
A Proofs of main results

A.1 Proof of Theorem 2

Consider an instance of semi-supervised active regression with the labeled dataset Xlab being empty,
and with the unlabeled dataset composed of k copies of the standard basis vector ei for each
i = 1, · · · , d. k will be later be taken to∞ and can be thought of as being very large. The labels are
assumed to be generated by a random linear function. Namely, we consider a family of instances
where for each i, β∗i ∼ N (0, 1) and the ground truth labels of the points aligned with ei are set as β∗i .
All instances in this family therefore satisfy realizability, namely, ‖Xβ∗ − Y ‖22 = 0. Moreover, on
this family of instances, the reduced rank RX = Tr

((
XT

labXlab +XT
unXun

)−1
XT

unXun

)
= d, since

there are no prior labeled datapoints.

The total number of points sampled by leverage score sampling, m, is taken as a parameter. We show
that if m ≤ cd log(d) for a sufficiently small constant C, with high probability, the linear function
returned by the algorithm is poor in the sense that ‖Xβ̂−Y ‖22 > 0 (and thus the approximation ratio,
(1 + ε), is no longer bounded for the algorithm).

First, we compute the sampling probabilities for each point x ∈ X . Recall that Leverage score
sampling assigns the probability of sampling the point x as min{1, md ‖U(x)‖22}. In the given instance,
for each x ∈ X , ‖U(x)‖22 = 1

k . All in all, each point x is sampled with probability m
dk . As k →∞,

the number of labels of points sampled along each direction ei tends in distribution to a Poisson
distributed random variable, in particular, distributed ∼ Poi(m/d). Finally, the number of times
points aligned with ei are sampled are independent across i. Therefore, the probability that there
exists at least one i such that leverage score sampling samples no points along that direction ei is,
1−

(
1− e−m/d

)d
. If m ≤ 1

2d log(d), then,

1−
(

1− e−m/d
)d

= 1−
(

1− 1√
d

)d
≥ 1− e−

√
d (23)

Therefore, with high probability no points are sampled along at least one of the directions ei. As a
consequence, if m ≤ 1

2d log(d), leverage score sampling algorithm never observes β∗i for at least
one index i ∈ [d] (say, i0) with probability ≥ 1− e−

√
d. The prediction of the algorithm on points

aligned with ei0 is statistically independent of the true label β∗i0 ∼ N (0, 1) - in other words, the
learner has no way of guessing β∗i0 . Therefore,

‖Xβ − Y ‖22 ≥ kE
[
(β̂i − β∗i0)2

]
≥ k

(
E
[
(β∗i0)2

])
= k (24)

where the expectation is taken only over β∗i0 . Since for this family of instances RX = d, this shows
the existence of a semi-supervised active regression instance such that if leverage score sampling
is run with m ≤ 1

2 RX log(d), with probability ≥ 1 − e−
√
d, the approximation factor admit by

leverage score sampling is unbounded. More importantly, since there are no prior labeled points in the
dataset, the number of labels queried by the algorithm, in expectation, is d× m

d = m = 1
2 RX log(d).

Moreover, by concentration of the sum of independent random variables, the number of labels queried
is no smaller than 1

4 RX log(d) with probability ≥ 1− e−Ω(d). Therefore, by union bounding, with
probability ≥ 1− e−

√
d − e−d, both (i) the approximation factor admit by leverage score sampling is

∞, and (ii) the number of labels sampled by leverage score sampling is ≥ 1
4 RX log(d).

A.2 Proof of Theorem 3

First we restate and prove Lemma 5 which relates the trace of the matrix D to the RX parameter.

Lemma 5 (Relating D to RX). With D =
∑
x∈Xun

U(x)(U(x))T , Tr(D) = RX .

Proof. Observe that X =

[
Xun
Xlab

]
= UΣV T . Therefore, D = UTSU where S is a diagonal

matrix with 1’s on rows corresponding to x ∈ Xun and 0’s otherwise. Observe that XTSX =

14

V ΣUTSUΣV T . Moreover, observe that XTSX =
[
XT

un XT
lab

]
S

[
Xun
Xlab

]
= XT

unXun. Therefore,

D = UTSU = (V Σ)−1XT
unXun(ΣV T)−1 (25)

Tracing both sides and using the commutativity of the trace operator,

Tr(D) = Tr
(((

V T
)−1

Σ−2V −1
)
XT

unXun

)
(26)

= Tr
((
XTX

)−1
XT

unXun

)
(27)

A.3 Upper bounding the number of points in Xun sampled by Algorithm 2 (Theorem 4)

We first bound the number of points sampled in Xun by Algorithm 2. We begin by re-stating Lemma 6
which explicitly computes the expected number of points sampled sampled by Algorithm 2 in terms
of various potentials.

Lemma 6. Recall that Algorithm 2 samples a subset of the nun + nlab points in Xun ∪ Xlab. The
expected number of iterations the algorithm samples a point in Xun is given by: E[lq(Xun)] ≤

E
[∑m−1

j=1

ΦDj
ΦId
j

]
where D =

∑
x∈Xun

U(x)(U(x))T .

Proof. From eq. (17), the number of unlabelled points sampled by the algorithm is upper bounded by

E [lq(Xun)] ≤ E

m−1∑
j=0

∑
x∈Xun

p(j)
x

 (28)

= E

m−1∑
j=0

∑
x∈Xun

U(x)T
(
(ujI −Aj)−1 + (Aj − ljI)−1

)
U(x)

ΦId
j

 (29)

= E

m−1∑
j=0

∑
x∈Xun

Tr
(
U(x)U(x)T

(
(ujI −Aj)−1 + (Aj − ljI)−1

))
ΦId
j

 (30)

= E

m−1∑
j=0

Tr
((∑

x∈Xun
U(x)U(x)T

) (
(ujI −Aj)−1 + (Aj − ljI)−1

))
ΦId
j

 (31)

= E

m−1∑
j=0

ΦD
j

ΦId
j

 (32)

where D =
∑
x∈Xun

U(x)(U(x))T

Lemma 6 bounds the number of labels queried by Algorithm 2 among points in Xun. However the
appearance of the potential ΦId

j in the denominator is challenging to bound, so we introduce another
result to further upper bound this term.

Lemma 7. In every iteration 0 ≤ j < m of Algorithm 2, almost surely ΦId
j ≥ 1

2γ.

Proof. Note that for j ∈ [m − 1], ΦId
j = Tr((ujI − Aj)

−1 + (Aj − ljI)−1). Note that Aj is
a symmetric matrix. Suppose it is diagonalized as UΘUT where Θ = diag(θ1, · · · , θd) are its
eigenvalues. Then, ΦId

j =
∑d
t=1

1
uj−θt + 1

θt−lj . We show in Lemma 17 that ljI � Aj � ujI .
With this constraint on the θt’s, by minimizing, we obtain: 1

uj−θt + 1
θt−lj ≥

4
uj−lj . Therefore,

ΦId
j ≥ 4d

uj−lj . Furthermore, by the stopping criterion of the algorithm, in every iteration j < m of

the algorithm, uj − lj ≤ 8d
γ . Therefore, for every j = 0, 1, · · · ,m− 1, ΦId

j ≥ 1
2γ.

15

Using Lemmas 6 and 7, we can bound the expected number of label queries made by Algorithm 2 as,

E[lq(Xun)] ≤ 2

γ
E

m−1∑
j=0

ΦDj

 (33)

While this expression is nicer than that in lemma 6, it is still the case that the stopping time of the
algorithm, m and the potentials ΦDj are correlated in a complicated manner. Moreover, even if a
high probability bound is known on m, it is not clear how to bound the expectation since the typical
behavior of ΦDj ’s is not apparent. To decouple the ΦDj ’s with m, we instead show that m is upper
bounded almost surely. Since the ΦDj ’s are non-negative, this immediately results in an upper bound
which is independent of m. Restating Lemma 1 below.
Lemma 1. Almost surely, m ≤ 2d/γ2.

Proof. Assuming that the algorithm has not terminated till the (t+ 1)th iteration, ut− lt = u0− l0 +∑t−1
j=0

4γ2

ΦId
j (1−4γ2)

< 8d
γ (this uses the fact that uj+1 − uj = γ

ΦId
j (1−2γ)

and lj+1 − lj = γ
ΦId
j (1+2γ)

).
Observe that the event,

{m ≥ t} = {ut − lt < 8d/γ} (i)
=

t−1∑
j=0

4γ2

Φj(1− 4γ2)
+

t−1∑
j=0

ΦId
j <

4d

γ

 (ii)

⊆
{

2γ · t < 4d

γ

}
(34)

where (i) uses the fact that by definition, uj+1 − lj+1 = uj − lj + γ
Φj(1−2γ) −

γ
Φj(1+2γ) with

u0 − l0 = 4d
γ , and then cascading the sum to get an explicit form for ut − lt (ii) uses the AM-GM

inequality. Therefore, with t = 2d
γ2 , the event {m ≥ t} happens with probability 0.

Since ΦDj ≥ 0 almost surely, from eq. (33) and Lemma 1 the expected number of label queries made
by Algorithm 2 is bounded by,

E[lq(Xun)] ≤ 2

γ

2d/γ2−1∑
j=0

E
[
ΦDj
]
. (35)

To further simplify this expression, we bound E
[
ΦDj
]
. Indeed, in the following lemma we show that

it is a decreasing function of j, so we have the inequality E
[
ΦDj
]
≤ E

[
ΦD0
]
.

Lemma 8 (Bounding the potential). For any fixed PSD matrix M � 0, E[ΦMj+1] ≤ E[ΦMj].

Proof. Recall that ΦMj = Tr(M(ujI − Aj)
−1 + Tr(M(Aj − ljI)−1). ΦMj+1 can be written as

Tr(M(uj+1I −Aj − wjwTj)−1) + Tr(M(Aj + wjw
T
j − lj+1I)−1). Following a similar approach

as BSS Lemma 3.3 and 3.4, invoking the Sherman-Morrison inversion formula,(
uj+1I −Aj − wjwTj

)−1
= (uj+1I −Aj)−1 +

(uj+1I −Aj)−1wjw
T
j (uj+1I −Aj)−1

1− wTj (uj+1I −Aj)−1wj
. (36)

Multiplying by M and tracing both sides,

Tr
(
M
(
uj+1I −Aj − wjwTj

)−1
)

= Tr(M(uj+1I−Aj)−1)+
Tr(M(uj+1I −Aj)−1wjw

T
j (uj+1I −Aj)−1)

1− wTj (uj+1I −Aj)−1wj
.

(37)
Note that with probability 1, wjwTj � γ(ujI − Aj) � γ(uj+1I − Aj). Therefore, wTj (uj+1 −
Aj)
−1wj ≤ γ. Therefore,

Tr
(
M
(
uj+1I −Aj − wjwTj

)−1
)
≤ Tr(M(uj+1I−Aj)−1)+

Tr(M(uj+1I −Aj)−1wjw
T
j (uj+1I −Aj)−1)

1− γ
.

(38)

16

Finally, using linearity of expectation and noting that E
[
wjw

T
j

∣∣Aj] = γ
ΦId
j

I , we have that,

E
[
Tr
(
M
(
uj+1I −Aj − wjwTj

)−1
)]
≤ E

[
Tr(M(uj+1I −Aj)−1)

]
+ E

[
γ

ΦId
j (1− γ)

Tr(M(uj+1I −Aj)−2)

]
.

(39)

By a similar calculation as before,

E
[
Tr
(
M
(
Aj + wjw

T
j − lj+1I

)−1
)]
≤ E

[
Tr(M(Aj − lj+1I)−1)

]
− E

[
γ

ΦId
j (1 + 2γ)

Tr
(
M(Aj − lj+1I)−2

)]
.

(40)

Note the difference from before, for γ ≤ 1
4 , we use the inequality wjwTj � 2γ(Aj − lj+1I) which

we derive in Lemma 16. This appears as the 1 + 2γ factor in the denominator of the second term in
eq. (40).

Now observe that, uj+1−uj = γ
ΦId
j (1−2γ)

≥ γ
ΦId
j (1−γ)

and lj+1− lj = γ
ΦId
j (1+2γ)

. Therefore, adding
eq. (39) and eq. (40) together,

E
[
ΦMj

]
≤ E

[
Tr(M(uj+1I −Aj)−1 +M(Aj − lj+1I)−1)

]
+ E

[
(uj+1 − uj)Tr(M(uj+1I −Aj)−2)− (lj+1 − lj)Tr(M(Aj − lj+1I)−2)

]
(41)

Define ∆u = uj+1 − uj and ∆l = ll+1 − lj and for t ∈ [0, 1], define the function

f(t) = Tr
(
M((uj + ∆ut)I −Aj)−1 +M(Aj − (lj + t∆l)I)−1

)
. (42)

Under the assumption ljI � Aj � ujI , the function f(t) is convex in t. Therefore, f(0)− f(1) ≥
−df(t)

dt

∣∣∣
t=1

. In eq. (41) observe that the RHS is precisely f(1)− df(t)
dt

∣∣∣
t=1

. Upper bounding this by

f(0), results in the equation

E[ΦMj+1] ≤ E
[
Tr(M(ujI −Aj)−1 +M(Aj − ljI)−1)

]
= E[ΦMj]. (43)

From eq. (35),

E[lq(Xun)] ≤ 2

γ

2d/γ2−1∑
j=0

E
[
ΦDj
]
≤ 2

γ

2d

γ2
E
[
ΦD0
]

=
4d

γ3
Tr(D(u0I−A0)−1+D(A0−l0I)−1)

(i)
=

4d

γ3

γRX
d

=
4RX
γ2

.

(44)
where (i) uses the fact that u0 = 2d

γ and l0 = − 2d
γ and Tr(D) = RX from Lemma 5.

This completes the bound on the number of labels queried by Algorithm 2. Next we move on to
showing that Algorithm 2 is indeed an ε-well-balanced sampling procedure which will complete the
proof of Theorem 4.

A.4 Algorithm 2 is ε-well balanced sampling procedure

In order to satisfy the first property of Definition 1, we need to show that ZTZ is well conditioned and
that its normalized eigenvalues lie in an interval [1−O(γ), 1 +O(γ)] ⊆ [3/4, 5/4] for sufficiently
small γ. As we discuss in Section 4.1 of the paper, and revisit in more detail later, ZTZ =

1
(um+lm)/2Am, where m is the number of iterations the while loop in Algorithm 2 runs for, and
Aj is as defined in Algorithm 2. Moreover, from Lemma 17, the eigenvalues of Aj for any j are
bounded between uj and lj and when the algorithm terminates, the gap between um and lm isO(d/γ).
Furthermore, from Lemma 2, with constant probability, um is also lower bounded by Ω(d/γ2). Thus,
when γ is not too large, lm ≈ um = Ω(d/γ2) and um − lm = O(d/γ). These two conditions
show that the eigenvalues of ZTZ = 1

(um+lm)/2Am lie in the interval [1−O(γ), 1 +O(γ)] which is
⊆ [3/4, 5/4] for any sufficiently small choice of γ showing indeed that the first property for ε-well
balanced sampling procedures is satisfied by Algorithm 2. First we show the key result of this section
that with constant probability um is indeed lower bounded by Ω(d/γ2).

17

Lemma 2. For γ < 1/4 and any 0 ≤ p < 1, with probability at least 1− p, um ≥ p2d/8γ2.

Proof. First, observe that um >
∑m−1
j=0

γ
ΦId
j

and
(∑t−1

j=0
1

Φj

)(∑t−1
j=0 Φj

)
≥ t2, we want to analyze

Pr

(
p2d

8γ3
≤ m2∑m−1

j=0 ΦId
j

)
= Pr

m−1∑
j=0

ΦId
j ·

p2d

8γ3
≤ m2

 (45)

(i)

≥ Pr

(
p2d2

γ4
≤ m2

)
(46)

Where the last sufficient condition (i) comes from the stopping criterion, which implies
∑m−1
j=0 ΦId

j ≤
8d
γ .

Now we prove an upper bound to Pr(m < g) where g , pd
γ2 .

Pr (m < g)
(i)
= Pr

g−1∑
j=0

γ2

ΦId
j (1− 4γ2)

+
4d

γ
+

g−1∑
j=0

ΦId
j ≥

8d

γ

(ii)

≤
E
[∑g−1

j=0
γ2

ΦId
j (1−4γ2)

+
∑g−1
j=0 ΦId

j

]
4d/γ

(iii)

≤
gE[ΦId

0] + γ2

1−4γ2E
[∑g−1

j=0
1

ΦId
j

]
4d/γ

(iv)

≤
gγ + 2γg

1−4γ2

4d/γ

where (i) comes form the stopping criterion and the update rules for uj and lj , (ii) is Markov’s
inequality, (iii) follows by Lemma 8, and (iv) from Lemma 7. Using the fact that γ < 1

4 ,

Pr (m < g) ≤ gγ2

d
= p (47)

Next we define the “good” event Γ that um is indeed Ω(d/γ2). Note that Γ occurs with constant
probability using Lemma 2.

Definition 4. Define Γ as the event that {um ≥ d
64γ2 }. From Lemma 2, Pr(Γ) ≥ 3

4 .

From the stopping criterion of the algorithm, we know that uj − lj ≤ 8d/γ, for j < m. We show that
even for j = m this inequality is true with a larger choice of constant.
Lemma 9. For γ < 1, um − lm ≤ 9d/γ.

Proof. From Lemma 7, we know φId
m−1 ≥ γ/2. Which implies γ/φId

m−1 ≤ 2. By the stopping
criterion of the algorithm, um−1 − lm−1 < 8d/γ. Using these two,

um − lm = um−1 − lm−1 +
γ

φId
m−1

(
1

1− 2γ
− 1

1 + 2γ

)
≤ 8d/γ + 2

(
1

1− 2γ
− 1

1 + 2γ

)
≤ 9d/γ

Next we show that under the event Γ, the matrix Am is PSD, which is crucial towards bounding its
condition number.

18

Lemma 10. For γ ≤ 1
300 , if the event Γ (defined in Definition 4) occurs, lm > 0.

Proof. First observe that,

um = u0 +
γ

(1− 2γ)

m−1∑
j=0

1

ΦId
j

(48)

=⇒
m−1∑
j=0

1

ΦId
j

=

(
um −

2d

γ

)(
1− 2γ

γ

)
(49)

=⇒ lm =
−2d

γ
+

γ

1 + 2γ

(
um −

2d

γ

)(
1− 2γ

γ

)
(50)

Thus if um is large enough, the RHS will be > 0. It suffices to assume γ ≤ 1
300 for this statement to

be true since conditioned on Γ, um ≥ d
64γ2 .

Finally, conditioned on the event Γ and invoking Lemma 9, we bound the condition number of Am.
Lemma 11. Conditioned on the event Γ (defined in Definition 4), Algorithm 2’s last iteration matrix
Am has condition number λmax(Am)

λmin(Am) ≤
um
lm
≤ 1 + 3456γ, for γ ≤ 1

700 .

Proof. From Lemma 17, the condition number of Am is at most,

um
lm

=

(
1− um − lm

um

)−1

(51)

Hence, it suffices to prove that (um − lm)/um is ≤ cγ with constant probability, assuming that
cγ ≤ 5

6 . We know from Lemma 9, um − lm ≤ 9d
γ . Hence, it suffices to show that under the event Γ,

9d/γ

uk
≤ cγ ⇐⇒ 9d

cγ2
≤ um (52)

Conditioned on the event Γ, um ≥ d
64γ2 . Therefore, it suffices to choose c ≥ 576. As γ ≤ 1

700 , cγ ≤
5
6 . Finally, (

1− um − lm
um

)−1

≤ 1 +
cγ

1− cγ
≤ 1 + 3456γ. (53)

Lemma 11 directly translates to an upper bound on the eigenvalues of ZTZ which are nothing but
the eigenvalues of Am up to a scaling factor of (um+lm)/2.
Lemma 12. Conditioned on the event Γ (defined in Definition 4), (1 − 1728γ)I � ZTZ � (1 +
1728γ)I .

Proof. From Lemma 11, umlm ≤ 1 + 3456γ.

ZTZ =
1

mid

m∑
j=1

w′jU(xj)U(xj)
T =

Am
mid

Therefore, λ(ZTZ) ∈
[
lm
mid ,

um
mid

]
. Also, given um

lm
≤ 1 + 3456γ, we have

um + lm
lm

≤ 2 + 3456γ (54)

=⇒ 2

2 + 3456γ
≤ lm

um+lm
2

(55)

=⇒ 1− 1728γ ≤ lm
mid

(56)

A similar approach can be used to prove that ummid ≤ 1 + 1728γ.

19

This completes the proof in showing that Algorithm 2 satisfies the first property of being an ε-
well-balanced sampling procedure. Next, we prove that Algorithm 2 satisfies the second property
(
∑m−1
j=0 αj = O(1) and αjKDj = O(ε)) which will complete the proof of Theorem 4 which we

restate below.

Theorem 4. Algorithm 2 is an ε-well-balanced sampling procedure, where 0 < ε < 1. Furthermore,
Algorithm 2 samples the labels of at most O

(RX
ε

)
points in Xun.

Proof. To show that Algorithm 2 is an ε-well-balanced sampling procedure, recall from the definition
that we must show that with probability ≥ 3

4 ,

1. 3
4I � Z

TZ � 5
4I

2.
∑m−1
j=0 αj = O(1) and for all j = 0, · · · ,m− 1, αjKDj = O(ε).

Conditioned on the event Γ which holds with probability ≥ 3
4 , we show that both of these properties

hold.

From Lemma 12, we have that (1− 1728γ)I � ZTZ � (1 + 1728γ)I . With γ =
√
ε/C0 with ε < 1

and sufficiently large C0 > 0, this implies that 3
4I � Z

TZ � 5
4I which proves the first part.

On the other hand, to bound
∑m−1
j=0 αj , observe that

m−1∑
j=0

αj =

m−1∑
j=0

γ

φId
j

· 1

mid
≤
m−1∑
j=0

4
um+lm

2

≤ 2d

γ2

8

um
≤ 1024

where we use the fact that um ≥ d
64γ2 conditioned on Γ. Following the proof of Chen and Price [6,

Lemma 5.1], we bound αjKDj as follows:

αjKDj =
γ

mid
· uj − lj

2
= γ

uj − lj
um + lm

≤ 512γ2 =
512ε

C2
0

where we upper bound uj − lj ≤ 8d
γ using the stopping criterion of Algorithm 2, and lower bound

um + lm ≥ um ≥ d/64γ2 conditioned on the event Γ. We also substitute γ =
√
ε

C0
and choose C0

appropriately.

A.5 Proof of lower bound (Theorem 5)

Theorem 5. For any 0 < ε < 1, d and any λ > 0. Suppose X satisfies the condition,
σmin

(
X(XTX)−1XT

lab

)
≥ ε

1−ε . In the inductive setting, for each X and learner there ex-

ists an instance of SSAR where if β̂ returned by the learner satisfies E
[
‖Xβ̂ − Y ‖22

]
≤ (1 +

ε) minβ∈Rd E
[
‖Xβ − Y ‖22

]
must query the labels of at least Ω(RX

ε) points.

Define
[
Yun
Ylab

]
=

[
Xunβ

∗

0

]
+ Z. Here Z is a noise vector where for each x ∈ X , the variance of Z is

ν2
x. We will assume that for x ∈ Xlab, ν2

x = 0, while for the unlabeled points x ∈ Xun, we defer the
specific choice of ν2

x to later. Suppose the algorithm samples (x1, x2, · · · , xT) and correspondingly
observes labels (y1, · · · , yT). The underlying true parameter β∗ is assumed to be sampled from
a distribution, defined below. Let X = UΣV T be the SVD of X . Consider a vector α∗ sampled
uniformly from the vertices of a hypercuboid. Namely, α∗ ∼ Unif({±κ1, · · · ,±κd}). Given α∗,
the ground truth parameter β∗ is defined as V α∗.

Consider the parameter returned by the learner β̂. In the distributional setting, recall that the noise
is sampled freshly while evaluating the generalization loss. The ground truth optimizer is therefore

20

β̃ = (XTX)−1(XT
labXlab)β∗ , β̃. The generalization loss itself can be computed as,

= EPβ∗
[∥∥∥X(β̂ − β̃)

∥∥∥2

2

]
+

∥∥∥∥[Xlab
Xun

]
β̃ −

[
Xlabβ

∗

0

]∥∥∥∥2

2

+
∑
x∈Xlab

ν2
x (57)

= OPT + EPβ∗
[∥∥∥X(β̂ − β̃)

∥∥∥2

2

]
(58)

= OPT + EPβ∗
[∥∥∥X (β̂ − (XTX)−1(XT

labXlab)β∗
)∥∥∥2

2

]
(59)

Assume that Xlab is a tall and full-rank matrix. Let UlabΣlabV
T

lab be the SVD of Xlab. Define
W = VlabΣlabV

T
lab, which is invertible by the full-rankness assumption on Xlab. Then (XT

labXlab) =
VlabΣTlabΣlabV

T
lab. Next, consider the matrix X(XTX)−1WT , and let its SVD be UΣV T .

From eq. (59), the generalization loss can be rewritten as,

= OPT + EPβ∗
[∥∥∥X (β̂ − (XTX)−1(WTW)β∗

)∥∥∥2

2

]
(60)

= OPT + EPβ∗
[∥∥∥X(XTX)−1WT

((
WT

)−1
(XTX)β̂ −Wβ∗

)∥∥∥2

2

]
(61)

Consider the matrix X(XTX)−1WT . Let its SVD be UΣV T . Define α̂ = V T
(
WT

)−1
(XTX)β̂

and α∗ = V TWβ∗. Then, the generalization loss is,

= OPT + EPβ∗
[
‖Σ(α̂− α∗)‖22

]
, (62)

Given an algorithm which returns a β̂ (and equivalently a α̂), it induces a test, which returns the
vector in A , {±κi}di=1 closest in L2 norm to α∗. If the test makes a mistake in some coordinates S
of α∗, the additive error induced is, ∑

i∈S
κ2
i (Σii)

2. (63)

With this viewpoint, suppose α∗, which can span Rd is distributed uniformly over A. Then, the
error made by the learner is lower bounded by error incurred by the best testing algorithm for each
coordinate. Namely,

sup
α∗∈A

EPβ∗
[
‖Σ(α̂− α∗)‖22

]
(64)

≥ inf
Ψ1,··· ,Ψd

Eα∗∼Unif(A)

[
d∑
i=1

κ2
i (Σii)

2EPα∗ [I(Ψi(adaptive data) 6= α∗i ∈ {±1})]

]
(65)

≥ Eα∗∼Unif(A)

[
d∑
i=1

κ2
i (Σii)

2
(
1− TV(Pα∗ , Pα∗i)

)]
(66)

Note that the learner has access to (noisy) labelled samples from X2; thus Pβ∗ denotes the
joint distribution over (Xlab, Ylab, X1, Y1, · · · , XT , YT) induced by the algorithm (and where
X1, Y1, · · · , XT , YT are generated in a Markovian fashion). Also note that α∗i is the parameter
obtained by flipping the ith coordinate of α∗. Observe that,

Eα∗∼Unif(A)

[
d∑
i=1

κ2
i (Σii)

2TV(Pα∗ , Pα∗i)

]
(67)

≤ Eα∗∼Unif(A)

[
d∑
i=1

κ2
i (Σii)

2
√

2KL(Pα∗ , Pα∗i)

]
(68)

≤
√

2Eα∗∼Unif(A)

√√√√ d∑

i=1

γ2
i (κ2

i (Σii)
2)

2

√√√√ d∑
i=1

1

γ2
i

KL(Pα∗ , Pα∗i)

 . (69)

21

Where the last step follows by Cauchy Schwarz inequality. Next, observe that,

KL(Pα∗ , Pα∗i) (70)

= EPβ∗

[
log

(
Pβ∗

Pβ∗i

)]
(71)

=
1

2
EPβ∗

[∑T
t=1(Yt − 〈Xt, β

∗
i 〉)2 − (Yt − 〈Xt, β

∗〉)2

ν2
Xt

+

∑
(x,y)∈Xlab×Ylab

(y)2 − (y)2

ν2
x

]
(72)

=
1

2

T∑
t=1

EPβ∗

2Bt

(
〈Xt, β

∗〉 − 〈Xt, β
∗
i 〉
)
−
(
〈Xt, β

∗〉2 − 〈Xt, β
∗
i 〉2
)

ν2
Xt

 (73)

=
1

2

T∑
t=1

EPβ∗

〈
Xt, β

∗ − β∗i
〉2

ν2
Xt

 (74)

Note that β∗ = W−1V α∗ where α∗ ∈ {±κi}di=1 and likewise, β
∗
i = W−1V α∗i . Therefore,

β∗ − β∗i = 2κiW
−1V ei. Overall, we get,

d∑
i=1

1

γ2
i

KL(Pα∗ , Pα∗i) =
1

2
EPβ∗

 T∑
t=1

d∑
i=1

1

γ2
i

〈
Xt, β

∗ − β∗i
〉2

ν2
Xt

 (75)

= 2EPβ∗

[
T∑
t=1

d∑
i=1

κ2
i

γ2
i ν

2
Xt

〈
Xt,W

−1V ei
〉2]

(76)

Choosing ν2
x = 1

ε

∑d
i=1

κ2
i

γ2
i
〈x,W−1V ei〉2 for x ∈ X , we get that the RHS is equal to 2εT . The

overall error of the learner is,

Eα∗∼Unif(A)

[
d∑
i=1

κ2
i (Σii)

2
(
1− TV(Pα∗ , Pα∗i)

)]
(77)

≥
d∑
i=1

κ2
i (Σii)

2 − 2

√∑d

i=1
γ2
i (κ2

i (Σii)
2)

2√
εT (78)

Next we deal with computing OPT. First we introduce a new notation, ∆i and an associated lemma.

Lemma 13. For i ∈ [d], define

∆i = eTi V
TW (XTX)−1WTV ei (79)

Then,
∑d
i=1 ∆i = RX .

Proof. By direct calculation,

d∑
i=1

∆i = Tr
(
V TW (XTX)−1WTV

)
(80)

= Tr
(
(XTX)−1WTW

)
(81)

= Tr
(
(XTX)−1(XT

labXlab)
)

= RX , (82)

where the middle equation follow by commutativity of the trace operator and the fact that V is an
rotation matrix.

Lemma 14. OPT ≤ 1
ε

∑d
i=1

κ2
i

γ2
i

+ 2
∑d
i=1(Σ2

ii + 1)κ2
i .

22

Proof. Note that, OPT =
∑
x∈Xlab

ν2
x +

∥∥∥∥Xβ̃ − [Xlabβ
∗

0

]∥∥∥∥2

2

. Focusing on the second term,

∥∥∥∥Xβ̃ − [Xlabβ
∗

0

]∥∥∥∥2

2

≤ 2
∥∥∥Xβ̃∥∥∥2

2
+ 2 ‖Xlabβ

∗‖22 (83)

= 2
∥∥X(XTX)−1(WTW)β∗

∥∥2

2
+ 2

∥∥XlabW
−1V α∗

∥∥2

2
(84)

≤ 2
∥∥UΣV TWβ∗

∥∥2

2
+ 2

∥∥UlabV
T

labV α
∗∥∥2

2
(85)

= 2 ‖Σα∗‖22 + ‖α∗‖22 (86)

= 2

d∑
i=1

(1 + Σ2
ii)κ

2
i (87)

Where β∗ = W−1V α∗. On the other hand, the sum of variances can be upper bounded as,∑
x∈X

ν2
x =

∑
x∈Xlab

ν2
x =

1

ε

d∑
i=1

∑
x∈Xlab

κ2
i

γ2
i

〈x,W−1V ei〉2 (88)

=
1

ε

d∑
i=1

κ2
i

γ2
i

‖XW−1V ei‖22 (89)

=
1

ε

d∑
i=1

κ2
i

γ2
i

, (90)

where the last equation uses the fact that XT
labXlab = WTW , so (WT)−1(WTW)W−1 = I , and

therefore ‖XlabW
−1V ei‖22 = 1.

We next describe the choice of κi’s and γi’s. Define,

κ2
i =

∆i

Σ2
ii

and γ2
i =

1

Σ2
ii

. (91)

By the above choices, as a corollary of Lemma 14,

Corollary 2. Assume that Σ2
ii ≥ ε

1−ε for all i ∈ [d]. Then, OPT ≤ 3RX
ε .

Proof. From Lemma 14,

OPT ≤ 1

ε

d∑
i=1

κ2
i

γ2
i

+ 2

d∑
i=1

(Σ2
ii + 1)κ2

i (92)

≤ 1

ε

d∑
i=1

∆i + 2

d∑
i=1

(Σ2
ii + 1)

∆i

Σ2
ii

(93)

(i)

≤ RX
ε

+
2RX
ε

(94)

where (i) follows from Lemma 13 for the first term, and assumes that Σ2
ii ≥ ε

1−ε for all i ∈ [d] for
the second.

d∑
i=1

κ2
i

γ2
i

=

d∑
i=1

κ2
iΣ

2
ii =

d∑
i=1

∆i = RX . (95)

where the last equation follows from Lemma 13.

Next we bound the generalization error of the learner.
Lemma 15. The generalization error of the learner is lower bounded by RX − 2

√
εRXT .

23

Proof. From eq. (78), the generalization error of any learner is lower bounded by,

d∑
i=1

κ2
i (Σii)

2 − 2

√∑d

i=1
γ2
i (κ2

i (Σii)
2)

2√
εT (96)

≥
d∑
i=1

∆i − 2

√∑d

i=1

∆2
i

Σ2
ii

√
εT (97)

Note that, X(XTX)−1WT = UΣV T . Therefore, V TW (XTX)−1WTV = ΣTΣ and we have the
equation, ∆i = Σ2

ii for all i ∈ [d]. Therefore, from eq. (97), the generalization error of any learner
can be lower bounded by,

≥
d∑
i=1

∆i − 2

√∑d

i=1
∆i

√
εT (98)

Invoking Lemma 13 completes the proof.

Therefore, from Corollary 2 and Lemma 15, under the assumption that Σ2
ii ≥ ε

1−ε for all i ∈ [d], the
approximation factor of any learner is lower bounded by

1 +
RX − 2

√
εRXT

3RX/ε
(99)

If T ≤ RX
ε the approximation factor must be 1 + Ω(ε). This completes the proof.

B Auxiliary lemmas

Lemma 16. For γ ≤ 1
4 , wjwTj � 2γ(Aj − lj+1I).

Proof. First observe that,

wjw
T
j � γ(Aj − ljI) = γ(Aj − lj+1I) + γ(lj+1 − lj)I (100)

Therefore, it suffices to show that lj+1 − lj � (Aj − lj+1I), or in other words, lj+1 − lj ≤
λmin(Aj − lj+1I) to complete the proof. By definition,

lj+1 − lj =
γ

(1− 2γ)ΦId
j

≤ γ

1− 2γ
λmin(Aj − ljI) ≤ 1

2
λmin(Aj − ljI) (101)

where the last inequality uses the fact that γ ≤ 1
4 . Therefore, 2lj+1− lj ≤ λmin(Aj) and lj+1− lj ≤

λmin(Aj − lj+1). Plugging this back into eq. (100), we arrive at the claim of the lemma.

Lemma 17. For γ < 1, in each iteration j = 0, · · · ,m of Algorithm 2, the condition ljI � Aj � ujI
is satisfied.

Proof. The proof follows by induction. For j = 0, Aj = 0 and trivially satisfies the condition
2d
γ I = −ljI � Aj � ujI = 2d

γ I . By the induction hypothesis, we assume that ljI � Aj � ujI

henceforth in the proof. For any point x, observe that,

pxΦId
j = U(x)T

(
(ujI −Aj)−1 + (Aj − ljI)−1

)
U(x) (102)

≥ U(x)T (ujI −Aj)−1U(x) (103)

Observe that for any vector v and PSD matrix B, vvT � (vTB−1v)B. Therefore, for any point x,

U(x)U(x)T � (U(x)T (ujI −Aj)−1U(x))(ujI −Aj) (104)
(i)

� pxΦId
j (ujI −Aj) (105)

24

where (i) uses eq. (103). Similarly by lower-bounding eq. (102) by U(x)T (Aj − ljI)−1U(x) and
use a similar approach to prove that for any x,

U(x)U(x)T � pxΦId
j (Aj − ljI) (106)

Choosing x = xj in eq. (105), as a special case,

Aj+1 −Aj =
γ

pjΦ
Id
j

U(xj)U(xj)
T � γ(ujI −Aj) (107)

Using the induction hypothesis, we use this to prove that Aj+1 � uj+1I . Indeed, eq. (107) implies
that,

(ujI −Aj)− (ujI −Aj+1) = Aj+1 −Aj � γ(ujI −Aj) (108)
Therefore,

(1− γ)(ujI −Aj) � ujI −Aj+1 � uj+1I −Aj+1 (109)
And using the induction hypothesis that ujI − Aj � 0 completes the proof that Aj+1 � uj+1I .
On the other hand, to prove that Aj+1 � lj+1I , summing eq. (106) over all x and noting that∑
x U(x)U(x)T = I ,

1

ΦId
j

I � Aj − ljI (110)

Finally, observe that,

Aj+1 − lj+1I = (Aj − ljI) +

(
γ

ΦId
j

1

pj
U(xj)U(xj)

T − γ

1 + 2γ

1

ΦId
j

I

)
(111)

� (Aj − ljI)− γ

1 + 2γ

1

ΦId
j

I (112)

(i)

� 1

ΦId
j

I − γ

1 + 2γ

1

ΦId
j

I (113)

� 0 (114)

where (i) uses eq. (110).

25

	Proofs of main results
	Proof of thm:log-lb
	Proof of thm:main
	Upper bounding the number of points in Xun sampled by alg:RBSS (thm:RBSS)
	alg:RBSS is -well balanced sampling procedure
	Proof of lower bound (thm:lowerb)

	Auxiliary lemmas

