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Abstract

Visual context is of crucial importance for image inpainting. The contextual
information captures the appearance and semantic correlation between the image
regions, helping to propagate the information of the complete regions for reasoning
the content of the corrupted regions. Many inpainting methods compute the visual
context based on the regions within a single image. In this paper, we propose
the Cross-Image Context Memory (CICM) for learning and using the cross-image
context to recover the corrupted regions. CICM consists of multiple sets of the
cross-image features learned from the image regions with different visual patterns.
The regional features are learned across different images, thus providing richer
context that benefits the inpainting task. The experimental results demonstrate
the effectiveness and generalization of CICM, which achieves state-of-the-art
performances on various datasets for single image inpainting.

1 Introduction

Image inpainting requires understanding the object appearances and semantic categories in the images.
The recent success of image inpainting lies in the end-to-end training of the deep networks, which are
good at learning the appearance and semantic features from large-scale data.

Generally, the inpainting networks [1, 2, 3, 4, 5, 6, 7, 8] yield the regional features that capture the
appearance and semantic correlation between the image regions, thus providing the visual context.
Based on the visual context, the relevant information of the complete regions can be propagated
to the corrupted regions, whose contents are consequently reasoned. Conventionally, the context
propagation takes place between the regions within the isolated image. However, the existing methods,
which heavily rely on the visual context, face a dilemma, where the corrupted regions naturally lack
the visual information for computing the reliable context. It lets the learned context lose the critical
relationships between the image regions, eventually degrading the inpainting performance.

In this paper, we advocate the idea of learning the cross-image context to recover the corrupted image
regions. Alongside the inpainting network, we construct an external memory, where we store the
regional features of the complete regions across different images. For inpainting, we search CICM to
achieve the regional features, which are potentially relevant to the corrupted regions. Rather than
depending on the regional features learned from a single image, we employ external memory to
provide richer cross-image context. It allows the regional information from different images to be
propagated to the corrupted regions in an image, where the lost contents are better restored.

Specifically, we propose the external memory, Cross-Image Context Memory (CICM), which can be
equipped with popular inpainting networks. CICM consists of multiple feature sets. Each set contains
the cross-image features. Context Generalization injects the regional features, which are learned from
different images, into the cross-image features. We let the cross-image features in different sets have
diversity. Thus, we allow different sets capture a richer cross-image context. In the same set, we
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Figure 1: (a) CICM can be used to learn the cross-image features and augment the regional features
at different layers of the inpainting network. (b) CICM consists of multiple cross-image feature
sets, where each feature set contains several cross-image features. (c) In the feature space, we
maximize/minimize the intra-/inter-set similarities between the cross-image features. It allows the
cross-image features in different/identical set(s) to capture diverse/consistent context.

encourage the cross-image features to contain the visual information of the similar image regions.
This facilitates Context Augmentation for finding the consistent cross-image features from CICM.
Finally, we use the cross-image features to recover the corrupted regions.

We intensively evaluate CICM on the datasets (i.e., Places2 [9] and CelebA [10]) for image inpainting,
where we achieve the state-of-the-art performances. Furthermore, we justify the generalization of
CICM, which can be applied to learn the cross-image context from not only the low-level appearances
but also the high-level semantic information of the image regions. With the help of CICM, we yield
better results than the recent inpainting methods, on the datasets (i.e., Cityscapes [11] and Outdoor
Scenes [12]) that provide the semantic information of object categories.

2 Related Work
2.1 Visual Context for Image Inpainting

Many inpainting methods have been proposed in recent years [13, 14, 15, 16, 17, 18, 19, 20, 21, 22].
Pathak et al. [23] propose the deep adversarial learning that harnesses visual context for image
inpainting. Liu et al. [24] and Yu et al. [25] propose partial convolution and gated convolution to
achieve visual context for recovering the corrupted image regions with irregular shapes. Liu et al. [26]
focus on repairing the texture and structure of the corrupted images. Zeng et al. [27] fill the corrupted
regions with the help of cross-layer attention. Li et al. [28] propose the recurrent feature reasoning
to improve the inpainting results. In addition, semantic information has also been used to guide the
recovery of the corrupted regions. Song et al. [29] use semantic segmentation maps for calibrating
image inpainting. Liao et al. [30] employ the segmentation results at each layer of the decoder for
constraining the inpainting results.

Most of the above methods rely on the single-image context. In contrast, we propose the inpainting
method based on the cross-image context, which is more powerful in terms of capturing the underlying
relationship between lost image contents and recovering the corrupted regions.

2.2 Memorized Context for Visual Understanding

Recent studies demonstrate the importance of the memorized context for the visual understanding
tasks [31, 32, 33, 34, 35, 36, 37, 38]. He et al. [39] propose the momentum contrast to establish a
large and consistent memory for unsupervised pre-training. Jeong et al. [40] propose the unsupervised
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image-to-image translation framework that propagates the instance style information across images.
Wang et al. [41] explore a large visual data space for memorizing the semantic object information. Xu
et al. [42] design the memory that stores the complete regions for guiding texture generation. Feng et
al. [43] model the semantic prior shared across images to reasonably recover the corrupted regions.

The memories of the above methods store the single-image context or the cross-image semantic
information. They miss the appearance details shared across various images. In this paper, we
construct the memory that contains the cross-image context learned from different images, allowing
richer context to improve the inpainting results.

3 Method Overview

We illustrate the inpainting network with CICM in Figure 1. Given the input image I ∈ RH×W×3,
the backbone network extracts the convolutional feature maps at different layers. At a layer, the
feature map F ∈ RH×W×C is divided into N regions, where we achieve the regional features
{Fn ∈ RC | n = 1, ..., N}. H ×W and C represent the spatial resolution and the feature channels.

CICM has the feature sets {Sl | l = 1, ..., L}. Sl = {Cl,k ∈ RC | k = 1, ...,K} is the lth set that
contains K cross-image features. Cl,k is the kth cross-image features. From {Fn ∈ RC | n =
1, ..., N}, we choose the regional features of the complete regions and input them into the Context
Generalization, which constructs the cross-image feature sets. The cross-image context provided by
CICM is used by the Context Augmentation to recover the corrupted regions.

Context Generalization As illustrated in Figure 2(a), there is a set of anchor features {Al ∈
RC | l = 1, ..., L} in CICM. Al is associated with the feature set Sl. Given the regional feature
Fn of the complete region, we measure its similarity with each anchor feature. Given the anchor
feature with the highest similarity, we choose the associated feature set, where we inject the new
information of the regional feature Fn into the cross-image features. We also update the anchor
feature to represent the entire feature set. During training, we maximize the intra-set similarity
between the cross-image features in the same set. The inter-set similarity between the anchor features
is minimized.

Context Augmentation CICM provides the cross-image features for the context augmentation,
as illustrated in Figure 2(b). For the regional feature Fm of the corrupted region, we measure its
similarity with every anchor feature. Again, we choose the anchor feature with the highest similarity,
and use the cross-image features inside the associated feature set to augment the regional feature
Fm. This is done by injecting the context information of the cross-image features into Fm. The
augmented feature is used to predict the lost content of the region.

4 Cross-Image Context Memory

Below, we elaborate on the architecture of CICM. We use the Context Generalization to learn the cross-
image features, which are stored in different feature sets of CICM. The Context Augmentation finds
the cross-image features from CICM, offering the useful cross-image context for image inpainting.

4.1 Context Generalization

As illustrated in Figure 2(a), the context generalization extracts the regional features from the
complete regions of different images. It injects these regional features into CICM, where the regional
information is generalized as the cross-image features.

In Figure 2(c), we provide more details of the context generalization. We denote Fn as the regional
feature of the nth region, which is complete in the input image I. We follow the dot-product
fashion to measure the similarity between the regional feature Fn and each anchor feature in the set
{Al ∈ RC | l = 1, ..., L}, and choose the most relevant feature set Sl as:

l = argmax
o∈{1,...,L}

Fn ·Ao. (1)
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Figure 2: (a) Given a regional feature of the complete region, the context generation measures the
similarity with every anchor feature, and selects the most similar anchor feature and the associated
feature set. As illustrated in (c), the selected anchor feature and the cross-image features are updated
by the regional information. (b) Given a regional feature of the corrupted region, the context
augmentation also measures the similarity with every anchor feature. It select the feature set, where
the cross-image features augment the regional feature, as illustrated in (d).

We inject the regional feature Fn into the set Sl, where the cross-image feature Cl,k is updated as:

Cl,k ← Cl,k + λn,l,k · Fn,

s.t., λn,l,k =
exp(Fn ·Cl,k)∑K
o=1 exp(Fn ·Cl,o)

, Cl,k,Cl,o ∈ Sl, (2)

where ← means the update by overwriting. We use the dot product to measure the similarity
λn,l,k ∈ [0, 1] between the regional feature Fn and every cross-image feature in Sl. The update of
cross-image features take place during the network training. Note that the network training allows the
regional features of different images to be injected into the cross-image features, whose generalization
power is strengthened.

To improve the computational efficiency, we conduct the batch-wise update on the anchor features.
After injecting the regional features of a mini-batch into the cross-image features in CICM, we update
the anchor feature Al as:

Al ← β ·Al +
1− β
K
·

K∑
k=1

Cl,k, (3)

where we use the momentum factor β = 0.5 to control the update of the anchor feature.

4.2 Context Augmentation

As illustrated in Figure 2(b), the context augmentation takes input as the regional features of the
corrupted regions in the image. The regional features are used to measure the similarities with the
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anchor features. Based on the similarities for each regional feature, we find the most relevant anchor
feature and the associate set of the cross-image features. We inject the generalized context of the
cross-image features into the regional features of the corrupted regions, achieving the augmented
features for recovering the lost contents.

The details of the context augmentation is illustrated in Figure 2(d). Given the regional feature Fm

of the mth region, we measure its similarities with the anchor features, choosing the most similar
anchor feature Al and the associated feature set Sl, as:

Rm = γm · Fm + (1− γm) ·
K∑

k=1

λm,l,k ·Cl,k,

s.t., λm,l,k =
exp(Fm ·Cl,k)∑K
o=1 exp(Fm ·Cl,o)

, l = argmax
o∈{1,...,L}

Fm ·Ao, Cl,k,Cl,o ∈ Sl, (4)

where we use all of the cross-image features in the set Sl to yield the augmented feature Rm ∈ RC .
This is done by weighting and adding the cross-image features {Cl,k ∈ RC | k = 1, ...,K} to Fm.

The corrupted/complete status of the image region is unavailable for the inpainting task. Intuitively,
the corrupted region requires rich context for reasoning the missing content. On the other hand, the
complete region needs less context to preserve its specific property. Thus, for the mth region in the
image, we input the regional feature Fm into the convolutional layer to estimate the corrupted ratio
γm ∈ [0, 1]. As formulated in Eq. (4), the corrupted ratio is used to weight the regional feature and the
cross-image features for computing the augmented feature. A larger ratio indicates a more corrupted
region, whose regional representation is significantly augmented by the context information.

Finally, the augmented feature Rm is input into the convolutional layer for predicting the pixel values
of the mth region. Based on the set of augmented features {Rm | m = 1, ..., N}, we produce the
inpainting result I′ ∈ RH×W×3.

4.3 Training Objective

During the network training, we resort to L2-norm and the adversarial loss [44] for measuring the
inpainting error as:

Linpaint = ||I′ − I||2, Ladv = −EI

[
log(1−D(I, I′))

]
− EI′

[
log(D(I′, I))

]
, (5)

where
D(x, y) = sigmoid(C(x)− Ey [C(y)]). (6)

In Eq.(5), I ∈ RH×W×3 is the ground-truth result. Ex is the expectation with respect to x. In Eq.(6),
C is a discriminator network. We also use L2-norm for measuring the estimated corrupted ratio and
the ground-truth ratio of the image region as:

Lratio =

N∑
n=1

||γn − γn||2, (7)

where γn and γn are the estimated and ground-truth corrupted ratios for the nth region in the input
image I. Lratio is minimized. To achieve γn, we subtract the input image I from the ground-truth
result I, where the corrupted regions lead to larger differences of the pixel values. Within the nth
region, we accumulate and normalize the differences of the pixel values, finally yielding γn.

As formulated in Eq. (8), we use the dot product between the anchor features to measure the inter-set
similarity, which is minimized to encourage different sets of cross-image features to capture more
diverse context. In the same set, we maximize the intra-set similarity Lintra between the anchor
feature and each cross-image feature, for encouraging the same set of cross-image features to capture
more consistent context.

Linter =
∑

l,o∈1,...,L

Al ·Ao, Lintra =
∑

l∈1,...,L

∑
k∈1,...,K

Al ·Cl,k. (8)

With Eqs. (5)–(8), we formulate the overall training objective as:
L = λ1Linpaint + λ2Ladv + λ3Lratio + λ4Linter − λ5Lintra, (9)

where λ1 = 1.0, λ2 = 0.1, λ3 = 1.0, λ4 = 20 and λ5 = 0.5. We minimize the overall objective L
to optimize the network parameters.
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Figure 3: The results of sensitivity to memory capacity on the test set of Places2 with the mask
of 20-40% area ratio. (a) We fix the size of each feature set as 40, and compare the inpainting
performance by changing the number of feature sets L. (b) We fixed the number of feature sets as 13,
and compare the inpainting performance by changing the size of each feature set.

5 Experiments

We evaluate our approach on the Places2 [9] and CelebA [10] datasets. Places2 provides over 8M
images taken from over 365 scenes for training, along with 30K images for testing. It is used for the
internal study of our approach. We also compare our approach with state-of-the-art methods on the
CelebA dataset, which provides about 163K and 20K images, respectively, for training and testing.

We use the Cityscapes [11] and Outdoor Scenes [12] to extensively justify the effectiveness of
our method. These datasets provide the semantic object categories for assisting inpainting task.
Cityscapes contains 5,000 street-view images, where 2,975 and 1,525 images are used for training
and testing. Outdoor Scenes contains 9,900 training and 300 testing images.

To compare the inpainting performances of different methods, the corrupted images are generated by
the irregular masks [24, 25, 45]. We divided irregular masks into three groups, where 0-20%, 20-40%,
and 40-60% of the image areas are corrupted. We employ the peak signal-to-noise ratio (PSNR),
structural similarity index (SSIM), L1, perceptual similarity (LPIPS [46]), and fréchet inception
distance (FID [47]) as the evaluation metrics. Note that PSNR, SSIM, L1, and FID measures the
quality and realism of the restored image, while LPIPS measures the perceptual consistence between
the restored image and the ground-truth image. Due to the limited space, we provide more details of
the experimental setup in the supplementary material.

5.1 Internal Study

Sensitivity to Memory Capacity The memory capacity of CICM is determined by the number of
feature sets and the size of each set, which are set to 13 and 40 by default. Below, we change the
memory capacity and examine the effect on the inpainting performance.

In Figure 3(a), we fix the size of each feature set as 40, and compare the inpainting per-
formance by changing the number of feature sets L. We choose the number from the set
{1, 3, 5, 7, 9, 11, 13, 15, 17}. With too less feature sets (e.g., L = 1, 3, 5), the diversity of cross-
image context is unsatisfactorily captured, thus degrading the performance. On the other hand,
too many feature sets (e.g., L = 15, 17) are redundant. They contain many cross-image features,
which are computed based on similar image regions. These cross-image features little improve the
performance but require extra testing time for each image.

Next, we change the size of each feature set (see Figure 3(b)). Here, the number of feature sets is fixed
as 13. The size is chosen from the set {10, 15, 20, 25, 30, 35, 40, 45, 50}. In the large feature sets, a
portion of the cross-image features loss the opportunity of update, thus containing many meaningless
zeros. Compared to the well-learned features, the zero features unnecessarily occupy the memory
space but have less impact on the inpainting performance.
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Variants of Context Generalization In Table 1 (“Context Generalization”), we evaluate the
effectiveness of context generalization by comparing it with other alternatives.

We examine the impact of the intra- and inter-set similarities, which guide the learning of the cross-
image features, on the context generalization. We remove either the intra- or inter-set similarity
(see “w/o intra” and “w/o inter”), thus disallowing the cross-image features in different or identical
sets to comprehensively capture the diverse or similar context. In this manner, we achieve lower
performances than the full model trained with all of the similarities (see “intra & inter”).

We use different ways of updating the cross-image features for context generalization. Given a
regional feature, we find the most relevant feature set, where all of the cross-image features are
updated (see “100% update”). We experiment with reducing the number of cross-image features to
be updated. This is done by ranking the similarities between the regional feature and cross-image
features, and selecting the top-50% (or even top-1) cross-image features for update. Fewer cross-
image features for update reduce the testing time. But the cross-image features without updated likely
contain outdated context information, letting themselves be inconsistent with the updated features in
the same set. They largely degrade the performances (see “top-1 update” and “top-50% update”).

Context Generalization

Methods
PSNR ↑ SSIM ↑ L1 ↓ LPIPS ↓ FID ↓

0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60%

w/o intra 28.032 20.711 16.647 0.9014 0.7566 0.5790 1.375 5.065 8.280 0.1277 0.2401 0.4369 22.75 53.75 129.3
w/o inter 27.954 20.384 16.338 0.8979 0.7521 0.5761 1.422 5.347 8.744 0.1243 0.2419 0.4423 24.36 55.73 132.7

intra & inter 29.214 21.728 19.211 0.9205 0.8047 0.6258 1.079 3.478 6.375 0.0829 0.2045 0.3284 17.21 45.17 78.49
top-1 update 28.021 20.309 16.632 0.9047 0.7692 0.5893 1.316 4.366 7.895 0.1186 0.2386 0.3918 21.86 59.73 126.4

top-50% update 28.413 20.923 17.118 0.9073 0.7731 0.5924 1.238 3.826 7.094 0.1017 0.2227 0.3642 20.57 56.39 106.4
100% update 29.214 21.728 19.211 0.9205 0.8047 0.6258 1.079 3.478 6.375 0.0829 0.2045 0.3284 17.21 45.17 78.49

Context Augmentation

Methods
PSNR ↑ SSIM ↑ L1 ↓ LPIPS ↓ FID ↓

0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60%

w/o ratio 28.551 21.217 18.879 0.9112 0.7983 0.6219 1.211 3.502 6.423 0.0891 0.2102 0.3310 19.02 55.21 85.48
w/ ratio 29.214 21.728 19.211 0.9205 0.8047 0.6258 1.079 3.478 6.375 0.0829 0.2057 0.3284 17.21 45.17 78.49
w/ GT 29.241 21.801 19.262 0.9227 0.8074 0.6281 1.074 3.462 6.356 0.0821 0.2040 0.3269 16.35 40.22 73.31

top-1 aug 28.317 19.878 17.866 0.9092 0.7882 0.6031 1.164 3.624 7.173 0.0921 0.2179 0.3531 20.81 72.78 95.64
top-50% aug 28.800 20.828 18.295 0.9152 0.7962 0.6115 1.122 3.576 6.724 0.0875 0.2115 0.3376 18.83 63.32 87.35
100% aug 29.214 21.728 19.211 0.9205 0.8047 0.6258 1.079 3.478 6.375 0.0829 0.2045 0.3284 17.21 45.17 78.49

Table 1: The results of various generalization and augmentation ways on the test set of Places2.

Variants of Context Augmentation Given the cross-image features, we experiment with using
various ways of context augmentation, and report the results in Table 1 (“Context Augmentation”).

For the context augmentation, we estimate the corrupted ratios for controlling the context information,
which is propagated from the cross-image features to the regional features. We experiment with
setting the corrupted ratios to 1 unanimously. It means that the context information is fully propagated
to every regional feature. The regional features of the complete regions are heavily affected by the
cross-image features, yielding lower performances (see “w/o ratio”). This is because the diverse
cross-image information is largely involved into the regional features, which are supposed to keep
their original information for preserving the appearances of the complete regions in the result. We also
compare the inpainting performances, which are achieved based on the estimated and ground-truth
corrupted ratios (see “w/ ratio” and “w/ GT”). Though the ground-truth corrupted ratios are more
accurate than the estimated ones, the gap between the inpainting performances is reasonable. It
demonstrates the robustness of estimating the corrupted ratios.

Moreover, we study the impact of changing the number of the cross-image features, which are used
by the context augmentation of the regional features. Note that our full model resorts to all of the
cross-image features in the relevant set for feature augmentation (see “100% aug”). Based on the
similarities between the cross-image features and the regional features, we select the top-1 and
top-50% of the cross-image features, respectively, for augmenting the regional features. Apparently,
it disallows the regional features of the corrupted regions to benefit from richer cross-image context,
consequently leading to worse inpainting results.
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Single-Image Context

Methods
PSNR ↑ SSIM ↑ L1 ↓ LPIPS ↓ FID ↓

0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60%

k-means 28.311 20.946 17.021 0.9092 0.7734 0.5882 1.217 4.275 7.302 0.1049 0.2369 0.3992 20.21 61.37 110.4
RUC 28.386 20.997 17.105 0.9104 0.7763 0.5921 1.194 4.113 7.189 0.1025 0.2346 0.3927 19.46 67.71 106.6

anchor only 28.417 21.015 17.235 0.9120 0.7828 0.5977 1.164 3.872 7.071 0.0998 0.2320 0.3875 18.67 56.52 102.5

Cross-Image Context

Methods
PSNR ↑ SSIM ↑ L1 ↓ LPIPS ↓ FID ↓

0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60%

merged sets 28.833 21.054 17.574 0.9130 0.7883 0.6035 1.145 3.721 6.857 0.0882 0.2217 0.3638 19.23 53.44 96.47
CICM 29.214 21.728 19.211 0.9205 0.8047 0.6258 1.079 3.478 6.375 0.0829 0.2045 0.3284 17.21 45.17 78.49

Table 2: The results of various ways of using context information on the test set of Places2.

Different Ways of Using Image Context In Table 2, we compare CICM with different ways of
using image context for image inpainting. Here, we divide the methods into two groups, which
respectively use the single- and cross-image context for image inpainting.

In Table 2 (“Single-Image Context”), we report the results of using k-means and the deep-learning-
based RUC [48], which are the clustering methods for harnessing the single-image context in our
scenario. For a single image, we use the clustering methods to divide the regional features of the
complete regions into several clusters. Based on the similarities with the cluster centers, we find the
most relevant regional features for recovering the corrupted regions. Another variant of using the
single-image context is to remove the feature sets of CICM and keep the anchor features only. The
anchor features play in place of the cluster centers, which are produced by the clustering methods.
Compared to the cross-image context, the single-image context (see “k-means”, “RUC” and “anchor
only”) leads to lower performances.

In Table 2 (“Cross-Image Context”), we experiment with merging the feature sets constructed by the
context generalization. This is done by removing the anchor features, only relying on the similarities
between the cross-image features and the regional features for feature augmentation. This method
use the cross-image features, which contain discrepant visual context, to recover each corrupted
region. Even though too discrepant visual context can be filtered by the lower feature similarity, many
cross-image features with diverse information still distract the inpainting of a corrupted region. It
leads to worse results than CICM, which employs the anchor features to select the relevant context.

Places2 Dataset

Methods
PSNR ↑ SSIM ↑ L1 ↓ LPIPS ↓ FID ↓

0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60%

UNet 28.637 20.944 17.022 0.9141 0.7885 0.5746 1.137 3.606 7.269 0.0850 0.2162 0.3838 18.37 58.22 112.7
UNet-CICM 29.214 21.728 18.811 0.9205 0.8047 0.6258 1.079 3.478 6.375 0.0829 0.2045 0.3284 17.21 45.17 78.49

RFR [28] 28.891 21.278 17.648 0.9167 0.7893 0.5953 1.128 3.532 6.916 0.0873 0.2267 0.3723 17.83 51.29 95.72
RFR-CICM 29.411 22.146 19.313 0.9210 0.8134 0.6311 1.065 3.337 6.211 0.0834 0.2088 0.3174 16.69 40.23 64.17

JPG [49] 30.023 22.561 18.045 0.9362 0.8267 0.6762 0.902 2.671 5.725 0.0883 0.2417 0.3521 16.78 39.21 78.77
JPG-CICM 30.457 23.716 20.016 0.9417 0.8325 0.7022 0.868 2.516 5.073 0.0835 0.2174 0.3093 16.02 34.88 58.19
MISF [50] 31.044 23.799 19.314 0.9443 0.8312 0.6736 0.741 2.520 5.311 0.0537 0.1721 0.2821 16.39 35.31 62.67

MISF-CICM 31.516 24.858 21.267 0.9491 0.8405 0.7027 0.712 2.317 4.872 0.0501 0.1498 0.2389 14.76 29.12 48.21

CelebA Dataset

Methods
PSNR ↑ SSIM ↑ L1 ↓ LPIPS ↓ FID ↓

0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60%

UNet 33.133 24.573 19.522 0.9577 0.8621 0.7234 0.533 1.882 4.623 0.0432 0.1282 0.2476 10.74 40.83 75.39
UNet-CICM 33.388 25.384 21.673 0.9610 0.8788 0.7689 0.518 1.820 4.127 0.0419 0.1214 0.2238 8.493 35.47 63.22

RFR [28] 33.327 25.224 20.133 0.9571 0.8722 0.7323 0.538 1.872 4.638 0.0437 0.1257 0.2421 9.362 33.28 67.31
RFR-CICM 33.636 26.056 21.517 0.9601 0.8793 0.7654 0.515 1.784 4.164 0.0408 0.1166 0.2287 7.134 31.78 56.98

JPG [49] 33.925 26.338 20.548 0.9573 0.8826 0.7428 0.527 1.692 4.411 0.0427 0.1307 0.2559 8.273 32.02 61.32
JPG-CICM 34.262 27.027 22.393 0.9619 0.8902 0.7681 0.504 1.646 3.817 0.0401 0.1186 0.2265 6.374 29.26 53.87
MISF [50] 34.302 26.387 21.289 0.9629 0.8903 0.7585 0.501 1.572 3.922 0.0336 0.0981 0.2137 6.836 30.11 55.75

MISF-CICM 34.695 27.854 23.338 0.9683 0.9012 0.7782 0.489 1.502 3.311 0.0317 0.0925 0.1921 5.023 27.99 47.12

Table 3: The results of combining CICM with different inpainting networks (i.e., RFR [28], JPG [49],
and MISF [50]) on the test sets of Places2 and CelebA.
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5.2 External Evaluation

Combination with Different Inpainting Networks To justify the generalization power of CICM,
we equip CICM with different inpainting networks and report the change of performances in Table 3.
Apart from the baseline model, we choose RFR [28], JPG [49], and MISF [50] for evaluation. For
a fair comparison, these methods use the lowest-resolution convolution feature maps to extract
the regional features, which are used for learning the cross-image features in CICM. With CICM,
different methods consistently improve the inpainting results on the test sets of Places2 and CelebA.

Comparison with State-of-the-Art Methods In Table 4, we compare our method with state-of-
the-art methods [28, 49, 50, 42, 43] on the test sets of Places2 and CelebA. We use a UNet with 15
convolutional layers as the backbone. Among the compared methods, TMAD [42] and SRM [43]
also construct the memory banks, which store the useful context for recovering the corrupted regions.
In contrast to CICM, the memory bank of TMAD contains the low-level features (e.g., colors and
textures) of the complete regions in a single image; the memory bank of SRM provides the cross-
image distributions of semantic categories, but missing the appearance information of the image
regions. In comparison, CICM achieves better performances than other methods. We visualized the
results of different methods in Figure 4(a).

Places2 Dataset

Methods
PSNR ↑ SSIM ↑ L1 ↓ LPIPS ↓ FID ↓

0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60%

RFR [28] 29.281 22.589 18.581 0.9283 0.7868 0.6137 1.009 3.218 6.719 0.0825 0.2161 0.3571 20.47 47.21 82.11
JPG [49] 30.673 23.937 19.884 0.9452 0.8348 0.6915 0.830 2.581 5.294 0.0817 0.2145 0.3235 19.48 42.29 74.41

MISF [50] 31.335 24.239 20.044 0.9506 0.8435 0.6931 0.726 2.340 4.965 0.0432 0.1498 0.2499 17.46 37.28 69.47
TMAD [42] 30.273 22.185 19.172 0.9352 0.8169 0.6577 0.813 2.561 5.399 0.0612 0.1438 0.2556 21.55 49.33 93.41
SRM [43] 31.434 24.685 21.021 0.9523 0.8462 0.7021 0.732 2.217 4.937 0.0438 0.1253 0.2218 15.78 32.13 66.34

CICM 32.237 26.098 22.549 0.9573 0.8665 0.7323 0.689 2.168 4.526 0.0406 0.1216 0.2064 13.47 27.38 54.47

CelebA Dataset

Methods
PSNR ↑ SSIM ↑ L1 ↓ LPIPS ↓ FID ↓

0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60%

RFR [28] 33.728 25.711 20.721 0.9633 0.8762 0.7431 0.515 1.799 4.319 0.0395 0.1185 0.2301 8.236 30.14 68.28
JPG [49] 34.492 26.623 21.365 0.9691 0.8915 0.7715 0.473 1.639 4.025 0.0429 0.1295 0.2472 6.438 25.98 62.88

MISF [50] 34.604 26.693 21.638 0.9702 0.8923 0.7721 0.471 1.603 3.802 0.0311 0.0938 0.1889 6.125 22.31 53.55
TMAD [42] 33.891 25.751 20.388 0.9532 0.8783 0.7521 0.544 1.691 4.349 0.0356 0.1143 0.2126 13.39 46.90 80.21
SRM [43] 34.263 26.815 21.723 0.9645 0.8954 0.7754 0.483 1.584 3.632 0.0318 0.0954 0.1846 4.426 20.54 48.24

CICM 34.895 27.925 23.638 0.9733 0.9087 0.7947 0.466 1.462 3.197 0.0294 0.0880 0.1746 4.115 18.31 43.51

Table 4: Comparison with state-of-the-art methods on the test sets of Places2 and CelebA.

Extensive Evaluation on Semantic Inpainting We extensively evaluate CICM on the public
datasets (i.e., Cityscapes and Outdoor Scenes), which provide the semantic object categories for
assisting the image inpainting task. Here, CICM can be easily extended to learn the cross-image
features from not only the RGB images but also the semantic segmentation results. On the test sets
of Cityscapes and Outdoor Scenes, CICM outperforms state-of-the-art methods [25, 27, 29, 30, 51],
thus demonstrating its power in terms of learning the cross-image context from various data sources.
The visualized results of different methods are shown in Figure 4(b).

6 Conclusion

The latest progress in image inpainting benefits from the visual context learned by deep neural
networks for representing the relationship between the image regions. It helps to propagate the
information of the complete image regions to recover the corrupted regions. In this paper, we propose
the Cross-Image Context Memory (CICM), where the visual context is learned across different images.
Compared to the methods that utilize the single-image context for inpainting, CICM better addresses
the problem of missing the intrinsic relationship between regions for learning the visual context, given
the images with lost contents. CICM achieves state-of-the-art performances on the public datasets.

In the future, we plan to extend CICM to other tasks (e.g., 3D scene completion and occluded object
detection), where the critical image contents are required to be recovered and understood.
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Cityscapes Dataset

Methods
PSNR ↑ SSIM ↑ L1 ↓ LPIPS ↓ FID ↓

0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60%

Gated [25] 35.870 27.011 22.938 0.965 0.801 0.748 0.518 2.627 3.872 0.0345 0.0576 0.1573 5.298 23.28 52.29
PEN [27] 33.693 23.927 22.336 0.964 0.800 0.694 0.548 3.132 4.012 0.0317 0.0552 0.1662 8.314 48.67 66.70
SPG [29] 29.627 25.425 21.863 0.900 0.817 0.718 0.722 2.877 4.188 0.0412 0.0610 0.1627 17.14 27.09 36.42

SWAP [30] 32.973 26.112 22.984 0.965 0.885 0.782 0.602 2.435 3.762 0.0365 0.0547 0.1543 6.327 15.48 29.32
SPL [51] 35.543 27.639 23.530 0.969 0.892 0.773 0.476 2.192 3.353 0.0311 0.0486 0.1263 4.686 12.94 28.81
CICM 36.728 29.848 25.625 0.978 0.912 0.844 0.421 1.748 2.943 0.0281 0.0465 0.1170 3.437 8.246 12.16

Outdoor Scenes Dataset

Methods
PSNR ↑ SSIM ↑ L1 ↓ LPIPS ↓ FID ↓

0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60%

Gated [25] 30.826 24.262 19.294 0.955 0.874 0.680 0.910 2.018 2.684 0.0778 0.1578 0.2320 20.23 49.42 89.84
PEN [27] 29.072 21.515 19.237 0.949 0.796 0.630 1.036 2.438 2.711 0.0781 0.1662 0.2533 19.82 59.78 90.21
SPG [29] 24.156 21.692 18.282 0.801 0.685 0.533 1.417 2.638 2.764 0.0865 0.2218 0.2764 46.48 72.96 101.3

SWAP [30] 30.361 25.116 20.832 0.948 0.861 0.702 0.832 1.866 2.495 0.0572 0.1683 0.2217 13.29 40.01 63.86
SPL [51] 32.599 25.485 21.083 0.961 0.864 0.710 0.749 1.729 2.387 0.0465 0.1304 0.2042 11.24 30.07 53.28
CICM 33.271 26.467 22.116 0.969 0.886 0.732 0.674 1.411 2.011 0.0412 0.1141 0.1872 8.684 23.35 42.47

Table 5: Comparison with state-of-the-art methods on the test sets of Cityscapes and Outdoor Scenes.

Input RFR [28] JPG [49] TMAD [42] SRM [43]MISF [50] CICMGround-Truth

Input Gated [25] PEN [27] SPG [29] SPL [51]SWAP [30] CICMGround-Truth

(a) Inpainting results on the test sets of Places2 and CelebA

(b) Inpainting results on the test sets of Cityscapes and Outdoor Scenes

Figure 4: We provide the inpainting results of different methods. The images are taken from on (a)
Places2 (top) and CelebA (bottom) and (b) Cityscapes (top) and Outdoor Scenes (bottom).

Negative Societal Impacts

Our approach can help to recover the image information, which may be broadly used in many
scenarios (e.g., autonomous vehicle and video surveillance). One should be cautious of using the
results, which may contain problematic information. This may give rise to the infringement of privacy
or economic interest.
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4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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