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Appendix

This appendix is organized as follows. In Appendix A we provide a summary of the computational
aspects of SPDEs used for data simulation and model definition, emphasizing the important role of
the Fourier Transform (A.1) for simulating noise realizations of Wiener processes (A.2) and building
numerical solvers for SPDEs (A.3). In Appendix B we provide additional considerations about
our Neural SPDE model and further experimental details (B.2) and additional experiments on the
stochastic Ginzburg-Landau (B.3) and wave (B.4) equations, and on the deterministic Navier-Stokes
PDE (B.5).

13



A Computational aspects of SPDEs

We start this section with the definition of the Fourier Transform (FT). We then define the Discrete
Fourier Transform (DFT) as an approximation to the FT of a function observed at finitely many
locations. Next, we discuss the role played by the FT to sample realizations of Wiener processes,
necessary to build spectral solvers for SPDEs. The interested reader is referred to Briggs and Henson
[4] and Lord et al. [27] for further details.

A.1 The Fourier Transform

Let V be a vector space over the complex numbers (e.g. Cdh or Cdh×dh ). Let r ∈ N and let C ⊂ Rr
be a compact subset of Rr. In the paper we used either r = d and C = D or r = d + 1 and
C = [0, T ]×D.
Definition A.1 (r-dimensional Fourier Transform). The r-dimensional FT Fr : L2(Rr, V ) →
L2(Rr, V ) and its inverse F−1r : L2(Rr, V )→ L2(Rr, V ) are defined as follows

Fr(f)(y) =

∫

Rr
e−2πi〈x,y〉f(x)dx, F−1r (g)(x) =

∫

Rr
e2πi〈x,y〉g(y)dy

for any f, g ∈ L2(Rr, V ), where i =
√
−1 is the imaginary unit and 〈·, ·〉 denotes the Euclidean

inner product on Rr.

In practice, we do not observe a function on Rr but on a subset C ⊂ Rr. Furthermore, functions
are observed at finitely many locations in C, and another transform—the discrete Fourier transform
(DFT)—is used for numerical computations.

In the sequel we denote by ΠN the set of periodic sequences indexed on Zr with period vector
(N1, . . . , Nr).
Definition A.2 (r-dimensional Discrete Fourier Transform). The r-dimensional DFTDr : ΠN →
ΠN and its inverse D−1r : ΠN → ΠN are defined as follows,

Dr(u)n =
∑

k∈Zr∩RN
uke
−2πi〈n,N−1k〉, D−1r (v)k =

1

|detN |
∑

n∈Zr∩RN
vne

2πi〈n,N−1k〉

with N = diag(N1, . . . , Nr) ∈ Nr×r, andRN the rectangular domainRN = {x ∈ Rr | 0 ≤ xi <
Ni, i = 1, . . . , r}.

The DFT of a sequence can be computed exactly and efficiently using the fast Fourier transform (FFT)
algorithm [8] which reduces the complexity fromO(M2) toO(M logM) where M = N1N2 . . . Nr.
Most importantly, the FFT algorithm is implemented in machine learning libraries such as PyTorch,
which provide support for GPU acceleration and automatic differentiation capabilities.

Note that if we have a finite sequence, we may still define its DFT by implicitly extending the
sequence periodically. In particular, when a compactly supported function is sampled on its interval
of support, and the samples are used as input for a DFT, it is as if the periodic extension of the
function had been sampled. More precisely, consider an input sequence which corresponds to the
evaluation of a function f on a regular grid of C = RN . For simplicity, suppose that Ni = N1 for all
i = 1, . . . , r and consider the grid points xn = nL/N1 for n ∈ Zr ∩ RN . Taking the DFT of the
sequence of general term un = f(xn) we obtain for all n ∈ Zr,

Dr(u)n =
∑

k∈Zr∩RN
uke
−2πi〈n,k/N1〉 =

∑

k∈Zr∩RN
f(xk)e−2πi〈yn,xk〉,

where yn are the reciprocal frequency points given by yn = n/L for n ∈ Zr ∩RN . The DFT of a
compactly supported (or approximately compactly supported) function f sampled on the regular grid
of points xk approximates the FT of f at the frequency points yn (up to a constant multiplicative
factor).

The FT is closely related to the notions of Fourier coefficients and Fourier Series defined hereafter.
Definition A.3 (r-dimensional Fourier series). Let f be a piecewise smooth function f : Rr → V
which is periodic in xi with period Li ∈ R+ for all i = 1, . . . , r. The r-dimensional Fourier series of
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f is a representation of the form,

f(x) ∼
∑

n∈Zr
cn(f)e2πi〈L

−1n,x〉,

where L = diag(L1, . . . , Lr) ∈ Rr×r and cn(f) are complex coefficients, called Fourier coefficients,
given by

cn(f) =
1

|detL|

∫

RL
e−2πi〈L

−1n,x〉f(x)dx, n ∈ Zr

whereRL ⊂ Rr denotes the rectangular domain of sides L1, . . . , Lr.

We note that in the definition above, the sign ∼ means that the series is a formal series and no
statement is made about the convergence of the series (the forms of convergence are studied in
Alimov et al. [1]). If f is compactly supported on RL, we may still define its Fourier coefficients,
and in this case Fr(f)(yn) = |detL|cn(f) at the frequency points yn = L−1n.

Numerical consideration

Consider a function f which has compact support (or is periodic) which is observed at M locations
in its support (or its unitary cell RL). When using the DFT to approximate M points of the
spectrum Fr(f)(yk) (or M coefficients ck(f)), a so-called aliasing error usually occurs: due to the
periodicity of the DFT, the kth coefficient of the DFT includes the contributions not only of the kth

frequency mode, but also from higher modes of the underlying function f . In general the accuracy
of the highest frequency modes is more impacted by this error, and aliasing occurs specifically
when we compute nonlinear terms in the physical space. For example, in the main paper we
approximate the evaluation on a discretization spatiotemporal gridD×T ofF−1d+1(Fd+1(K)Fd+1(f))

byD−1d+1(BDd+1(f |D×T )) where f = 1≥0Hθ,ξ(z) andHθ,ξ is nonlinear. One possibility to mitigate
aliasing is to set to zero the DFT terms (arising in nonlinearities) corresponding to the highest
frequency modes before we apply the inverse DFT to go back to the physical space. This is precisely
what we do when we parametrize only k1max × . . .× kd+1

max × dh × dh entries of the complex tensor B,
and set the others to zero, hence resolving potential aliasing errors. We note that specific rules have
been proposed (notably in the literature on pseudo-spectral solvers) to deal with specific nonlinearities.
However, in the context of Neural SPDE we learn the nonlinearities, hence the number of frequency
modes that we retain is treated as an hyperparameter.

A.2 Stochastic simulation of Wiener processes

After defining Wiener processes we outline the sampling procedure that we used to simulate the
datasets in the main paper. For more details on computational aspects of SPDEs the reader is referred
to Lord et al. [27].

Throughout this section, H will denote a separable Hilbert space (e.g. H = L2(D)) with a complete
orthonormal basis {φk}k∈N. Let (Ω,F ,Ft,P) be a filtered probability space.

A.2.1 Q-Wiener process

Consider an operator Q : H → H such that there exists a bounded sequence of nonnegative real
numbers {λk}k∈N such that Qφk = λkφk for all k ∈ N (this is implied by Q being a trace class,
non-negative, symmetric operator, for example).

Definition A.4 (Q-Wiener process). Let Q be a trace class non negative, symmetric operator on H .
A H-valued stochastic process {W (t) : t ≥ 0} is called a Q-Wiener process if

1. W (0) = 0 almost surely;

2. W (t;ω) is a continuous sample trajectory R+ 7→ H , for each ω ∈ Ω;

3. W (t) is Ft-adapted and has independent increments W (t)−W (s) for s < t;

4. W (t)−W (s) ∼ N (0, (t− s)Q) for all 0 ≤ s ≤ t.
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In analogy to the Karhunen Loéve expansion, it can be shown that W (t) is a Q-Wiener process if
and only if for all t ≥ 0,

W (t) =
∞∑

j=1

√
λjφjβj(t) (6)

where βj(t) are i.i.d. Brownian motions, and the series converges in L2(Ω, H). Moreover the series
is P-a.s. uniformly convergent on [0, T ] for arbitrary T > 0. (i.e. converges in L2(Ω, C([0, T ], H))).

In the Navier-Stokes example, we drive the SPDE by samples ξ from a Q-Wiener process in two
dimensions. Here we follow Lord et al. [27, Example 10.12] and explain how the sampling procedure
works in this case. Let D = (0, L1) × (0, L2) and consider an L2(D)-valued Q-Wiener process
W (t). If the eigenfunctions of Q are given by,

φk(x) =
1√
L1L2

e2iπ(k1x1/L1+k2x2/L2)

numerical approximation of sample paths from W (t) are easy to obtain through a DFT. Denote by
λk the eigenvalues of Q (e.g. λk = e−α|k|

2

for some parameter α > 0) and let J be the index set
defined by,

J := {(j1, j2) ∈ Z2 : −J1/2 + 1 ≤ j1 ≤ J1/2, − J2/2 + 1 ≤ j2 ≤ J2/2}
The goal is to sample from the truncated expansion of W (t),

W J(t) =
∑

j∈J

√
λjφjβj(t),

at the collection of sample points,

xk = (L1k1/J1, L2k2/J2)
T
, 0 ≤ k1 ≤ J1 − 1, 0 ≤ k2 ≤ J2 − 1.

Consider the random variable Z(tn, x) defined by,

Z(tn, x) =
√

∆t
∑

j∈J

√
λjφj(x)ξnj , ξnj ∼ CN (0, 2),

meaning that ξnj = a + ib with a, b i.i.d∼ N (0, 1) such that Z(tn, xk) is a complex random variable
with independent real and imaginary part with the same distribution as two independent copies of the
increment W J(tn + ∆t, xk)−W J(tn, xk). Furthermore, Z(tn, xk) can be expressed in the form,

Z(tn, xk) =
1

J1J2

J1/2∑

j1=−J1/2+1

J2/2∑

j2=−J2/2+1

Z̃j1,j2e
2iπ

(
j1
k1
J1

+j2
k2
J2

)
(7)

where Z̃j1,j2 =
√

∆tλj1,j2J1J2ξ
n
j1,j2

We recognize that the matrix with entries given by eq. (7)
is the 2D inverse DFT of the J1 × J2 matrix with entries Z̃j1,j2 . Therefore, we can sample two
independent copies of

W J(tn + ∆t, xk)−W J(tn, xk), 0 ≤ k1 ≤ J1 − 1, 0 ≤ k2 ≤ J2 − 1

by computing a single 2D inverse DFT.

A.2.2 Cylindrical Wiener process

If the operator Q = I is the identity, then Q is not of trace class on H so that the series in eq. (6)
does not converge in L2(Ω, H). This motivates the definition of cylindrical Wiener processes.
Definition A.5 (Cylindrical Wiener process). Let H be a separable Hilbert space. A cylindrical
Wiener process (a.k.a space-time white noise) is a H-valued stochastic process {W (t) : t ≥ 0}
defined by

W (t) =

∞∑

j=1

φjβj(t) (8)

where {φj} is any orthonormal basis of H and βj(t) are i.i.d. Brownian motions.
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In all examples except Navier-Stokes, we drive the SPDE by samples ξ from a cylindrical Wiener
process in one dimension. Let D = (0, L) and consider an L2(D)-valued cylindrical Wiener process
W (t). As explained in Lord et al. [27, Example 10.31], if we take the basis

φk(x) =
√

2/L sin (kπx/L)

numerical approximation of sample paths from W (t) are easy to obtain. The goal is to sample from
the truncated expansion,

W J(t) =
J∑

j=1

φjβj(t), (9)

at the collection of sample points xk = kL/J for k = 1, . . . , J . Observing that a trigonometric
identity yields,

Cov
(
W J(t, xi),W

J(t, xk)
)

= (tL/J)δik, i, k = 1, . . . , J

the increments W J(tn + ∆t, xk)−W J(tn, xk) ∼ N (0,∆tL/J) for all k = 1, . . . , k.

A.3 Numerical solvers

In this section we present an overview of the numerical solvers for SPDEs we used to generate the data
for all the experiments. The stochastic Ginzburg-Landau (Sec. 4.1 and appendix B.3), stochastic wave
(Appendix B.4) equations have been solved using the finite difference method, while the stochastic
Korteweg–De Vries (Sec. 4.2) and Navier Stokes (Sec. 4.3) equations have been solved using the
spectral Galerkin method. We use the same setup as in Sec. 2. In particular, we focus on stochastic
semilinear evolution equations of the form

dut = (Lut + F (ut)) dt+G(ut)dWt (10)

where Wt is either a Q-Wiener process or a cylindrical Wiener process and L is a linear differential
operator generating a semigroup etL. We consider nonlinearities F,G regular enough (see Lord et al.
[27, Assumption 10.23]) to guarantee existence and uniqueness of mild solutions of eq. (10) [27,
Thm. 10.26].

A.3.1 Finite difference method

We illustrate this numerical method for the reaction-diffusion equation

dut =
(
ε∂2xxu+ F (ut)

)
dt+ σdWt, u(0, x) = u0(x),

with homogeneous Dirichlet boundary conditions and where ε, σ > 0 are constants. We assume for
simplicity that u0, ut,Wt are real-valued and D = (0, a). The generalization to higher dimensions is
straightforward.

Consider the grid points xj = jh, where h = a
J and j = 0, ..., J , for some spatial resolution J ∈ N.

Let uJ(t) be the finite difference approximation of [u(t, x1), ..., u(t, xJ−1)] (similarly for WJ(t))
resulting from the solution of the following SDE

duJ(t) = [−εMuJ(t) + f̂(uJ(t))]dt+ σdWJ(t)

where f̂(uJ) = [f(u1), ..., f(uJ−1)]T andM is the (J−1)×(J−1) matrix approximating Laplacian
(with free boundary conditions) which is given by

M =
1

h2




2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 2




One could modify M for specific boundary conditions. For instance in the case of periodic boundary
one should modify M1,J−1 = MJ−1,1 = −1 (see Lord et al. [27, Chapter 3.4] for Dirichlet and
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Neuman boundary condition modifications of M ). To discretize in time, we may apply numerical
methods for SDEs (see for example Lord et al. [27, Chapter 8]). Choosing the standard Euler-
Marayama scheme with time step ∆t yields an approximation uJ,n to uJ(tn) at tn = n∆t defined
by

uJ,n+1 = (I + ∆tεM)−1
(
uJ,n + f̂(uJ,n)∆t+ σ(WJ(tn+1)−WJ(tn))

)

The increments (WJ(tn+1)−WJ(tn)) are generated using techniques discussed in Appendix A.2.

A.3.2 Spectral Galerkin method

Consider again a separable Hilbert space H . Assume that the differential operator L in eq. (10)
has a complete set of orthonormal eigenfunctions {φj}j∈N and eigenvalues λj < 0, ordered so that
λj+1 < λj . Then, we can define the semigroup etL as follows

etLh =
∞∑

j=1

eλjt〈h, φj〉φj , h ∈ H.

Define the Galerkin subspace VJ = Span{φ1, ..., φJ} and the orthonormal projections PJ : H → VJ
as follows

PJh =

J∑

i=1

〈u, φj〉φj , h ∈ H.

Then, the following defines spectral Galerkin approximation of eq. (10)

duJ(t) = (LJuJ(t) + PJF (uJ(t)))dt+ PJG(uJ(t))dWJ(t), uJ(0) = PJu0

where uJ := PJu and LJ := PJL and WJ = PJW is as in (9). Using a Euluer-Marayama
discretization as above, we obtain the following discretization

uJ,n+1 = (I + ∆tLJ)−1(uJ,n + ∆tPJF (uJ,n) + PJG(uJ,n)∆WJ,n).

This approach is particularly convenient for problems with additive noise where the eigenfunctions
of L and Q (the covariance of the Q-Wiener process W ) are equal, which is the case for all the
experiments in this paper generated with this method. The eigenfunctions of the Laplacian with
periodic boundary conditions correspond to the Fourier basis exponentials; therefore, one can define
the projection PJ in terms of the DFT.

B Further experiments

In this section with discuss additional details about the NSPDE model, its training procedure an of
the baseline models, including how the relevant hyperparameters have been selected for each model.

B.1 Derivation of the ODE parameterisation

If one assumes that L is a polynomial differential operator of degree N of the form

L =

N∑

n=0

∑

n1,...,nd
n1+...+nd=n

Cn1,...,nd

∂n

∂xn1
1 ...∂xndd

,

where Cn1,...,nd ∈ Cdh×dh are complex matrices, then the FT of the kernel associated to L satisfies

F(Kt)(y) = etP (iy) ∈ Cdh×dh ,

for any y ∈ Cd, where e is the matrix exponential and P is the following matrix-valued polynomial

P (y) =
N∑

n=0

∑

n1,...,nd
n1+...+nd=n

(2π)nyk11 ...y
kd
d Cn1,...,nd .
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Therefore, there exists a map A : Cd → Cdh×dh such that F(Kt)(y) = etA(y). It follows that

zt = F−1
(
etAF(z0) +

∫ t

0

e(t−s)AF(Hθ,ξ(zs))ds
)

= F−1(vt),

where vt : Cd → Cdh is the solution of the following ODE

vt = v0 +

∫ t

0

Avs + F(Hθ,ξ(F−1(vs))).

as shown in section 3.2.

B.2 Additional experimental details

For all experiments the dataset is split into a training, validation and test sets with relative sizes
70%/15%/15%. For all models, a grid search on the hyperparameters is performed using the training
and validation sets. We use the Adam optimizer and a scheduler which reads the validation loss and
reduces the learning rate if no improvement is seen for a patience number of epochs. Additionally,
an early stopping method is used to halt the training of the model if no improvement is seen after a
patience number of epochs. The hyperparameters included in the grid search are stated below and
examples of hyperparameter selection results are provided in tables 5 to 9.

NSPDE The hyperparameters included in the grid search are the number of frequency modes used
to parametrize the kernel in Fourier space B = Fd+1(K) and the number of forward iterations used
to solve the fixed point problem.

FNO The hyperparameters included in the grid search are the number of frequency modes used to
parametrize the kernel and the number of layers M . Note that the numbers of frequency modes in the
grid search differ from the ones used for the NSPDE model by a factor 2 to ensure that the effective
number of retained modes is the same. For both the NSPDE model and FNO, we kept the number of
hidden channels fixed to dh = 32 as this systematically yielded better performances than previously
included values and enabled to perform the grid search in a reasonable time.

DeepONet The Deep Operator Network (DeepONet) [28] is another popular class of neural
network models for learning operators on function spaces. The DeepONet architecture is based on
the universal approximation theorem of Chen and Chen [6]. It consists of two sub-networks referred
to as the branch and the trunk networks. The trunk acts on the coordinates (t, x) ∈ [0, T ]×D, while
the branch acts on the evaluation of the initial condition u0 on a discretized grid D. Therefore, the
DeepONet is not a space resolution-invariant architecture. The output of the network is expressed as

DeepONet(u0)(t, x) =

p∑

k=1

bk(u0)τk(t, x) + b0,

where the bk and the τk are the outputs of the branch and trunk network respectively. The trunk
network is usually a feedforward neural network, and one can chose the architecture of the branch
network depending on the structure of the input domain. We follow Lu et al. [28] and use feedforward
neural networks for both the trunk and the branch networks. We perform a grid search on the depth
and width of the trunk and branch feedforward neural networks.

NRDE/NCDE/NCDE-FNO The hyperparameters included in the grid search are the number of
hidden channels and the type of solver as implemented by torchdiffeq [5]. We note that we used a
depth-2 NRDE model (depth-2 already results in dξ = 8 385 for forcings observed at 128 spatial
points and higher depths models could not fit in memory) and recall that NCDE is a depth-1 NRDE.
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Table 5: Grid search NCDE (KdV)

dh # parameters solver validation loss
8 136464 rk4 0.511

16 272672 rk4 0.510
32 545088 rk4 0.505
8 136464 euler 0.560

16 272672 euler 0.561
32 545088 euler 0.556

Table 6: Grid search NCDE-FNO (KdV)

dh # parameters solver validation loss
8 5761 rk4 0.140

16 15617 rk4 0.142
32 48769 rk4 0.145
8 5761 euler 0.310

16 15617 euler 0.314
32 48769 euler 0.321

Table 7: Grid search DeepONet (KdV)

Branch & trunk width Branch depth Trunk depth # parameters validation loss
256 3 4 1935616 0.258
128 3 4 885888 0.269
128 3 3 869376 0.279
128 3 2 852864 0.284
512 3 4 4526592 0.294
512 2 2 3738624 0.295
256 4 4 2001408 0.295
512 4 4 4789248 0.302
256 2 2 1738240 0.304
256 3 3 1869824 0.307
128 4 3 885888 0.311
128 4 2 869376 0.311
256 3 2 1804032 0.313
128 2 2 836352 0.315
256 4 2 1869824 0.316
128 4 4 902400 0.318
256 4 3 1935616 0.319
512 4 3 4526592 0.320
512 4 2 4263936 0.334
512 3 2 4001280 0.350
128 2 4 869376 0.350
512 3 3 4263936 0.359
512 2 3 4001280 0.366
256 2 3 1804032 0.370
128 2 3 852864 0.382
256 2 4 1869824 0.392
512 2 4 4263936 0.395
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Table 8: Grid search FNO (KdV)

dh depth modes 1 modes 2 # parameters validation loss
32 1 16 16 532993 0.163
32 1 16 50 1647105 0.117
32 1 32 16 1057281 0.163
32 1 32 50 3285505 0.117
32 2 16 16 1058337 0.163
32 2 16 50 3286561 0.120
32 2 32 16 2106913 0.163
32 2 32 50 6563361 0.118
32 3 16 16 1583681 0.163
32 3 16 50 4926017 0.120
32 3 32 16 3156545 0.163
32 3 32 50 9841217 0.120
32 4 16 16 2109025 0.163
32 4 16 50 6565473 0.122
32 4 32 16 4206177 0.163
32 4 32 50 13119073 0.120

Table 9: Grid search NSPDE (KdV)

dh Picard’s iterations modes 1 modes 2 # parameters validation loss
32 1 32 32 1055233 0.023
32 1 32 100 3283457 0.011
32 1 64 32 2103809 0.030
32 1 64 100 6560257 0.009
32 2 32 32 1055233 0.018
32 2 32 100 3283457 0.012
32 2 64 32 2103809 0.015
32 2 64 100 6560257 0.010
32 3 32 32 1055233 0.016
32 3 32 100 3283457 0.013
32 3 64 32 2103809 0.022
32 3 64 100 6560257 0.011
32 4 32 32 1055233 0.019
32 4 32 100 3283457 0.012
32 4 64 32 2103809 0.021
32 4 64 100 6560257 0.016

B.3 Stochastic Ginzburg-Landau equation

Recall that the stochastic Ginzburg-Landau equations are of the form,

∂tu−∆u = 3u− u3 +G(u)ξ, (11)
u(0, x) = u0(x), (t, x) ∈ [0, T ]× [0, 1]

subject to either Periodic or Dirichlet boundary conditions. Periodic boundary conditions are given by
u(t, 0) = u(t, 1) for all t ≥ 0 and Dirichlet boundary conditions are given by u(t, 0) = u(t, 1) = 0
for all t ≥ 0. Initial condition we take as in Sec. 4.1 u0(x) = x(1 − x) + κη(x) with κ = 0 or
κ = 0.1 depending on a task. In both Periodic and Dirichlet case we can take η(x) as in Sec. 4.1
though in Dirichlet case one must take a0 = 0 to ensure u0 being zero at the boundary.

We first reproduce an experiment from Sec. 4.1 on the additive stochastic Ginzburg-Landau equation
but with Dirichlet boundary conditions instead of the periodic. We compare it to the benchmark of
FNO model which was the most successful among all the benchmarks of Sec. 4. From Table 10 we
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see that even though Neural SPDE model depends on the spectral methods the errors did not increase
compared to the periodic equation in Sec. 4.1 (see Table 1). Our algorithm still outperforms FNO
whose relative L2 error increased slightly. The fact that Neural SPDE can be applied to non-periodic
equations could be perhaps explained by interpolation (Lθ) and projection (Πθ) neural networks that
could correct for non-periodicity of the data.

Table 10: Additive stochastic Ginzburg-Landau equation with homogeneous Dirichlet bound-
ary conditions. The experimental setup is the same as in the main paper. We report the relative L2
error on the test set. The symbol x indicates that the model is not applicable. N is fixed to 1 000.

Model u0 7→ u ξ 7→ u (u0, ξ) 7→ u

FNO 0.132 0.023 x

NSPDE (Ours) 0.135 0.008 0.010

We now take a look at the specific hyperparameter: number of forward iterations in the fixed point
solver. We also call this a number of Picard iterations P . Theoretically as P increases Fixed
Point Solver should converge to the true solution (see [11]). This suggests that higher P should
improve the performance of the Neural SPDE algorithms. In practise we observed in both additive
Ginsburg Landau equation from Sec. 4.1 and in KdV equation from Sec. 4.2 that P = 1 could
already be enough. This could be explained either by dominance of the linear part of the equation
or by overfitting in these cases. Thus we present an experiment on the multiplicative stochastic
Ginzbug-Landau equation over a longer (compared to Sec. 4.1) time interval. In the Table 11 we
compare NSPDE with P ∈ {1, 2, 3, 4} and again include FNO benchmark (which performed best
in the previous experiments). We see that NSPDE with even P = 1 outperforms FNO. Relative
L2 error for T = 0.05 increases for both NSPDE and FNO due to more complicated multiplicative
noise. In Table 11 we present for each P the best result over other hyperparameters obtained by
cross validation. One could clearly see an improvement in error as we increase the number of Picard
iterations P (with an exception of the case T = 0.05 where P = 3 outperformed P = 4). This
improvement becomes more apparent as the time frame T increases. Heuristically (and qualitatively)
this is due to the fact that for the short times solution of the SPDE is relatively close to its linearised
version and that nonlinearity of the equation starts to play a bigger role for larger T .

Table 11: Multiplicative stochastic Ginzburg-Landau equation. We report the relative L2 error
on the test for FNO and NSPDE (Ours) for different number of Picard iterations on the task ξ → u.

Time horizon FNO NSPDE (P = 1) NSPDE (P = 2) NSPDE (P = 3) NSPDE (P = 4)

T = 0.05 0.040 0.023 0.018 0.016 0.017
T = 0.10 0.068 0.042 0.041 0.040 0.040
T = 0.25 0.105 0.079 0.077 0.073 0.072

B.4 The stochastic wave equation

In this section we consider the following nonlinear wave equation with multiplicative stochastic
forcing,

∂2t u−∆u = cos(πu) + u2 + uξ, (12)
u(t, 0) = u(t, 1),

u(0, x) = u0(x),

∂tu(0, x) = v0(x), (t, x) ∈ [0, T ]× [0, 1].

The nonlinear stochastic wave equation arises in relativistic quantum mechanics and is also used in
simulations of nonlinear waves that are subject to either noisy observations or random forcing. We
refer a reader to Temam [34] for an overview on the nonlinear wave equation. The above equation
can put in a form of eq. (2) by rewriting it as a system for (u, v) = (u, ∂tu). To generate training
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datasets, we solve the SPDE using a finite difference method with 128 evenly distanced points in
space and a time step size ∆t = 10−3. As in Chevyrev et al. [7, eq. (3.5)], we solve the SPDE until
T = 0.5. We then downsample the temporal resolution by a factor 5, resulting in 100 time points.
Here, the initial condition is given by u0(x) = sin(2πx) + κη(x), where η is defined in Sec. 4.1 and
for simplicity initial velocity v0 is taken deterministic v0(x) = x(1− x). Similarly to Sec. 4.1 we
either take κ = 0 or κ = 1 to generate datasets where the initial condition is either fixed or varies
across samples. Each dataset consists of N = 1 000 training observations.

Table 12: Stochastic Wave equation. We report the relative L2 error on the test set. The symbol x
indicates that the model is not applicable. N is fixed to 1 000.

Model u0 7→ u ξ 7→ u (u0, ξ) 7→ u

NCDE x 0.142 0.432
NRDE x 0.146 0.445
NCDE-FNO x 0.029 0.037
DeepONet 0.190 0.143 x
FNO 0.151 0.026 x

NSPDE (Ours) 0.150 0.023 0.026

B.5 Deterministic Navier-Stokes PDE

In this final experiment, we demonstrate that our Neural SPDE model can also be used in the
setting of PDEs without any stochastic term. We do so by studying the example from [25] on
deterministic Navier-Stokes. More precisely, we consider the 2D Navier-Stokes equation for a
viscous, incompressible fluid in vorticity form:

∂tw(t, x)− ν∆w(t, x) = f(x)− u(t, x) · ∇w(t, x), t ∈ [0, T ], x ∈ [0, 1]2 (13)

∇ · u(t, x) = 0, t ∈ [0, T ], x ∈ [0, 1]2 (14)

w(x, 0) = w0(x), x ∈ [0, 1]2 (15)

where u : [0, T ]× [0, 1]2 → R2 is the velocity field, w = ∇×u is the vorticity with w0 : [0, 1]2 → R
being the initial vorticity. Here f is a deterministic forcing term which we take as in [25]. We
follow the experimental setup from [25] and use the dataset (available under an MIT license) where
ν = 10−5, N = 1000 and T = 20. We achieve similar performances as FNO with a L2 error of 0.17.
A comparison between a true and predicted trajectory is depicted in Fig. 3.

Figure 3: Top panel: Initial vorticity and ground truth vorticity at later time steps on a 64× 64 mesh.
Bottom panel: Predictions of the Neural SPDE model.
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