by collecting
new data, any additional adaptive sampling bias during data collection can be prevented.

Our work also falls within the fields of selective labeling bias, fair learning, and active learning.
From the selective labeling bias perspective, Lakkaraju et al. [22] propose a contraction technique to
compare the performance of the predictive model and a human judge while they are forced to have
the same acceptance rate. De-Arteaga et al. [9] propose a data augmentation scheme by adding more
samples that are more likely to be rejected (we refer to this as exploration) to correct the sample
selection bias. From the fair learning perspective, Kallus and Zhou [18] propose a re-weighting
technique (re-weighting ideas are also explored in [1} 16} [17]) to solve the residual unfairness issue
while accounting for adaptive sampling bias. From the active learning perspective, Noriega-Campero
et al. [32]] adaptively acquire additional information according to the needs of different groups or
individuals given information budgets, to achieve fair classification. Similar to the approaches of
these papers, we also compensate for adaptive sampling bias through exploration; the main difference,
aside from the application, is in our analytical guarantees as well as our study of the interplay of data
debiasing with fairness constraints.

More broadly, our work has similarities to Bandit learning and its focus on exploration-exploitation
trade-offs. A key difference of our work with existing bandit algorithms (e-greedy, UCB, EXP3, etc.)
is our focus on bounded exploration. We provide additional discussion on this, and review other
related works [35}13, 119} 126, 27, 142} 22, 9, |18, |32} 1] in more detail, in Appendix

2 Model and Preliminaries

The environment. We consider a firm or decision maker, who selects an algorithm to make decisions
on a population of agents. The firm observes agents arriving over times ¢ = 1,2,..., makes a
decision for agents arriving at time ¢ based on the current algorithm, and can subsequently adjust its
algorithm for times ¢ 4+ 1 onward based on the observed outcomes.

Each agent has an observable feature or score x € X C Rﬂ These represent the agent characteristics
that are leveraged by the firm in its decision; examples include credit scores or exam scores. Each
agent is either qualified or unqualified to receive a favorable decision; this is captured by the agent’s
true label or qualification state y € {0, 1}, with y = 1 and y = 0 denoting qualified and unqualified
agents, respectively. In addition, each agent in the population belongs to a different group based on
its demographic or protected attributes (e.g., race, gender); the agent’s group membership is denoted
g € {a,b}. We consider threshold-based, group-specific, binary classifiers hg, ,(z) : X — {0,1} as
(part of) the algorithm adopted by the firm, where 6, ; denotes the classifier’s decision threshold. An
agent from group g with feature x arriving at time ¢ is admitted if x > 0 ;.

Quantifying bias. Let f7(x) denote the true underlying probability density function for the feature
distribution of agents from group g with qualification state y. The algorithm has an estimate of these
unknown distributions, at each time ¢, based on the data collected so far (or an initial training set).

Denote the algorithm’s estimate at ¢ by f;“’f(x) In general, there can be a mismatch between the

estimates fgt(ac) and the true f#(x); this is what we refer to as bias. We assume the following.

'We use a one-dimensional feature setting in our analysis, and generalize to X C R" in Section Dis-
cussions and numerical experiments on potential loss of information due to our feature dimension reduction
technique is given in Appendix|A|



Assumption 1. The firm updates its estimates fgt(x) by updating a single parameter djg’t.

This type of assumption is common in the multi-armed bandit learning literature [38,139, |34, |24} |36]]
(there, the algorithm aims to learn the mean arm rewards). In our setting, it holds when the assumed
underlying distribution is single-parameter, or when only one of the parameters of a multi-parameter
distribution is unknown. Alternatively, it can be interpreted as identifying and correcting distribution
shifts by updating a reference point in the distribution (e.g., adjusting the mean) More specifically,
we will let @g,t be the a-th percentile of f;’yt(x). We discuss potential limitations of Assumption|l|in

Appendix [A, and present an extension to a case with two unknown parameters in Appendix

Under Assumption [I, the bias can be captured by the mismatch between the estimated and true
parameters w; , and wY. In particular, we set the mean absolute error E[|) ; —w¥|] as the measure for

quantifying bias, where the randomness is due to that in &Y ,, the estimate of the unknown parameter

gt
based on data collected up to time ¢.

Algorithm choice without debiasing. Let o be the fraction of group g agents with label y. A
loss-minimizing fair algorithm selects its thresholds 6, ; at time ¢ as follows:

99,1 N N
min Z aé/ f;,t(x)dx—i—ozg/ fgt(x)dx, st. C(04,4,0p:) =0. (1)
—oo 0.t

0a.t.0p,
ST gefa,b}

Here, the objective is the misclassification error, and C(6,, ;) = 0 is the fairness constraint imposed
by the firm, if any. For instance, C(0q, ¢, 0p.+) = 04,+ — 0y ¢ for same decision rule, or C(04.+,0p ) =

I A;7t(as)dx - eio, fblt(x)dx for equality of opportunity. Note that both the objective function

a,t
and the fairness constraint are affected by any inaccuracies in the current estimates ff;)t. As such, a
biased training dataset can lead to both loss of accuracy and loss in desired fairness.

3 AnActive Debiasing Algorithm with Bounded Exploration

In this section, we present the active debiasing algorithm which uses both exploitation (the
decision rules of (1)) and exploration (some deviations) to remove any biases from the estimates fé’,t.
Although the deviations may lead to admission of some unqualified agents, they can be beneficial to
the firm in the long-run: by reducing biases in f;”t, both classification loss estimates and fairness
constraint evaluations can be improved. In this section, we drop the subscripts g from the notation;
when there are multiple groups, our algorithm can be applied to each group’s estimates separately.

As noted in Section [I] our algorithm is one of bounded exploration: it includes a lower bound LB,
which captures the extent to which the decision maker is willing to deviate from the current classifier

0:, based on its current estimate fto of the unqualified agents’ underlying distribution. Formally,
Definition 1. Af time t, the firm selects a lower bound LBy such that

LBy = (FY) 7' 2FP(@)) — F)(0y)),

where 0y is the (current) loss-minimizing threshold determined from (1)), EY, (Fto )~ L are the cdf and
inverse cdf of the estimated distribution f?, respectively, and &) is (wlog) the a-th percentile of f.

In more detail, we choose LB, such that (&%) — FO(LB,) = FO(0,) — F?(&?); that is, such that
@Y is the median in the interval (L By, 6;) based on the current estimate of the distribution Fto at the
beginning of time ¢. Then, once a new batch of data is collected, we update @Y to &} 1, the realized
median of the distribution between (L B, 6;) based on the data observed during [¢,¢ + 1). Once the
underlying distribution is correctly estimated, (in expectation) we will observe the same number of
samples between (LB, w?) and between (wy, 6;), and hence wy will no longer change. We also note
that by selecting a high a-th percentile in the above definition, LB, can be increased so as to limit the
depth of exploration. As shown in Theorem [3] and in our numerical experiments, these thresholding
choice will enable debiasing of the distribution estimates while controlling its costs.

Our active debiasing algorithm is summarized below. A pseudo-code is given in Appendix [C]

?For instance, a bank may want to adjust for increases in average credit scores [15,[7] over time.



Algorithm 1 (The active debiasing algorithm). Denote the loss-minimizing decision

threshold determined from by 0, and let LB, be given by Definition|l. Let {¢,} be a

sequence of exploration probabilities. At each time t, and for agents (acT, y') arriving at t:

Step I: Admit agents and collect data. Admit all agents with =¥ > 0,. Additionally, if

LB, < ' < 0, admit the agent with probability e,.

Step I1: Update the distribution estimates based on new data collected in Step 1.

* Qualified agents’ distribution update: Identify new data with LB, < x' and yt = 1. Use
all such =% with LB, < x¥ < 6,, and such = with 8, < x' with probability €, to update .

* Unqualified agents’ distribution update: Identify new data with LB, < x' and y* = 0. Use
all such zt with LB, < zt < 0., and such z¥ with 0, < z' with probability ¢, to update dz?.

In more detail, our algorithm repeatedly performs the following two steps:

Step I: Data collection. At the beginning of a time period ¢, a loss-minimizing classifier with
threshold 6; (according to (1)) and the exploration lower bound L B; (Definition E) are selected
based on the data collected so far. Then, given 6;, the new data collected during period ¢ will consist
of arriving agents with features > 6;. Additionally, to address the censored feedback issues,
with probability ¢, the algorithm will also accept agents with LB; < z < ;. Note that this step
balances between exploration and exploitation through its choice of both LB, (which limit the depth
of exploration) and exploration probabilities €; (which limits the frequency of exploration).

Step II: Updatlng estimates. At the end of period ¢, the data collected in Step I will be used to
update ft and ft Under Assumption |1 |_ the estimates ft are updated by updating the parameter

. We assume, without loss of generality, that the firm sets &} to the a-th percentile of ft This
Q- th percentile is the reference point that will be adjusted over time as new data is collected. As an
example, when the reference point &} is set to the median (the 50-th percentile), the parameter can be
adjusted so that half the label 1 data collected in Step I will lie on each side of the reference point.

4 Theoretical Analysis

We begin by analyzing two baselines: exploitation-only (which only accepts agents with x > 6,
and uses no exploration or thresholding) and pure exploration (which accepts arriving agents
at time ¢ who have = < 6; with probability €;, without setting any lower bound). The motivation
for the choice of these two baselines is as follows: the exploitation-only baseline tracks the
performance of a decision maker who is unaware of underlying data biases, and makes no attempt
at fixing them. The pure exploration baseline, on the other hand, is motivated by the Bandit
learning literature, and is also akin to debiasing algorithms proposed in recent work (see Section|[T,
Related Work). We, in contrast, propose and show the benefits of bounded exploration through our
active debiasing algorithm.

4.1 The exploitation-only baseline

Our first baseline algorithm only updates its estimates of the underlying distributions based on agents
with z > 6; who pass the (current) loss-minimizing classifier (I). The following result shows that
this approach consistently suffers from adaptive sampling bias, ultimately resulting in overestimation
of the underlying distributions.

Theorem 1. An ezploitation-only algorithm overestimates WY, i.e., limy_, o E[DY] > wY, Vy.
A detailed proof is given in Appendix D.

4.2 The pure exploration baseline

In this second baseline, at each time ¢, the algorithm may accept any agent with < 6, with
probability €;. The following result establishes that using the data collected this way, the distributions
can be debiased in the long-run, if the data collected above the classifier is also sampled with
probability €; when updating the distributions.

Theorem 2. Using the pure ezplorationalgorithm, &) — wY ast — oo, Vy.



The proof follows from assuming (wlog) that the unknown parameter w? being estimated is the
distribution’s mean (can be generalized to arbitrary statistics under Assumption [I). Then, as we
are collecting i.i.d. samples from across the distribution, @ can be set to the sample mean of the
collected data, and the conclusion follows from the strong law of large numbers. Note also that if all
the data above the classifier was considered when making the updates, following similar arguments to
those in the proof of Theorem [I] the algorithm would obtain overestimates of the distributions. Lastly,
we could equivalently balance data by resampling the exploration data (rather than downsampling the
exploitation data), to debias data through this procedure.

4.3 The active debiasing algorithm

While pure exploration can successfully debias data in the long-run, it does so at the expense of
accepting agents with any © < 6,. Below, we provide analytical support that our proposed exploration
and thresholding procedure in the active debiasing algorithm can still debias data in certain
distributions, while limiting the depth of exploration to LB; < = < 6.

Theorem 3. Let fY and fty denote the true feature distribution and their estimates at the beginning
of time t, with respective a-th percentiles w¥ and ). Assume these are unimodal distributions,
€ > 0,Vt, and dJ? <0 < obtl,Vt. Then, using the active debiasing algorithm,

(a) If &} is underestimated (resp. overestimated), then B[, ] > &, (resp. B[], ] < &f) Vt,Vy.
(b) The sequence {&}} converges, with &} — w¥ ast — oo, Vy.

We provide a proof sketch for debiasing f? which highlights the main technical challenges addressed
in our analysis. The detailed proof is given in Appendix [E.

Proof sketch: Our proof involves the analysis of statistical estimates @! based on data collected
from truncated distributions. In particular, by bounding exploration, our algorithm will only collect
data with features z > LBy, and can use only this truncated data to build estimates of the unknown
parameter of the distributions.

Part (a) establishes that the sequence of {&}} produced by our active debiasing algorithm
“moves” in the right direction over time, and ultimately converges. The main challenge in this analysis
is that as the exploration and update intervals [LB;, co) are themselves adaptive, there is no guarantee
on the number of samples in each interval, and therefore we need to analyze the estimates in finite
sample regimes. To proceed with the analysis, we assume the feature distribution estimates follow
unimodel distributions (such as Gaussian, Beta, and the family of alpha-stable distributions) with «w°
as reference points. We then consider the expected parameter update following the arrival of a batch
%. Based on Definition
FO(0,)—F°(a7)
F0(9,)—FO(LBy)
new expected estimates E[&f, ;] is the sample median in (LB, #;), where samples come from the
true distribution. We establish that this expected update will be higher/lower than w! if the current
estimate is an under/over estimate of the true parameter.

of agents; Denote the current left portion in (LB, ®Y) as p; :=

li, we can also obtain the current portion in (&), 6;) denoted as py := = p1. The

Then, in Part (b) we first show that the sequence of over- and under-estimation errors in {&} } relative
to the true parameter w¥ are supermartingales. By the Doobs Convergence theorem and using results
from part (a), these will converge to zero mean random variables with variance going to zero as the
number of samples increases. This establishes that {&Y} converges. It remains to show that this
convergence point is the true parameter of the distribution. To do so, as detailed in the proof, we note
that the density function of the sample median estimated on label 0 data collected in [LBy, 6;] is

0 (2m +1)! FO()—F°(LBy) \m, F°(6:)—F°(v) \m o)

Py =v)dv == (g -ras)) " (Fr@)-roasy) me)-rae) @)
which is a beta distribution pushed forward by H(v) := 5“()((53;—7%; this is the CDF of the
truncated F° distribution in [LBy, 6;]. We then establish that the convergence point will be the true
median of the underlying distribution. O

4.4 Error bound analysis

Our error bound analysis compares the errors (measured as the number of wrong decisions made) of
our adaptive debiasing algorithm against the errors that would be made by an oracle which knows



the true underlying distributions. We measure the performance using 0-1 loss, £(4;, y;) = L[¥; # v,
where ¥; and y; denote the predicted and true label of agent ¢, respectively. We consider the error
accumulated when updating the estimates using a total of m batches of data. We split the total
T samples that have arrived during [¢t,¢ + 1) into four groups, corresponding to four different
distributions f. Specifically, we use by + to denote the number of samples from each label-group
pairatround ¢t € {0,...,m}. We update the unknown distribution estimates once all batches meet a
size requirement s, i.e, once min(bgyt) > s,Vy, Vg. The error of our algorithm is given by:

Error = E[Error adeptive — ETTOT0Oracte]
bg,t+bc11,t+b8,t+bl'1),t T

VDS E|tho,@ig))] =Y B[k, (w90, v)

(@i,yi,9:)~D i1 (@isyirgi)~D

The following theorem provides an upper bound on the error incurred by active debiasing.

Theorem 4. Let f;”t(x) be the estimated feature-label distributions at round t € {0, ..., m}. We
consider the threshold-based, group-specific, binary classifier hy, ,, and denote the Rademacher

complexity of the classifier family H with n training samples by R, (H). Let 0, , be a v-approximately
optimal classifier based on data collected up to time t. At round t, let Ny, be the number of
exploration errors incurred by our algorithm, ngy be the sample size at time t from group g,

dHAH(f)g t, D ) be the distance between the true unbiased data distribution Dy and the current

biased estimate Dg +, and C(Dg t, Dg) be the minimum error on an algorithm tramed on unbiased
and biased data. Then, with probablllty at least 1 — 49 with § > 0, the active debiasing algorithm’s
error is bounded by:

Err<Z[ 2 +4Rngt(H)+¢%+ 2‘222{5>+Ngt+dma(Dq,t,D)+zc(Dgt,D)]

Pr .. M explt)r source-target distribution mismatch
empirical estimation errors

More details on the definitions of the distance measure dy a3, and the error term ¢(-), and the
exploration error term N, ¢, along with a a detailed proof, are given in Appendix |F, From the
expression above, we can see that the error incurred by our algorithm consists of four types of error:
errors due to approximation of the optimal (fair) classifier at each round, empirical estimation errors,
exploration errors, and errors due to our biased training data (viewed as source-target distribution
mismatches); the latter two are specific to our active debiasing algorithm. In particular, as we
collect more samples, ng ; will increase. Hence, the empirical estimation errors decrease over time.
Moreover, as the mismatch between D, ; and D, decreases using our algorithm (by Theorem li),
the error due to target domain and source domain mismatches also decrease. In the meantime, our
exploration probability €; also becomes smaller over time, decreasing Ny ¢

4.5 Active debiasing and fairness criteria

We next consider our proposed active debiasing algorithm when used in conjunction with
demographic fairness constraints (e.g., equality of opportunity, same decision rule, and statistical
parity [29]]). Imposing such fairness rules will lead to changes to the selected classifiers compared to
the fairness-unconstrained case Let 6% + and 0;] denote the fairness constrained and unconstrained
decision rules obtained from (I)) at time ¢ for group g, respectively. We say group g is being over-
selected (resp. under-selected) followmg the introduction of fairness constraints if 9g7 < Hgt (resp.

7 %J,t)- Below, we show how such over/under-selections can differently affect the debiasing of
estimates on different agents.

In particular, let the speed of debiasing be the rate at which E[|&f — w¥|] decreases with respect to ¢;
then, for a given ¢, an algorithm for which this error is larger has a slower speed of debiasing. The
following proposition identifies the impacts of different fairness constraints on the speed of debiasing
attained by our active debiasing algorithm. The proof is given in Appendix[G.

Proposition 1. Ler f Y and f yt be the true and estimated feature distributions, with respective o-th

percentiles w¥ and &) . Assume these are unimodal distributions, and active debiasi zng is applled
If group g is over-selected (resp. under-selected) under a fairness constraint, i.e., 99, < 9g7t (resp.

9; > 95]715 ), the speed of debiasing on the estimates f;t will decrease (resp. increase).



Proposition [T highlights the following implications of using both fairness rules and our active
debiasing efforts. Some fairness constraints (such as equality of opportunity) can lead to an increase
in opportunities for (here, over-selection of) agents from disadvantaged groups, while others (such as
same decision rule) can lead to under-selection from that group. Proposition [I|shows that active
debiasing may in turn become faster or slower at debiasing estimates on this group.

Intuitively, over-selection provides increased opportunities to agents from a group (compared to
an unconstrained classifier). In fact, the reduction of the decision threshold to 05, . can itself be
interpreted as introducing exploration (which is separate from that introduced by our debiasing
algorithm). When a group is over-selected under a fairness constraint, the fairness-constrained
threshold OJT + will be lower than the unconstrained threshold Og ;- Therefore, the exploration range
will be narrower, which means by adding a fairness constraint, the algorithm needs to wait and collect
more samples (takes a longer time) before it manages to collect sufficient data to accurately update
the unknown distribution parameter, and hence, it has a slower debiasing speed. More broadly, these
findings contribute to our understanding of how fairness constraints can have long-term implications
beyond the commonly studied fairness-accuracy tradeoff when we consider their impacts on data

collection and debiasing efforts.

S Numerical Experiments

In this section, we illustrate the performance of our algorithm through numerical experiments on
both Gaussian and Beta distributed synthetic datasets, and on two real-world datasets: the Adult
dataset [12] and the FICO credit score dataset [37] pre-processed by [[16]. Additional details (ground-
truth information) on the experiments, and larger versions of all figures, are available in Appendix [H.
Our code is available at: https://github.com/Yifankevin/adaptive_data_debiasing.

Throughout, we either choose a fixed schedule for reducing the exploration frequencies {e;}, or
reduce these adaptively as a function of the estimated error. For the latter, the algorithm can select a
range (e.g., above the classifier for label 0/1) and adjust the exploration frequency proportional to
the discrepancy between the number of observed classification errors in this interval relative to the
number expected given the distribution estimates.

Comparison with the exploitation-only and pure exploration baselines: Our first exper-
iments in Fig. [I, compare our algorithm against two baselines. The underlying distributions are
Gaussian and no fairness constraint is imposed. Our algorithm sets o' = 50 and a” = 60 percentiles,
and exploration frequencies ¢, are selected adaptively by both our algorithm and pure exploration.
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erved

Figure 1: Speed of debiasing, regret, and weighted regret, of active debiasing vs.
exploitation-only and pure exploration (larger figures in Appendix [H).

Speed of debiasing: Figs. andshow that consistent with Theorem|[I| exploitation-only
overestimates the distribufions due to adaptive sampling biases. Further, consistent with Theo-
rem 2, pure exploration successfully debiases data. We also observe that as expected, pure
exploration debiases faster than active debiasing. The difference is more pronounced in
the label O distributions compared to label 1, where pure exploration collects more “diverse”
observations than our algorithm. For this same reason, the gap between pure exploration and our
algorithm is larger when f° is overestimated. This is because pure exploration observes samples
with lower features x than active debiasing, and so can use these to reduce its estimate faster.

Regret: Figs. [I(c) and [I(d)| compare the regret and weighted regret of the algorithms. Regret is
measured as the difference between the number of FN+FP decisions of an algorithm vs the oracle
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loss-minimizing algorithm derived on unbiased data. Formally, regret is defined as in Section 4.4}
weighted regret is defined similarly, but also adds a weight to each FN or FP decision, with the
weight exponential in the distance of the feature of the admitted agent from the classifier. We observe
that exploitation-only’s regret is super-linear, as not only it fails to debias, but has increasing
error due to biases from overestimating. On the other hand, while algorithms that explore “deeper”
have lower regret (e.g. pure exploration < active debiasing with o’ = 50 < active
debiasing with a® = 60 in Figs. [1(c)), they have higher weighted regret (the order is reversed in
Fig.[I(d)). In other words, exploring to admit agents with low features  leads to some errors, but
ultimately helps reduce future mistakes, leading to sub-linear regret. However, if the risk/cost of
these wrong decisions is taken into account, the firm may be better off adopting slower, but less risky
exploration thresholds (e.g. o = 70).

Performance of active debiasing on . ,
Beta distributions: Fig. |2 shows that our .. g\ o ﬁ:g:::;
algorithm can debias data for which the  E« £
underlying feature-label distributions fol- £ 4.
low Beta distributions. We have assumed 2. e 8 o
a mistmach between the parameter o of o4 S
the true and estimated distributions, and se- Number of Updates Number of Updates
lected these so that the estimated and true Figure 2: Debiasing under Beta distributions.
distributions have different relative skew- . w
ness. This verifies that Theorem [3] holds o °.
for asymmetric distributions. % . % s

< o
Interplay of debiasing and fairness con- g s ‘g oo sD
straints: Fig. [3|compares the performance ~ ©., —=— mu_0_groupAEO | © —=— mu_0_groupB_EO
of active debiasing when there are ‘Number of Samples Observed ‘Number of Samples Observed
two groups of agents with underlying Gaus- .\ 4 42 niaed label 0. (b) Disadvantaged label 0.

sian distributions, and the algorithm is cho- . i ] i

sen subject to three different fairness set-  Figure 3: Debiasing used with fairness constraints.
tings: no fairness, equality of opportunity

(EO), and the same decision rule (SD). The findings are consistent with Proposition[I] For instance
SD will over-select the majority group (i.e., 057’? < th) so that, as shown in the left panel in Fig. ,

the speed of debiasing on the estimates f;”t will decrease. In contrast, an opposite effect will happen
in the minority group b which is under-selected (i.e., 95 D> 9{1{ .)- The effects of EO can be similarly
explained by noting that it under-selects the majority group and over-selects the minority group.

Active debiasing on the Adult dataset: Fig.|d illustrates the performance of our algorithm on
the Adult dataset. Data is grouped based on race (White GG, and non-White GG3), with labels y = 1
for income > $50k /year. A one-dimensional feature 2z € R is constructed by conducting logistic
regression on four quantitative and qualitative features (education number, sex, age, workclass), based
on the initial training data Using an input analyzer, we found Beta distributions as the best fit to the
underlying distributions. We use 2.5% of the data to obtain a biased estimate of the parameter «. The
remaining data arrives sequentially. We use o' = 50 and o = 60 and a fixed decreasing {¢; }, with
the equality of opportunity fairness constraint imposed throughout.
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Figure 4: Active debiasing on the Adult and FICO datasets.

We observe that our proposed algorithm can debias estimates across groups and for both labels, but
that this happens in the long-run and given access to sufficient samples. In particular, we note that

3While this experiment maintains the same mapping throughout, the mapping could be periodically revised.



for label 1 agents from Gy, as there are only 1080 samples in the dataset, although the bias initially
decreases, the final estimate still differs from the true value. Fig. [(c)| verifies that this estimate would
have been debiased in the long-run, had additional samples from the underlying population become
available (i.e., as more such agents arrive).

Active debiasing on the FICO dataset: Fig.4|also illustrates the performance of our algorithm
on the FICO dataset [37,[16], and shows that it is successful in debiasing distribution estimates on
both groups and on both labels.

6 Conclusion, Limitations, and Future Work

We proposed an active debiasing algorithm which recovers unbiased estimates of the underlying
data distribution of agents interacting with it over time. We also analyzed the interplay of our
proposed statistical/data debiasing effort with existing social/model debiasing efforts, shedding light
on the potential alignments and conflicts between these two goals in fair algorithmic decision making.
We further illustrated the performance of our proposed algorithm, and its interplay with fairness
constraints, through numerical experiments on both synthetic and real-world datasets.

The single-unknown parameter assumption. Our work focuses on learning of a single unknown
parameter (Assumption [I). Despite the commonality of this assumption in the multi-armed bandit
learning literature, it also entails parametric knowledge of the underlying distribution with the
other parameters such as variance or spread being known. We extend our algorithm to a Gaussian
distribution with two unknown parameters in Appendix . Extensions beyond this, especially those
not requiring parametric assumptions on the underlying distributions, remain a main direction of
future work.

On one-dimensional features and threshold classifiers. Our analytical results have been focused on
one-dimensional feature data and threshold classifiers. These assumptions may not be too restrictive
in some cases: the optimality of threshold classifiers has been established in the literature by, e.g., [I8}
Thm 3.2] and [36], as long as a multi-dimensional feature can be mapped to a properly defined scalar.
Moreover, the recent advances in deep learning have helped enable this possibility: one can take the
last layer outputs from a deep neural network and use it as the single dimensional representation.
That said, any reduction of multi-dimensional features to a single-dimensional score may lead to
some loss of information. In particular, our experiments have considered the use of our active
debiasing algorithm on the Adult dataset with multi-dimensional features by first performing a
dimension reduction to a single-dimensional score; we find that this reduction can lead to a ~ 5%
loss in performance (see Appendix [A for details). One potential solution to this is to adopt a mapping
from high-dimensional features to scores that is revised repeatedly as the algorithm collects more
data. Alternatively, one may envision a debiasing algorithm which targets its exploration towards
collecting data on features that are believed to be highly biased; these remain as potential extensions
of our algorithm.

Potential social impacts. More broadly, while our debiasing algorithm imposes fairness constraints
on its exploitation decisions (see problem (1)), it does not consider fairness constraints in its explo-
ration decisions. That means that our proposed algorithm could be disproportionate in the way it
increases opportunities for qualified or unqualified agents in different groups during exploration.
Imposing fairness rules on exploration decisions, as well as identifying algorithms that can improve
the speed of debiasing of estimates on underrepresented populations, can be explored to address these
potential social impacts, and remain as interesting directions of future work.

Additional discussions on limitations, extensions, and social impacts, are given in Appendix [A.
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