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1 Implementation Details

We use the PyTorch toolkit to implement our inpainting network with CICM. The network is
optimized by the Adam solver for 400,000 iterations. The initial learning rate is 0.0001, which is
linearly decayed during the network training. Each mini-batch contains 8 images with the size of
256×256. We randomly crop and flip the training images to augment the data. The network is trained
on 4 RTX 2080Ti GPUs.

In our implementation, we use a warm-up strategy to pre-train the backbone network for 50,000
iterations. The encoder of the pre-trained backbone is used to compute the regional features of
different images. We conduct k-means clustering on the regional features, computing the cluster
centers as the initial anchor features. The regional features, which are nearest to the initial anchor
features, are selected as the initial cross-image features in different sets of CICM.

To augment the training data, we generate the corrupted regions in the training images, by randomly
matching the irregular masks [1, 2, 3] and the RGB images. For a fair comparison during the network
testing, the corrupted regions in the testing images are fixed for different methods.

2 Supplementary Experiments

In this section, we provide more details of the experiments. We divide this section into four parts.
The first part is a supplementary description of experimental setups in the main paper. The second
part is the convergence analysis of our network training. The third part is the analysis on distributions
of cross-image features. The fourth part is to show more visual results on different datasets.

2.1 Supplementary Description of Experimental Setup

Variants of Context Generalization In Table 1 (“Context Generalization”), which has been
presented in the main paper, we use different ways of updating the cross-image features for context
generalization. Given a regional feature, we find the most relevant feature set, where all of the
cross-image features are updated (see “100% update”). We experiment with reducing the number
of cross-image features to be updated. This is done by ranking the similarities between the regional
feature and cross-image features, and selecting the top-50% (or even top-1) cross-image features for
updating.

After calculating the similarities between the regional feature Fn and the cross-image features in the
chosen feature set, we need to update the cross-image features for context generalization. Here, we
use three different ways of updating, as illustrated in Figure 1. In Figure 1(a), we only update the
cross-image feature that has the highest similarity with the regional feature Fn. In Figure 1(b), we
update the top-50% cross-image features according to the similarities. In Figure 1(c), we update all
the cross-image features in the chosen feature set.
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Context Generalization

Methods
PSNR ↑ SSIM ↑ L1 ↓ LPIPS ↓ FID ↓

0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60%

w/o intra 28.032 20.711 16.647 0.9014 0.7566 0.5790 1.375 5.065 8.280 0.1277 0.2401 0.4369 22.75 53.75 129.3
w/o inter 27.954 20.384 16.338 0.8979 0.7521 0.5761 1.422 5.347 8.744 0.1243 0.2419 0.4423 24.36 55.73 132.7

intra & inter 29.214 21.728 19.211 0.9205 0.8047 0.6258 1.079 3.478 6.375 0.0829 0.2045 0.3284 17.21 45.17 78.49
top-1 update 28.021 20.309 16.632 0.9047 0.7692 0.5893 1.316 4.366 7.895 0.1186 0.2386 0.3918 21.86 59.73 126.4

top-50% update 28.413 20.923 17.118 0.9073 0.7731 0.5924 1.238 3.826 7.094 0.1017 0.2227 0.3642 20.57 56.39 106.4
100% update 29.214 21.728 19.211 0.9205 0.8047 0.6258 1.079 3.478 6.375 0.0829 0.2045 0.3284 17.21 45.17 78.49

Context Augmentation

Methods
PSNR ↑ SSIM ↑ L1 ↓ LPIPS ↓ FID ↓

0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60%

w/o ratio 28.551 21.217 18.879 0.9112 0.7983 0.6219 1.211 3.502 6.423 0.0891 0.2102 0.3310 19.02 55.21 85.48
w/ ratio 29.214 21.728 19.211 0.9205 0.8047 0.6258 1.079 3.478 6.375 0.0829 0.2057 0.3284 17.21 45.17 78.49
w/ GT 29.241 21.801 19.262 0.9227 0.8074 0.6281 1.074 3.462 6.356 0.0821 0.2040 0.3269 16.35 40.22 73.31

top-1 aug 28.317 19.878 17.866 0.9092 0.7882 0.6031 1.164 3.624 7.173 0.0921 0.2179 0.3531 20.81 72.78 95.64
top-50% aug 28.800 20.828 18.295 0.9152 0.7962 0.6115 1.122 3.576 6.724 0.0875 0.2115 0.3376 18.83 63.32 87.35
100% aug 29.214 21.728 19.211 0.9205 0.8047 0.6258 1.079 3.478 6.375 0.0829 0.2045 0.3284 17.21 45.17 78.49

Table 1: The results of various generalization and augmentation ways on the test set of Places2.

Figure 1: Three different ways of updating the cross-image features in the chosen feature set according
to the similarities with the regional feature Fn. (a) Updating the cross-image feature with the highest
similarity. (b) Updating the top-50% cross-image features. (c) Updating all the cross-image features.

Figure 2: Three different ways of the regional feature Fm augmentation according to the similarities
with the cross-image features in the chosen feature set. (a) Augmentation by using the cross-image
feature with the highest similarity. (b) Augmentation by using the top-50% cross-image features. (c)
Augmentation by using all cross-image features.

Variants of Context Augmentation In Table 1 (“Context Augmentation”), which has been presented
in the main paper, we study the impact of changing the number of the cross-image features, which
are used by the context augmentation of the regional features. Note that our full model resorts to all
of the cross-image features in the relevant set for feature augmentation (see “100% aug”). Based on
the similarities between the cross-image features and the regional features, we select the top-1 and
top-50% of the cross-image features, respectively, for augmenting the regional features. We illustrate
these variants of context augmentation in Figure 2.

In Figure 2(a), we only choose the cross-image feature with the highest similarity to augment the
regional feature Fm. In Figure 2(b), we use the top-50% cross-image features according to the
similarities for augmentation. In Figure 2(c), the whole cross-image features in the chosen feature set
are used for context augmentation.

Different Ways of Using Image Context In Table 2 (“Single-Image Context”), which has been
presented in the main paper, we report the results of using k-means and the deep-learning-based
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Single-Image Context

Methods
PSNR ↑ SSIM ↑ L1 ↓ LPIPS ↓ FID ↓

0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60%

k-means 28.311 20.946 17.021 0.9092 0.7734 0.5882 1.217 4.275 7.302 0.1049 0.2369 0.3992 20.21 61.37 110.4
RUC 28.386 20.997 17.105 0.9104 0.7763 0.5921 1.194 4.113 7.189 0.1025 0.2346 0.3927 19.46 67.71 106.6

anchor only 28.417 21.015 17.235 0.9120 0.7828 0.5977 1.164 3.872 7.071 0.0998 0.2320 0.3875 18.67 56.52 102.5

Cross-Image Context

Methods
PSNR ↑ SSIM ↑ L1 ↓ LPIPS ↓ FID ↓

0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60%

merged sets 28.833 21.054 17.574 0.9130 0.7883 0.6035 1.145 3.721 6.857 0.0882 0.2217 0.3638 19.23 53.44 96.47
CICM 29.214 21.728 19.211 0.9205 0.8047 0.6258 1.079 3.478 6.375 0.0829 0.2045 0.3284 17.21 45.17 78.49

Table 2: The results of various ways of using context information on the test set of Places2.
RUC [4], which are the clustering methods for harnessing the single-image context in our scenario.
In Figure 3, we show the process of using the clustering methods. For a single image, we use the
clustering methods to divide the regional features of the complete regions into several clusters. Based
on the similarities with the cluster centers, we find the most relevant regional features for augmenting
the regional features of the corrupted regions. In the scenario of using the single-image context, we
release the memory that stores different clusters of the regional features of each image, after using
each mini-batch to optimize the network parameters.
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Figure 3: (a) For the regional features of the complete regions, the context generalization uses the
clustering method (k-means or RUC) to cluster the regional features, where each cluster has a center.
(b) Given a regional feature of the corrupted region, the context augmentation measures the similarity
with every cluster center. It selects the cluster, where all regional features are used to augment the
regional feature of the corrupted region.

Figure 4: The extensive counterpart of our inpainting network with CICM. The network contains a
lightweight segmentation sub-network for computing the semantic features.
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Extensive Evaluation on Semantic Inpainting We extensively evaluate CICM on the public
datasets (i.e., Cityscapes and Outdoor Scenes), which provide the semantic object categories for
assisting the image inpainting task. Here, CICM can be easily extended to learn the cross-image
features from not only the RGB images but also the semantic segmentation results. The results have
been presented in Table 3 (also see Table 5 of the main paper).

In Figure 4, we provide more details of extending CICM. Along with the inpainting network, we
train a lightweight semantic segmentation sub-network, which outputs the segmentation scores for
all pixels in the input image. The segmentation scores are fed to a convolutional layer, which
computes the semantic features. We concatenate the semantic features with the regional features. The
concatenated features are used for computing the cross-image features in CICM.

Cityscapes Dataset

Methods
PSNR ↑ SSIM ↑ L1 ↓ LPIPS ↓ FID ↓

0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60%

Gated [2] 35.870 27.011 22.938 0.965 0.801 0.748 0.518 2.627 3.872 0.0345 0.0576 0.1573 5.298 23.28 52.29
PEN [5] 33.693 23.927 22.336 0.964 0.800 0.694 0.548 3.132 4.012 0.0317 0.0552 0.1662 8.314 48.67 66.70
SPG [6] 29.627 25.425 21.863 0.900 0.817 0.718 0.722 2.877 4.188 0.0412 0.0610 0.1627 17.14 27.09 36.42

SWAP [7] 32.973 26.112 22.984 0.965 0.885 0.782 0.602 2.435 3.762 0.0365 0.0547 0.1543 6.327 15.48 29.32
SPL [8] 35.543 27.639 23.530 0.969 0.892 0.773 0.476 2.192 3.353 0.0311 0.0486 0.1263 4.686 12.94 28.81
CICM 36.728 29.848 25.625 0.978 0.912 0.844 0.421 1.748 2.943 0.0281 0.0465 0.1170 3.437 8.246 12.16

Outdoor Scenes Dataset

Methods
PSNR ↑ SSIM ↑ L1 ↓ LPIPS ↓ FID ↓

0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60%

Gated [2] 30.826 24.262 19.294 0.955 0.874 0.680 0.910 2.018 2.684 0.0778 0.1578 0.2320 20.23 49.42 89.84
PEN [5] 29.072 21.515 19.237 0.949 0.796 0.630 1.036 2.438 2.711 0.0781 0.1662 0.2533 19.82 59.78 90.21
SPG [6] 24.156 21.692 18.282 0.801 0.685 0.533 1.417 2.638 2.764 0.0865 0.2218 0.2764 46.48 72.96 101.3

SWAP [7] 30.361 25.116 20.832 0.948 0.861 0.702 0.832 1.866 2.495 0.0572 0.1683 0.2217 13.29 40.01 63.86
SPL [8] 32.599 25.485 21.083 0.961 0.864 0.710 0.749 1.729 2.387 0.0465 0.1304 0.2042 11.24 30.07 53.28
CICM 33.271 26.467 22.116 0.969 0.886 0.732 0.674 1.411 2.011 0.0412 0.1141 0.1872 8.684 23.35 42.47

Table 3: Comparison with state-of-the-art methods on the test sets of Cityscapes and Outdoor Scenes.

Figure 5: Analysis of convergence of the network training.

2.2 Analysis on Convergence of Network Training
To analyze the convergence of the network training, we show the changes of L2-norm and adversarial
loss for penalizing the inpainting error, L2-norm for penalizing the estimation error of the corrupted
ratios, inter-set and negative intra-set similarities, and average L1-norm of the cross-image features
in CICM. The results are reported in Figure 5 (a–f), where the changes converge stalely at the final
stages of the network training.
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2.3 Analysis on Distributions of Cross-Image Features
We show the distributions of the cross-image features in CICM on different datasets in Figure 6.
Here, we resort to t-SNE [9] for the visualization of the distributions of the cross-image features
in the 2D space. During the network training, we also compute the weighted average of the image
regions, whose regional features are injected by the context generalization into the cross-image
features. We also show the average image regions in the corners of Figure 6. We find that most of the
cross-image features, which belong to the same set, appear close to each other and represent similar
visual patterns.
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Figure 6: Distribution of the cross-image features in CICM on different datasets. A scatter point
represents a cross-image feature, which is embedded into the 2D space. The scatter points with the
same color represent the cross-image features in the same set of CICM.

2.4 More Visual Results
We provide more visual results on Places2, CelebA, Cityscapes and Outdoor Scenes in Figures 7, 8,
9, and 10. As shown in these visual results, our inpainting network with CICM generally produces
the high-quality results.
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Input RFR [10] JPG [11] TMAD [13] SRM [14]MISF [12] CICMGround-TruthInput RFR [10] JPG [11] TMAD [13] SRM [14]MISF [12] CICMGround-Truth

Figure 7: Visual results of RFR [10], JPG [11], MISF [12], TMAD [13], SRM [14] and CICM on the
test set of Places2.
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Input RFR [10] JPG [11] TMAD [13] SRM [14]MISF [12] CICMGround-TruthInput RFR [10] JPG [11] TMAD [13] SRM [14]MISF [12] CICMGround-Truth

Figure 8: Visual results of RFR [10], JPG [11], MISF [12], TMAD [13], SRM [14] and CICM on the
test set of CelebA.
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Input Gated [2] PEN [5] SPG [6] SPL [8]SWAP [7] CICMGround-TruthInput Gated [2] PEN [5] SPG [6] SPL [8]SWAP [7] CICMGround-Truth

Figure 9: Visual results of Gated [2], PEN [5], SPG [6], SWAP [7], SPL [8] and CICM on the test set
of Cityscapes.
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Input Gated [2] PEN [5] SPG [6] SPL [8]SWAP [7] CICMGround-TruthInput Gated [2] PEN [5] SPG [6] SPL [8]SWAP [7] CICMGround-Truth

Figure 10: Visual results of Gated [2], PEN [5], SPG [6], SWAP [7], SPL [8] and CICM on the test
set of Outdoor Scenes.
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3 Limitation

3.1 Failure Cases

Some failure cases are shown in Figure 11 for better understanding the limitation of our method. In
these cases, the input images have large scopes of the corrupted regions (see (a) and (b)). The input
images provide little information for the context augmentation, disallowing the context augmentation
to reliably find the relevant cross-image features in CICM, consequently offering less useful context
for recovering the corrupted regions.

In some of these failure cases, the input images contains the visual information, which shows a large
discrepancy with the information learned and stored in CICM. For example, the faces in Figure 11(c–
d) are observed from the angles that are rarely seen in the training data. Though CICM contains the
cross-image features produced by the context generalization, these challenging cases still leads to
unsatisfactory results. Thus, the generalization power of CICM still need to be improved.

Input RFR [10] JPG [11] TMAD [13] SRM [14]MISF [12] CICMGround-TruthInput RFR [10] JPG [11] TMAD [13] SRM [14]MISF [12] CICMGround-Truth

(a)

(b)

(c)

(d)

Figure 11: The visual results failure cases on the test set of Places2 and CelebA.

3.2 Memory Increase
In Table 4 (also see Table 3 of the main paper), we have justify the generalization power of CICM,
which consistently improves the performances of different inpainting networks. It should be noted
that CICM requires more memory budget for storing the cross-image features. In Table 5, we compare
the network parameters (M), GPU memory (GB), and FLOPs (G) of the inpainting networks with and
without CICM, for considering the trade-off between the inpainting performance and computational
efficiency.

3.3 Evaluation of CICM in Cross-Model and -Dataset Scenarios
Note that CICM can be added to different inpainting networks. Here, we evaluate the performance of
CICM, which is trained along with an inpainting networks and applied to another network. We report
the results in Table 6. Here, we evaluate the inpainting performance on Place2, where the corrupted
ratio is set to 20-40%.

We train the baseline UNet and the recent inpainting method MISF [12], which are equipped with
CICMs respectively. Their performances are reported in the row “w/o Cross Model”. Then, we
exchange CICMs between UNet and MISF, where each of these CICMs are directly used for inpainting
without further fine-tuning. The performances of UNet and MISF with the exchanged CICMs are
reported in the row “w/ Cross Model”. We find that the exchanged CICMs slightly degrade the
performances of UNet and MISF. It may be because the cross-image features in the exchanged CICMs
mismatch the regional features extracted by UNet and MISF. Yet, the exchanged CICMs yield better
performances than the networks without CICM (see the row “w/o CICM”).
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Places2 Dataset

Methods
PSNR ↑ SSIM ↑ L1 ↓ LPIPS ↓ FID ↓

0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60%

UNet 28.637 20.944 17.022 0.9141 0.7885 0.5746 1.137 3.606 7.269 0.0850 0.2162 0.3838 18.37 58.22 112.7
UNet-CICM 29.214 21.728 18.811 0.9205 0.8047 0.6258 1.079 3.478 6.375 0.0829 0.2045 0.3284 17.21 45.17 78.49

RFR [10] 28.891 21.278 17.648 0.9167 0.7893 0.5953 1.128 3.532 6.916 0.0873 0.2267 0.3723 17.83 51.29 95.72
RFR-CICM 29.411 22.146 19.313 0.9210 0.8134 0.6311 1.065 3.337 6.211 0.0834 0.2088 0.3174 16.69 40.23 64.17

JPG [11] 30.023 22.561 18.045 0.9362 0.8267 0.6762 0.902 2.671 5.725 0.0883 0.2417 0.3521 16.78 39.21 78.77
JPG-CICM 30.457 23.716 20.016 0.9417 0.8325 0.7022 0.868 2.516 5.073 0.0835 0.2174 0.3093 16.02 34.88 58.19
MISF [12] 31.044 23.799 19.314 0.9443 0.8312 0.6736 0.741 2.520 5.311 0.0537 0.1721 0.2821 16.39 35.31 62.67

MISF-CICM 31.516 24.858 21.267 0.9491 0.8405 0.7027 0.712 2.317 4.872 0.0501 0.1498 0.2389 14.76 29.12 48.21

CelebA Dataset

Methods
PSNR ↑ SSIM ↑ L1 ↓ LPIPS ↓ FID ↓

0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60%

UNet 33.133 24.573 19.522 0.9577 0.8621 0.7234 0.533 1.882 4.623 0.0432 0.1282 0.2476 10.74 40.83 75.39
UNet-CICM 33.388 25.384 21.673 0.9610 0.8788 0.7689 0.518 1.820 4.127 0.0419 0.1214 0.2238 8.493 35.47 63.22

RFR [10] 33.327 25.224 20.133 0.9571 0.8722 0.7323 0.538 1.872 4.638 0.0437 0.1257 0.2421 9.362 33.28 67.31
RFR-CICM 33.636 26.056 21.517 0.9601 0.8793 0.7654 0.515 1.784 4.164 0.0408 0.1166 0.2287 7.134 31.78 56.98

JPG [11] 33.925 26.338 20.548 0.9573 0.8826 0.7428 0.527 1.692 4.411 0.0427 0.1307 0.2559 8.273 32.02 61.32
JPG-CICM 34.262 27.027 22.393 0.9619 0.8902 0.7681 0.504 1.646 3.817 0.0401 0.1186 0.2265 6.374 29.26 53.87
MISF [12] 34.302 26.387 21.289 0.9629 0.8903 0.7585 0.501 1.572 3.922 0.0336 0.0981 0.2137 6.836 30.11 55.75

MISF-CICM 34.695 27.854 23.338 0.9683 0.9012 0.7782 0.489 1.502 3.311 0.0317 0.0925 0.1921 5.023 27.99 47.12

Table 4: The results of combining CICM with different inpainting networks (i.e., RFR [10], JPG [11],
and MISF [12]) on the test sets of Places2 and CelebA.

Methods Parameters (M) Memory (GB) FLOPs (G) Methods Parameters (M) Memory (GB) FLOPs (G)

UNet 10.42 11.37 10.02 JPG 42.57 39.22 31.79
UNet-CICM 11.21 13.48 11.75 JPG-CICM 44.21 42.27 33.51

RFR 19.58 24.98 27.72 MISF 37.21 36.74 15.26
RFR-CICM 20.33 27.33 29.11 MISF-CICM 38.43 38.15 17.20

Table 5: Comparison of the network parameters (M), GPU memory (GB), and FLOPs (G) of the
inpainting networks with and without CICM.

PSNR ↑ SSIM ↑ L1 ↓ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ L1 ↓ LPIPS ↓ FID ↓

w/o CICM
UNet MISF

20.944 0.7885 3.606 0.2162 57.38 23.799 0.8312 2.522 0.1721 34.72

w/o Cross Model
UNet-CICM MISF-CICM

21.728 0.8047 3.478 0.2045 45.17 24.858 0.8405 2.317 0.1498 29.12

w/ Cross Model
UNet-CICM (MISF) MISF-CICM (UNet)

21.373 0.8001 3.554 0.2127 48.27 24.235 0.8335 2.422 0.1574 32.35

Table 6: The results of the methods replacing the CICMs of UNet-CICM and MISF-CICM on the
test sets of Places2.

In Table 7, we investigate the possibility of exchanging CICMs that are trained on different datasets.
Here, we train two separate UNets on Places2 and CelebA. Each UNet is associated with CICM.

Places2 CelebA
PSNR ↑ SSIM ↑ L1 ↓ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ L1 ↓ LPIPS ↓ FID ↓

w/o CICM 20.944 0.7885 3.606 0.2162 57.38 24.573 0.8621 1.882 0.1282 40.27

w/o Cross Dataset 21.728 0.8047 3.478 0.2045 45.17 25.384 0.8788 1.820 0.1214 35.47
w/ Cross Dataset 19.274 0.7672 3.936 0.2237 75.32 23.477 0.8489 2.024 0.1473 67.21

Table 7: The results of the methods replacing the CICMs of two UNet-CICM trained on Places and
CelebA respectively.

After the network training, we exchange CICMs of the two UNets, which are evaluated on the test
sets of Places2 and CelebA respectively (see the row “w/ Cross Dataset”). We find that the exchanged
CICMs drastically degrade the performances, compared to the inpainting networks without the
exchanged CICMs (see the row “w/o Cross Dataset”) or even without CICM (see the row “w/o
CICM”). This may because in Places2 and CelebA, the images contains scene and face information,
respectively, showing a weak correlation. Thus, the cross-image features in the exchanged CICMs
likely mislead the context augmentation.
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4 Code Segment

Our code will be available at: https://github.com/fengtl/CICM.
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