
A Appendix446

A.1 Proof of Lemma 1447

Proof. The proof techniques basically follows [7]. However, since the EXP3 layer and contextual448

bandit layer are coupled, the result in [7] cannot be directly applied to show our result. We make449

modifications of the proofs in [7] below.450

We first reload some notations in this proof: at time t we are given all the previous information451

Ft−1 generated from using our auto-tune framework shown in Algorithm 1, and then pull an arm452

according to some exploration hyper-parameter α. Therefore, for convenience we could safely omit453

Ft−1 here, and denote at(α) := at(α|Ft−1) and Xt(α) := Xt(α|Ft−1) as the arm pulled and its454

corresponding feature vector at round t. Furthermore, if arm at(αj) is pulled at round t, we define455

the corresponding mean reward as µt(αj) = µ
(
Xt(αj)

T θ
)
. The corresponding observed sample456

reward is yt(αj) = µt(αj) + ϵt,j , where ϵt,j denotes the hypothetical random noise at round t if arm457

at(αj) is pulled. Note that ϵt = ϵt,it since at(αit) is the arm pulled by our algorithm and ϵt is the458

associated random noise. By definition, Yt = yt(αit). From the definition of ŷt(j) in Algorithm 1,459

we have ŷt(j) = yt(αj)/pj(t) if j = it. Otherwise ŷt(j) = 0. Then wj(t+ 1) = wj(t)exp(βn ŷt(i))460

according to Algorithm 1.461

Given all the information in the past Ft−1,
(
θ̂t, Vt, pj(t), wj(t)

)
are fixed. Since 0 ≤ yt(αj) ≤ 1,462

we have463

E

[
n∑

i=1

pi(t)ŷt(i)|Ft−1

]
= E

[
pit(t)

yt(αit)

pit(t)
|Ft−1

]
= E [µt(αit)|Ft−1] (4)

E

[
n∑

i=1

pi(t)ŷt(i)
2|Ft−1

]
= E

[
pit(t)

yt(αit)

pit(t)
ŷt(it)|Ft−1

]
= E [yt(αit)ŷt(it)|Ft−1]

≤ E [ŷt(it)|Ft−1] = E

[
n∑

i=1

ŷt(i)|Ft−1

]
(5)

=

n∑
i=1

E [E [ŷt(i)|σ(Ft−1, ϵt,i, at(αi))] |Ft−1] (6)

=

n∑
i=1

E [yt(αi)|Ft−1] (7)

=

n∑
i=1

E [µt(αi)|Ft−1] . (8)

Equation 5 holds since ŷt(i) ̸= 0 only when i = it. In Equation 6, σ(Ft−1, ϵt,i, at(αi)) is the smallest464

σ-algebra induced by Ft−1, ϵt,i, and at(αi). Equation 7 holds since ŷt(i) = yt(αi)/pi(t)1(i = it).465

Meanwhile, since given the hyper-parameter to be used at round t as αi, the arm to be pulled at(αi)466

follows a fixed distribution and does not affect the distribution of it, so i = it is still with probability467

pi(t). Now we are ready to use the above results to prove the lemma. Define Wt =
∑n

i=1 wi(t). We468

find the lower bound and upper bound of E[log WT+1

W1
] below.469

Lower bound. Since wi(1) = 1 for all i, E[log WT+1

W1
] ≥ E[logwi(T + 1)]− log n for all i ∈ [n].470

We take a look at E
[
log wi(t+1)

wi(t)

]
below.471

E

[
log

wi(t+ 1)

wi(t)
|Ft−1

]
= E

[
log

[
wi(t)

wi(t)
exp

(
β

n
ŷt(i)

)]
|Ft−1

]
= E

[
β

n
ŷt(i)|Ft−1

]
= E

[
β

n
yt(i)|Ft−1

]
= E

[
β

n
µt(αi)|Ft−1

]
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The third “=” in the above is due to the same reason as in Equation 7. Take expectation on both sides472

and sum over t, we get473

E [logwi(T + 1)] =
β

n

T∑
t=1

E [µt(αi)]

Therefore, for all i = 1, . . . , n,474

E

[
log

WT+1

W1

]
≥ β

n

T∑
t=1

E [µt(αi)]− log n. (9)

Upper bound. On the other hand, let’s look at E[log Wt+1

Wt
]:475

E

[
log

Wt+1

Wt
|Ft−1

]
= E

[
log

n∑
i=1

wi(t+ 1)

Wt
|Ft−1

]
= E

[
log

n∑
i=1

wi(t)

Wt
exp

(
β

n
ŷt(i)

)
|Ft−1

]

= E

[
log

n∑
i=1

pi(t)− β
n

1− β
exp

(
β

n
ŷt(i)

)
|Ft−1

]
definition of pi(t)

≤ E

[
log

n∑
i=1

pi(t)− β
n

1− β

(
1 +

β

n
ŷt(i) +

(e− 2)β2

n2
ŷt(i)

2

)
|Ft−1

]

≤ E

[
log

(
1 +

n∑
i=1

[
β

n(1− β)
pi(t)ŷt(i) +

(e− 2)β2

n2(1− β)
pi(t)ŷt(i)

2

])
|Ft−1

]

≤ E

[
n∑

i=1

(
β

n(1− β)
pi(t)ŷt(i) +

(e− 2)β2

n2(1− β)
pi(t)ŷt(i)

2|Ft−1

)]

≤ β

n(1− β)
E [µt(αit)|Ft−1] +

(e− 2)β2

n2(1− β)

n∑
i=1

E [µt(αi)|Ft−1] .

The first inequality in the above holds since ex ≤ 1 + x+ (e− 2)x2 for x ∈ [0, 1]. Here, we have476

0 ≤ β
n ŷt(i) ≤ 1 because pi(t) ≥ β

n and 0 ≤ yt(αi) ≤ 1. The third inequality “≤” in the above477

holds since log(1 + x) ≤ x when x ≥ 0. The last inequality is from Equation 4, 8. Take another478

expectation on both sides, we get479

E

[
log

Wt+1

Wt

]
≤ β

n(1− β)
E [µt(αit)] +

(e− 2)β2

n2(1− β)

n∑
i=1

E[µt(αi)]

By summing the above over t, we have480

E

[
log

WT+1

W1

]
≤ β

n(1− β)

T∑
t=1

E [µt(αit)] +
(e− 2)β2

n2(1− β)

T∑
t=1

n∑
i=1

E[µt(αi)] (10)

Combining the lower bound (Equation 9) and upper bound (Equation 10) of E
[
log WT+1

W1

]
, we get481

for every i = 1, . . . , n,482

β

n

T∑
t=1

E [µt(αi)]− log n ≤ β

n(1− β)

T∑
t=1

E [µt(αit)] +
(e− 2)β2

n2(1− β)

T∑
t=1

n∑
i=1

E[µt(αi)] (11)

Let483

Gmax = max
i∈[n]

T∑
t=1

E [µt(αi)]

Since Equation 11 holds for any i, we have484

β

n
Gmax − log n ≤ β

n(1− β)

T∑
t=1

E [µt(αit)] +
(e− 2)β2

n(1− β)
Gmax (12)
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Equation 12 can be further simplified as485

Gmax −
T∑

t=1

E [µt(αit)] ≤ (e− 1)βGmax +
(1− β)n log n

β

Since we choose β = min
{
1,
√

n logn
(e−1)T

}
and note that Gmax ≤ T , we get486

Gmax −
T∑

t=1

E [µt(αit)] ≤ 2
√

(e− 1)Tn log n = Õ(
√
nT ).

487

A.2 Proof of Theorem 1488

To bound the cumulative regret, we only need to bound Quantity (A) and then combine the results489

in Lemma 1. In the following, we first list some useful lemmas for bounding Quantity (A) for490

completeness.491

A.2.1 Useful Lemmas492

Lemma 2 (Proposition 1 in [18]). Define Vn+1 =
∑n

t=1 XtX
T
t , where Xt is drawn IID from some493

distribution in unit ball Bd. Furthermore, let Σ := E[XtX
T
t ] be the second moment matrix, let494

B, δ2 > 0 be two positive constants. Then there exists positive, universal constants C1 and C2 such495

that λmin(Vn+1) ≥ B with probability at least 1− δ2, as long as496

n ≥

(
C1

√
d+ C2

√
log(1/δ2)

λmin(Σ)

)2

+
2B

λmin(Σ)
.

Lemma 3 (Theorem 2 in [1]). For any δ < 1, under our problem setting in Section 3, it holds that497

for all t > 0,498 ∥∥∥θ̂t − θ∗
∥∥∥
Vt

≤ βt(δ),

∀x ∈ Rd, |x⊤(θ̂t − θ∗)| ≤ ∥x∥V −1
t

βt(δ),

with probability at least 1− δ, where

βt(δ) = σ

√
log

(
(λ+ t)d

δ2λd

)
+
√
λS.

In this subsection we denote α∗(δ) := βT (δ).499

Lemma 4 ([15]). Let λ > 0, and {xi}ti=1 be a sequence in Rd with ∥xi∥ ≤ 1, then we have500

t∑
s=1

∥xs∥2V −1
s
≤ 2 log

(
det(Vt+1)

det(λI)

)
≤ 2d log

(
1 +

t

λ

)
,

t∑
s=1

∥xs∥V −1
s
≤

√√√√T

(
t∑

s=1

∥xs∥2V −1
s

)
≤

√
2dt log

(
1 +

t

λ

)
.

Lemma 5 ([5]). For a Gaussian random variable Z with mean m and variance σ2, for any z ≥ 1,

P (|Z −m| ≥ zσ) ≤ 1√
πz

e−z2/2.
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A.2.2 Formal Proof501

Proof. (1). Here we would use LinUCB and LinTS for the detailed proof, and note that regret bound
of all other UCB and TS algorithms could be similarly deduced. Since α∗ in our regret decomposition
could be arbitrary element in J , here we simply take α∗ = minα∈J α. For LinUCB, since the Lemma
3 holds for any sequence (x1, . . . , xt), and hence we have that with probability at least 1− δ,∥∥∥θ̂ − θ

∥∥∥
Vt

≤ βt(δ) ≤ α(t, δ),

where α(T, δ) is the theoretical optimal exploration rate at round t we denoted in Eqn. (3) with
probability parameter δ. And we would omit δ for simplicity. Recall that for t > T1, we denote the
feature vector pulled at round t as Xt, i.e.

Xt = argmax
x∈At

x⊤θ̂t + αit ∥x∥V −1
t

, Xt = Xt(αit |Ft−1).

And we also define X̃t = Xt(α
∗|Ft−1), i.e.

X̃t = argmax
x∈At

x⊤θ̂t + α∗ ∥x∥V −1
t

.

And it turns out that the Quantity (A) can be represented by

E

[
T∑

t=T1+1

(
µ
(
xt,∗

T θ
)
− µ

(
Xt(α

∗|Ft−1)
T θ
))]

= E

[
T∑

t=T1+1

(
µ
(
xt,∗

T θ
)
− µ

(
X̃T

t θ
))]

.

According to the proof of LinUCB we could similarly argue that502

x⊤
t,∗θ − X̃⊤

t θ ≤ α∗
(∥∥∥X̃t

∥∥∥
V −1
t

− ∥x̃t,∗∥V −1
t

)
+
∥∥∥xt,∗ − X̃t

∥∥∥
V −1
t

∥∥∥θ̂t − θ
∥∥∥
Vt

≤ (α∗ + α(T ))
∥∥∥X̃t

∥∥∥
V −1
t

+ α(T ) ∥xt,∗∥V −1
t

.

In conclusion, we have that
T∑

t=T1+1

(
µ
(
xt,∗

T θ
)
− µ

(
X̃T

t θ
))

= Õ

(
T∑

t=T1+1

∥∥∥X̃t

∥∥∥
V −1
t

+

T∑
t=T1+1

∥xt,∗∥V −1
t

)
.

By Lemma 4 and choosing T1 = T 2/3, it holds that,

T∑
t=T1+1

∥xt,∗∥V −1
t

,

T∑
t=T1+1

∥∥∥X̃t

∥∥∥
V −1
t

= O(T × T−1/3) = O(T 2/3).

Secondly, According to [5], we know that for LinTS we have that

E

[
T∑

t=T1+1

(
µ
(
xt,∗

T θ
)
− µ

(
X̃T

t θ
))]

= Õ

(
T∑

t=T1+1

∥∥∥X̃t

∥∥∥
V −1
t

+ ∥xt,∗∥V −1
t

)
.

But for completeness we still offer an alternative proof for this equality:503

X̃⊤
t θ̂t + α∗

∥∥∥X̃t

∥∥∥
V −1
t

Zt ≥ x⊤
t,∗θ + α∗ ∥xt,∗∥V −1

t
Zt,∗ + x⊤

t,∗(θ̂t − θ)

≥ x⊤
t,∗θ + α∗ ∥xt,∗∥V −1

t
Zt,∗ + ∥xt,∗∥V −1

t

∥∥∥θ̂t − θ
∥∥∥
Vt

≥ x⊤
t,∗θ + (α∗Zt,∗ − α(T )) ∥xt,∗∥V −1

t
,

where Zt and Zt,∗ are IID normal random variables, ∀t. Therefore, it holds that,504

X̃⊤
t θ ≥ x⊤

t,∗θ + (α∗Zt,∗ − α(T )) ∥xt,∗∥V −1
t
− α∗ ∥Xt∥V −1

t
Zt +X⊤

t (θ − θ̂t),

(xt,∗ −Xt)
⊤θ ≤ (α(T ) + α∗Zt) ∥Xt∥V −1

t
+ (α(T )− α∗Zt,∗) ∥xt,∗∥V −1

t
= Kt,
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where Kt is normal random variable with

E(Kt) ≤ 2α(T )T−1/3, SD(Kt) ≤
√
2α∗T−1/3.

Consequently, we have505

T∑
t=T1+1

(
xt,∗

T θ − X̃T
t θ
)
≤

T∑
t=T1+1

Kt := K

E(K) = 2α(T )T 2/3 = Õ(T 4/7), SD(K) ≤
√
2α∗T 1/6 = O(T 1/6).

We have
P (K > (2α∗ +

√
2)T 2/3) ≤ 1

c
√
π
√
T
e−c2T/2.

This probability upper bound is ultra small and hence negligible. Therefore, we not only prove the506

expected cumulative regret could be controlled, but also provide a probability bound.507

Note we could use this procedure to bound the regret for other UCB and TS bandit algorithms, since508

most of the proofs for generalized linear bandits are closely related to the rate of
∑T

t=T1+1

∥∥∥X̃t

∥∥∥
V −1
t

.509

Finally, the cost of pure exploration is also of scale Õ(T 2/3), which concludes the proof.510

(2). Here we simply take α∗ = minα∈J α. We also use LinUCB as an example here since other511

UCB-based algorithms with exploration hyper-parameters could be identically bounded. Based on512

the definition of Xt and X̃t, we have that,513

X⊤
t θ̂t + αit ∥Xt∥V −1

t
= X⊤

t θ̂t + (αit − α∗) ∥Xt∥V −1
t

+ α∗ ∥Xt∥V −1
t

≥ X̃⊤
t θ̂t + (αit − α∗)

∥∥∥X̃t

∥∥∥
V −1
t

+ α∗
∥∥∥X̃t

∥∥∥
V −1
t

≥ X⊤
t θ̂t + (αit − α∗)

∥∥∥X̃t

∥∥∥
V −1
t

+ α∗ ∥Xt∥V −1
t

,

which implies that
(αit − α∗) ∥Xt∥V −1

t
≥ (αit − α∗)

∥∥∥X̃t

∥∥∥
V −1
t

.

Since we have that αit ≥ α∗, and when αit > α∗ it holds that514

∥Xt∥V −1
t
≥
∥∥∥X̃t

∥∥∥
V −1
t

, ∀ t > 0. (13)

On the other hand, when αit = α∗ it holds that Xt = X̃t, which consequently implies that515

∥Xt∥V −1
t

=
∥∥∥X̃t

∥∥∥
V −1
t

, ∀ t > 0.

According to the proof of LinUCB we could similarly argue that516

x⊤
t,∗θ − X̃⊤

t θ ≤ α∗
(∥∥∥X̃t

∥∥∥
V −1
t

− ∥x̃t,∗∥V −1
t

)
+
∥∥∥xt,∗ − X̃t

∥∥∥
V −1
t

∥∥∥θ̂t − θ
∥∥∥
Vt

≤ 2α∗
∥∥∥X̃t

∥∥∥
V −1
t

,

since α(T ) ≤ α∗. Therefore, we have

T∑
t=T1+1

(
µ
(
xt,∗

T θ
)
− µ

(
X̃T

t θ
))
≤ 2α∗

T∑
t=T1+1

∥∥∥X̃t

∥∥∥
V −1
t

≤ 2α∗
T∑

t=T1+1

∥Xt∥V −1
t

= Õ(
√
T ).

Remark 3. (1) Intuitively, we can deduce Eqn. (13) by choosing α∗ = minα∈J α, i.e. α∗ is no517

larger than any exploration hyper-parameter candidate since the best feature vector solved in UCB518

algorithms tends to have larger value of ∥·∥V −1
t

at time t if we enlarge α. In other words, under519

larger α we would more likely to choose arm with greater uncertainty quantified by the value of520

∥·∥V −1
t

. (2) On the other hand, for TS bandit algorithms we would expect the similar result: the521
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feature vectors of superior arms tend to have smaller value of ∥·∥V −1
t

since the value of ∥·∥V −1
t

522

depicts the standard deviation of the feature vector. And the direction of the optimal arm should be523

frequently explored in the long run and hence its standard deviation is expected to be smaller than524

other inferior arms. By enlarging α, we would have more chance to choose those sub-optimal arm525

with larger standard deviation and smaller estimated reward, which means results in Eqn. (13) could526

happen with high probability.527

And this concludes the proof.528

(3). Here we would use LinUCB and LinTS for the detailed proof, and note that regret bound of all529

other UCB and TS algorithms could be similarly deduced. W.l.o.g. we take α∗ = minα∈J α530

For LinUCB, since the Lemma 3 holds for any sequence (x1, . . . , xt), and hence we have that with
probability at least 1− δ, ∥∥∥θ̂ − θ

∥∥∥
Vt

≤ βt(δ) ≤ α(t, δ).

And we would omit δ for simplicity. Recall that for t > T1, we denote the feature vector pulled at
round t as Xt, i.e.

Xt = argmax
x∈At

x⊤θ̂t + αit ∥x∥V −1
t

, Xt = Xt(αit |Ft−1).

And we also define X̃t = Xt(α
∗|Ft−1), i.e.

X̃t = argmax
x∈At

x⊤θ̂t + α∗ ∥x∥V −1
t

.

And it turns out that the Quantity (A) can be represented by

E

[
T∑

t=T1+1

(
µ
(
xt,∗

T θ
)
− µ

(
Xt(α

∗|Ft−1)
T θ
))]

= E

[
T∑

t=T1+1

(
µ
(
xt,∗

T θ
)
− µ

(
X̃T

t θ
))]

.

Note the selection of at in LinUCB implies that

x⊤
t,∗θ̂t + αit ∥xt,∗∥V −1

t
≤ X⊤

t θ̂t + αit ∥Xt∥V −1
t

.

Therefore, we have531

X⊤
t θ̂t + αit ∥Xt∥V −1

t
≥ x⊤

t,∗θ + αit ∥xt,∗∥V −1
t

+ x⊤
t,∗(θ̂t − θ)

≥ x⊤
t,∗θ + αit ∥xt,∗∥V −1

t
− ∥xt,∗∥V −1

t

∥∥∥θ̂t − θ
∥∥∥
Vt

≥ x⊤
t,∗θ + (αit − α(T )) ∥xt,∗∥V −1

t
. (14)

Therefore, it holds that,532

X⊤
t θ ≥ x⊤

t,∗θ + (αit − α(T )) ∥xt,∗∥V −1
t
− αit ∥Xt∥V −1

t
+X⊤

t (θ − θ̂t),

(xt,∗ −Xt)
⊤θ ≤ (α(T ) + αit) ∥Xt∥V −1

t
+ (α(T )− αit) ∥xt,∗∥V −1

t
,

By Lemma 2, we have as long as T1 = O(T 4/7), it holds that

(xt,∗ −Xt)
⊤θ ≤ 2α(T )T−2/7, t > T1.

Similarly, we could also deduce that

(xt,∗ − X̃t)
⊤θ ≤ 2α(T )T−2/7, t > T1.

Firstly, we take At = {x : ∥x∥ ≤ a2}, a > 0 for example, then it holds that xt,∗ = θ/ ∥θ∥, and
consequently

∥xt,∗ −Xt∥ ,
∥∥∥xt,∗ − X̃t

∥∥∥ ≤√4aα(T )T−2/7/ ∥θ∥ = O(
√

α(T )T−1/7).

Please refer to Figure 3 (a) for a 2D visual explanation, and similar argument could be made for533

higher dimension cases. And this implies that534 ∥∥∥Xt − X̃t

∥∥∥ = O(
√
α(T )T−1/7). (15)
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(a) (b)
Figure 3: Illustration of our argument in 2D case: (a). explanation of the Eqn. 15, where the red
line denotes the maximum distance between Xt and X∗

t ; (b). visualization on how to cover the
neighborhood of xt,∗ on At, where the blue line denotes the boundary of At and the pink dashed
circle is the outer cover with radius 1/c. In this case, the length of red line gives an upper bound of
the maximum distance between Xt and X∗

t .

Generally, if At is some convex set, and we know there exists a small neighborhood of the optimal535

feature vector xt,∗ ∈ At such that the (sectional) principal curvature in this neighborhood can536

be lowered bounded by some positive constant c > 0. Then we can cover this neighborhood by537

a d-dimensional sphere with radius 1/c (Figure 3 (b) for 2D visualization), and hence we could538

similarly deduce the above result. Note that for the example At = {x : ∥x∥ ≤ a}, a > 0, all the539

principal curvatures are equal to 1/a anywhere on this sphere, and hence it is a special case. The rest540

of argument is based on the proof outline of UCB bandits. According to the proof of LinUCB we541

could similarly argue that542

x⊤
t,∗θ − X̃⊤

t θ ≤ α∗
(∥∥∥X̃t

∥∥∥
V −1
t

− ∥x̃t,∗∥V −1
t

)
+
∥∥∥xt,∗ − X̃t

∥∥∥
V −1
t

∥∥∥θ̂t − θ
∥∥∥
Vt

≤ (α∗ + α(T ))
∥∥∥X̃t

∥∥∥
V −1
t

+ α(T ) ∥xt,∗∥V −1
t

.

In conclusion, we have that543

T∑
t=T1+1

(
µ
(
xt,∗

T θ
)
− µ

(
X̃T

t θ
))

= Õ

(
T∑

t=T1+1

∥∥∥X̃t

∥∥∥
V −1
t

+ ∥xt,∗∥V −1
t

)
. (16)

Note that we have that,544

T∑
t=T1+1

∥∥∥X̃t

∥∥∥
V −1
t

≤
T∑

t=T1+1

∥Xt∥V −1
t

+

T∑
t=T1+1

∥∥∥Xt − X̃t

∥∥∥
V −1
t

T∑
t=T1+1

∥xt,∗∥V −1
t
≤

T∑
t=T1+1

∥Xt∥V −1
t

+

T∑
t=T1+1

∥Xt − xt,∗∥V −1
t

,

where the first quantity could be easily bounded by Lemma 4, i.e.

T∑
t=T1+1

∥Xt∥V −1
t
≤

√
2dT log

(
1 +

T

λ

)
= Õ(

√
T ).

And the second quantity could be bounded as

T∑
t=T1+1

∥∥∥Xt − X̃t

∥∥∥
V −1
t

≤
T∑

t=T1+1

∥∥∥Xt − X̃t

∥∥∥√λmin(V
−1
t ) ≲

T∑
t=T1+1

√
α∗T−3/7 = Õ(T 4/7),

with high probability. Then by taking δ = δ/T 3/7 we can easily prove that

E

[
T∑

t=T1+1

∥∥∥Xt − X̃t

∥∥∥
V −1
t

]
= Õ(T 4/7).
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Similarly, it holds that

E

[
T∑

t=T1+1

∥Xt − xt,∗∥V −1
t

]
= Õ(T 4/7).

Therefore, we have that
T∑

t=T1+1

(
µ
(
xt,∗

T θ
)
− µ

(
X̃T

t θ
))

= Õ(T 4/7).

For LinTS, the proof could also be similarly deduced. And we modify the definition of X̃t as

X̃t = argmax
x∈At

x⊤θ̂t + α∗ ∥x∥V −1
t

Z̃t,

where Zt is a standard normal random variable. And we could similarly show that:545

X⊤
t θ̂t + αit ∥Xt∥V −1

t
Zt ≥ x⊤

t,∗θ + αit ∥xt,∗∥V −1
t

Zt,∗ + x⊤
t,∗(θ̂t − θ)

≥ x⊤
t,∗θ + αit ∥xt,∗∥V −1

t
Zt,∗ + ∥xt,∗∥V −1

t

∥∥∥θ̂t − θ
∥∥∥
Vt

≥ x⊤
t,∗θ + (αitZt,∗ − α(T )) ∥xt,∗∥V −1

t
.

Therefore, it holds that,546

X⊤
t θ ≥ x⊤

t,∗θ + (αitZt,∗ − α(T )) ∥xt,∗∥V −1
t
− αit ∥Xt∥V −1

t
Zt +X⊤

t (θ − θ̂t),

(xt,∗ −Xt)
⊤θ ≤ (α(T ) + αitZt) ∥Xt∥V −1

t
+ (α(T )− αitZt,∗) ∥xt,∗∥V −1

t
= Kt, (17)

where Kt is normal random variable with

E(Kt) ≤ 2α(T )T−2/7, SD(Kt) ≤
√
2αitT

−2/7 ≤
√
2α∗T−2/7.

According to Lemma 5, we have that for arbitrary ξ > 0547

P

(
max
t∈T

Kt ≥ 2α(T )T−2/7 +
(√

2 log(T ) + ξ
)√

2α∗T−2/7

)
≤ P

(
max
t∈T

Kt − E[Kt]

SD(Kt)
≥
√
2 log(T ) + ξ

)
= T × P

(
Z ≥

√
2 log(T ) + ξ

)
Z ∼ N(0, 1)

≤ T
1

√
π(
√
2 log(T ) + ξ)

exp
(
−(
√

2 log(T ) + ξ)2/2
)

≤ 1√
2 log(T ) + ξ

exp

(
−ξ2

2

)
.

By taking ξ = 2
√
log(T ), it holds that

P

(
max
t∈T

Kt ≥ 2α(T )T−2/7 +
(√

2 log(T ) + ξ
)√

2α∗T−2/7

)
≤ 1

2T 2
√
log(T )

.

Since this probability upper bound is ultra small and hence negligible, we have

(xt,∗ −Xt)
⊤θ ≤ 2α(T )T−2/7, t > T1.

Similarly, we could also deduce that

(xt,∗ − X̃t)
⊤θ ≤ 2α(T )T−2/7, t > T1.

This result similarly implies that

E

[
T∑

t=T1+1

∥Xt − xt,∗∥V −1
t

]
= Õ(T 4/7), E

[
T∑

t=T1+1

∥∥∥Xt − X̃t

∥∥∥
V −1
t

]
= Õ(T 4/7).
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According to [5] (or Eqn. (17)), we know that for LinTS we have the similar result as in Eqn. (16):

T∑
t=T1+1

(
µ
(
xt,∗

T θ
)
− µ

(
X̃T

t θ
))

= Õ

(
T∑

t=T1+1

∥∥∥X̃t

∥∥∥
V −1
t

∥xt,∗∥V −1
t

)
.

And this directly implies that

T∑
t=T1+1

(
µ
(
xt,∗

T θ
)
− µ

(
X̃T

t θ
))

= Õ(T 4/7).

Note we could use this procedure to bound the regret for UCB and TS bandit algorithms under548

condition in (3), since most of the proofs for generalized linear bandits are closely related to the549

rate of
∑T

t=T1+1

∥∥∥X̃t

∥∥∥
V −1
t

. Finally, the cost of pure exploration is also of scale Õ(T 4/7), which550

concludes the proof.551

552

A.3 Analysis of Theorem 2553

A.3.1 Useful Conclusions554

Proposition 1. Assume given the past information Ft−1 and the hyper-parameters to be used by555

the contextual bandit algorithm at round t, the arm to be pulled by the contextual bandit algorithm556

follows a fixed distribution. Denote R(α(1), . . . , α(L), T, {Ft−1}) as the cumulative regret of the557

contextual bandit algorithm if it is run with parameters (α(1), . . . , α(L)) given the past information558

Ft−1 at round t. Then the auto tuning method in Algorithm 2 has regret that satisfies the following:559

E[R(T )] ≤ min
(α(1),...,α(L))∈J1×···×JL

E[R(α(1), . . . , α(L), T, {Ft−1})]

+2

L∑
l=1

√
(e− 1)nl(T − T1) log nl.

Proof. We also reload some notations here for simplicity in the same way as proof of Lemma 1 in560

Appendix A.1. More specifically, since at iteration t we are given the past information Ft−1 to make561

decision according to different choices of hyper-parameter values, and hence we would omit this562

notation Ft−1 when we refer to the arm or feature vector we pull under different hyper-parameter563

values: Denote at

(
α
(1)
i1

, . . . , α
(L)
iL

)
as the pulled arm at round t if the hyper-parameters selected564

at round t is
(
α
(1)
i1

, . . . , α
(L)
iL

)
. Denote Xt

(
α
(1)
i1

, . . . , α
(L)
iL

)
as the corresponding feature vector565

and µt

(
α
(1)
i1

, . . . , α
(L)
iL

)
as the corresponding expected reward. It suffices to show that for any566

l = 1, . . . , L, the following holds.567

T∑
t=1

E

[
µt

(
α
(1)
it(1)

, . . . , α
(l−1)
it(l−1), α

(l)
∗ , . . . , α

(L)
∗

)]
−

T∑
t=1

E

[
µt

(
α
(1)
it(1)

, . . . , α
(l−1)
it(l−1), α

(l)
it(l)

, α
(l+1)
∗ , . . . , α

(L)
∗

)]
≤ 2
√
(e− 1)nlT log nl. (18)

For convenience, we will denote
(
α
(1)
it(1)

, . . . , α
(l−1)
it(l−1), α

(l)
j , α

(l+1)
∗ , . . . α

(L)
∗

)
as (αj) when there568

is no ambiguity, which means that the first l − 1 hyper-parameters are chosen as α
(s)
it(s)

for s =569

1, . . . , l − 1, the l-th hyper-parameter is chosen with index j and the rest of the hyper-parameters are570

chosen as α(s)
∗ for s = l + 1, . . . , L. Then the result we want to show in Equation 18 can be written571
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as572
T∑

t=1

E

[
µt

(
α
(1)
it(1)

, . . . , α
(l−1)
it(l−1), α

(l)
∗ , . . . , α

(L)
∗

)]
−

T∑
t=1

E
[
µt

(
αit(l)

)]
≤ 2
√
(e− 1)nlT log nl.

(19)

We will also omit the superscript / subscript (l) for convenience when there is no ambigu-573

ity, so p
(l)
j (t), w

(l)
j (t), ŷ

(l)
t (j) are abbreviated as pj(t), wj(t), ŷt(j) respectively. Denote Ht =574

σ
(
α
(1)
it(1)

, . . . , α
(l−1)
it(l−1), α

(l+1)
∗ , . . . , α

(L)
∗

)
as the σ-algebra induced by the event that at round t, the575

first l − 1 hyper-parameters are chosen as α(s)
it(s)

and for s = l + 1, . . . , L, the hyper-parameters are576

chosen as α(s)
∗ . Given σ(Ft−1,Ht), denote yt(αj) = µt(αj) + ϵ′ as the observed reward at round t577

if α(l) is chosen as α(l)
j and the rest hyper-parameters given byHt. Here, ϵ′ is a hypothetical random578

noise if arm at(αj) is pulled at round t.579

Given σ(Ft−1,Ht), by the above definitions and Algorithm 2, ŷt(j) = yt(αj)/pj(t) if j = it(l).580

Otherwise, ŷt(j) = 0. Since pj(t) ≥ βl

nl
, we have ŷt(j) ≤ nl

βl
for all j ∈ [nl] and t. We also have the581

following two inequalities.582

E

(
nl∑
i=1

pi(t)ŷt(i)|σ(Ft−1,Ht)

)
= E

(
pit(l)(t)ŷt(it(l))|σ(Ft−1,Ht)

)
= E

(
yt(αit(l))|σ(Ft−1,Ht)

)
= E

[
µt

(
αit(l)

)
|σ(Ft−1,Ht)

]
(20)

E

(
nl∑
i=1

pi(t)ŷt(i)
2|σ(Ft−1,Ht)

)
= E

(
pit(l)(t)ŷt(it(l))

2|σ(Ft−1,Ht)
)

= E (yt(it(l))ŷt(it(l))|σ(Ft−1,Ht)) ≤ E (ŷt(it(l))|σ(Ft−1,Ht))

= E

(
nl∑
i=1

ŷt(i)|σ(Ft−1,Ht)

)
(21)

For a single i ∈ [nl], since given Ft−1, p(l)i (t) is already fixed, which means that the choices of other583

hyper-parameters do not affect the distribution of it(l). Moreover, at(αi) follows a fixed distribution584

due to the conditions in Theorem 2, i.e., the arm to be pulled follows a fixed distribution given the past585

information and the hyper-parameters to be used at round t. Therefore, given σ(Ft−1,Ht, at(αi), ϵ
′),586

i = it(l) is still with probability p
(l)
i (t) for all i ∈ [nl]. So587

E (ŷt(i)|σ(Ft−1,Ht)) = E [E (ŷt(i)|σ(Ft−1,Ht, at(αi), ϵ
′)) |σ(Ft−1,Ht)]

= E [yt(αi)|σ(Ft−1,Ht)]

= E [µt(αi)|σ(Ft−1,Ht)] . (22)

From Equation 21 and 22, we have588

E

(
nl∑
i=1

pi(t)ŷt(i)
2|σ(Ft−1,Ht)

)
≤ E

(
nl∑
i=1

µt(αi)|σ(Ft−1,Ht)

)
(23)

We still look at the lower bound and upper bound of E[log WT+1

W1
], but now Wt =

∑nl

i=1 w
(l)
i (t), and589

we will use the abbreviation wi(t) = w
(l)
i (t) below for ease of notation.590

Lower bound:591

E

[
log

wi(t+ 1)

wi(t)
|σ(Ft−1,Ht)

]
= E

[
βl

nl
ŷt(i)|σ(Ft−1,Ht)

]
= E

[
βl

nl
µt(αi)|σ(Ft−1,Ht)

]
from Equation 22
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Take an expectation on both sides and sum over t, we have592

E [logwi(T + 1)] =
βl

nl

T∑
t=1

E [µt(αi)]

Therefore, for all i ∈ [nl],593

E[log
WT+1

W1
] ≥ E[logwi(T + 1)]− log nl =

βl

nl

T∑
t=1

E [µt(αi)]− log nl. (24)

Upper bound: This part is almost the same as the arguments in Lemma 1, except now that the594

conditional expectation is taken over σ(Ft−1,Ht). For completeness, we write out the proof of this595

part below. Again, we will use pi(t) = p
(l)
i (t) and wi(t) = w

(l)
i (t) for convenience.596

E

[
log

Wt+1

Wt
|σ(Ft−1,Ht)

]
= E

[
log

nl∑
i=1

wi(t+ 1)

Wt
|σ(Ft−1,Ht)

]

= E

[
log

nl∑
i=1

wi(t)

Wt
exp

(
βl

nl
ŷt(i)

)
|σ(Ft−1,Ht)

]

= E

[
log

nl∑
i=1

pi(t)− βl

nl

1− βl
exp

(
βl

nl
ŷt(i)

)
|σ(Ft−1,Ht)

]
definition of pi(t)

≤ E

[
log

nl∑
i=1

pi(t)− βl

nl

1− βl

(
1 +

βl

nl
ŷt(i) +

(e− 2)β2
l

n2
l

ŷt(i)
2

)
|σ(Ft−1,Ht)

]

≤ E

[
log

(
1 +

nl∑
i=1

[
βl

nl(1− βl)
pi(t)ŷt(i) +

(e− 2)β2
l

n2
l (1− βl)

pi(t)ŷt(i)
2

])
|σ(Ft−1,Ht)

]

≤ E

[
nl∑
i=1

(
βl

nl(1− βl)
pi(t)ŷt(i) +

(e− 2)β2
l

n2
l (1− βl)

pi(t)ŷt(i)
2|σ(Ft−1,Ht)

)]

≤ βl

nl(1− βl)
E [µt(αit)|σ(Ft−1,Ht)] +

(e− 2)β2
l

n2
l (1− βl)

nl∑
i=1

E [µt(αi)|σ(Ft−1,Ht)] .

The first inequality “≤” in the above holds since ex ≤ 1 + x+ (e− 2)x2 for x ∈ [0, 1]. Here, we597

have 0 ≤ βl

nl
ŷt(i) ≤ 1 because pi(t) ≥ βl

nl
, 0 ≤ yt(αi) ≤ 1 and ŷt(i) ≤ yt(αi)

pi(t)
. The last inequality is598

from Equation 20, 23. Take another expectation on both sides, we get599

E

[
log

Wt+1

Wt

]
≤ βl

nl(1− βl)
E [µt(αit)] +

(e− 2)β2
l

n2
l (1− βl)

nl∑
i=1

E[µt(αi)]

By summing the above over t, we have600

E[log
WT+1

W1
] ≤ βl

nl(1− βl)

T∑
t=1

E[µt(αit(l))] +
(e− 2)β2

l

n2
l (1− βl)

nl∑
i=1

T∑
t=1

E[µt(αi)] (25)

Note that the lower bound in Equation 24 holds for any i, so it also holds for α(l)
∗ . Denote601

Gmax =

T∑
t=1

E

[
µt(α

(1)
it(1)

, . . . , α
(l−1)
it(l−1), α

(l)
∗ , . . . , α

(L)
∗ )

]
.

Then602

βl

nl
Gmax − log nl ≤

βl

nl(1− βl)

T∑
t=1

E[µt(αit(l))] +
(e− 2)β2

l

n2
l (1− βl)

nl∑
i=1

T∑
t=1

E[µt(αi)]
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We note that
∑T

t=1E[µt(αi)] ≤ T for all i, so603

βl

nl
Gmax − log nl ≤

βl

nl(1− βl)

T∑
t=1

E[µt(αit(l))] +
(e− 2)β2

l

nl(1− βl)
T

Simplify the above inequality and due to the choice of βl, we have604

Gmax −
T∑

t=1

E[µt(αit(l))] ≤ βlGmax + (e− 2)βlT +
(1− βl)nl

βl
log nl

≤ 2
√
(e− 1)nlT log nl.

This concludes the proof of Proposition 1.605

Lemma 6 (Adapted from Lemma 3). For any δ < 1, under our problem setting in Section 3 with the606

regularization hyper-parameter λ ∈ [λmin, λmax] (λmin > 0), it holds that for all t > 0,607 ∥∥∥θ̂t − θ∗
∥∥∥
Vt

≤ βt(δ),

∀x ∈ Rd, |x⊤(θ̂t − θ∗)| ≤ ∥x∥V −1
t

βt(δ),

with probability at least 1− δ, where

βt(δ) = σ

√
log

(
(λmin + t)d

δ2λd
min

)
+
√
λmaxS.

Proof. The proof of this Lemma is trivial given Lemma 3. For any λ ∈ [λmin, λmax], according to608

Lemma 3 it holds that, for all t > 0,609 ∥∥∥θ̂t − θ∗
∥∥∥
Vt

≤ βt(δ),

∀x ∈ Rd, |x⊤(θ̂t − θ∗)| ≤ ∥x∥V −1
t

βt(δ),

with probability at least 1− δ, where

βt(δ) = σ

√
log

(
(λ+ t)d

δ2λd

)
+
√
λS ≤ σ

√
log

(
(λmin + t)d

δ2λd
min

)
+
√
λmaxS.

610

A.3.2 Proof of Theorem 2611

Proof. We could validate Theorem 2 by extending the proof of Theorem 1 with Proposition 1. Note612

that most contextual bandit algorithms contain three types of hyper-parameters: one is the exploration613

rate, which we have throughout discussed in the proof of Theorem 1. The second class is the stepsize614

of some gradient-based optimization loop (e.g. Laplace-TS [4]), but the output from the loop when615

the convergent criteria is met is similar. In other words, this kind of hyper-parameter is not critical in616

the theoretical proof. The last one is the regularization parameter λ, but it can be easily handled by617

using Lemma 6. Therefore, we only need to consider the case when we tune the exploration rate and618

the regularization parameter simultaneously. We will take LinUCB with two hyperparameters (i.e.619

exploration rate and regularization parameter) as an example:620

The proof is similar to the one in Appendix A.2. Denote the candidate sets for hyper-parameter α and
λ as J1 and J2 (0 < λmin ≤ J2 ≤ λmax). And denote Vt(λ) = λI +

∑t−1
i=1 XtX

⊤
t , αit and λit as

the exploration and regularization rate we tune in our Syndicated framework at round t. Moreover,
we define α∗ = minα∈J1 α, λ

∗ = minλ∈J2 λ. With probability at least 1− δ,∥∥∥θ̂ − θ
∥∥∥
Vt(λ)

≤ βt(δ) := α(T, δ), ∀λ ∈ J2
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where the definition of βt(δ) is reloaded in Lemma 6. And we would omit δ for simplicity. For
t > T1, we denote the feature vector pulled at round t as Xt, i.e.

Xt = argmax
x∈At

x⊤θ̂t + αit ∥x∥V −1
t (λit )

, Xt = Xt(αit , λit |Ft−1).

And we also define X̃t = Xt(α
∗, λ∗|Ft−1), i.e.

X̃t = argmax
x∈At

x⊤θ̂t + α∗ ∥x∥V −1
t (λ∗) .

According to Proposition 1, it holds that621

E[R(T )] ≤ E[R(α∗, λ∗, T, {Ft−1})] +O(
√
T − T1)

≤ E

[
T∑

t=T1+1

(
µ
(
xt,∗

T θ
)
− µ

(
X̃T

t θ
))]

+O(
√
T − T1)

According to the proof of LinUCB we could similarly argue that622

x⊤
t,∗θ − X̃⊤

t θ ≤ α∗
(∥∥∥X̃t

∥∥∥
V −1
t (λ∗)

− ∥x̃t,∗∥V −1
t

(λ∗)

)
+
∥∥∥xt,∗ − X̃t

∥∥∥
V −1
t (λ∗)

∥∥∥θ̂t − θ
∥∥∥
Vt(λ∗)

≤ (α∗ + α(T ))
∥∥∥X̃t

∥∥∥
V −1
t (λ∗)

+ α(T ) ∥xt,∗∥V −1
t (λ∗) .

In conclusion, we have that
T∑

t=T1+1

(
µ
(
xt,∗

T θ
)
− µ

(
X̃T

t θ
))

= Õ

(
T∑

t=T1+1

∥∥∥X̃t

∥∥∥
V −1
t (λ∗)

+

T∑
t=T1+1

∥xt,∗∥V −1
t (λ∗)

)
.

By Lemma 4 and choosing T1 = T 2/3, it holds that,

T∑
t=T1+1

∥xt,∗∥V −1
t

,

T∑
t=T1+1

∥∥∥X̃t

∥∥∥
V −1
t

= O(T × T−1/3) = O(T 2/3).

Note we could literally use the identical argument for all UCB and TS bandit algorithms as in the623

proof of Theorem 1, and the only modification is the value of α(T ) we newly defined in Lemma 6.624

To prove the Theorem 1 (3) holds, we can also use an exactly identical argument as in the proof of625

Theorem 1 (3) in Appendix A.2, and the only difference is we replace the value of α(T ) in our main626

paper by the newly defined one in Lemma 6, and hence we would not copy it here again. And this627

fact concludes our proof.628

A.4 Experimental Settings629

Simulations. We use d = 10, K = 100 and draw θ∗ ∼ Uniform(− 1√
d
, 1√

d
). For linear bandits,630

we draw the feature vectors xt,a ∼ Uniform(− 1√
d
, 1√

d
) and transform the mean reward of arm a at631

round t by µt,a ← µt,a+1
2 to make sure the mean rewards are within [0, 1]. Each round an arm is632

pulled, a sample reward Yt ∼ N(µt,at
, 0.1) is revealed to the player. For logistic models, the feature633

vectors xt,a ∼ Uniform(−1, 1) and the corresponding mean reward is µt,a = 1/(1 + exp(−xT
t,aθ

∗)).634

A sample Bernoulli reward is drawn when an arm is pulled.635

Real datasets. We use the benchmark Movielens 100K dataset similarly as in [8]. The Movielens636

dataset contains 100K ratings on 1,682 movies contributed by 943 users. For data preprocessing, we637

apply LIBPMF [26, 27] to factorize the ratings matrix to get feature matrices for both users and movies638

with d = 20. We randomly select K = 1000 movies (arms) in each round, and the model parameter639

θ∗ is defined as the averaged feature vectors of 100 randomly selected users. For linear models, the640

mean reward is defined as µt,a = xT
t,aθ and transformed into [0, 1]. The sample reward is drawn from641

N(µt,a, 1). For logistic models, the mean reward is defined as µt,a = 1/(1 + exp(−xT
t,aθ

∗)), and642

the sample reward is drawn from a Bernoulli distribution.643
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A.5 Additional experiments on tuning SGD-TS644

In this section, we show the comparison of different tuning methods in SGD-TS [14], a recently645

proposed efficient algorithm for generalized linear bandit. We apply SGD-TS with a logistic model646

to the datasets considered in Section 6. SGD-TS has four tuning parameters, the length of epoch647

τ , two exploration parameters α(1) and α(2), step size for stochastic gradient descent η0. In [14],648

the experiments are conducted by using a grid search of all four parameters, which is not feasible649

in practice. Since the epoch length has to be pre-determined, it is not applicable to tune it online.650

We set τ = 10× ⌊max(log T, d)⌋ as suggested by the grid search set in [14] and fix it for all tuning651

methods. The tuning set for α(1) and α(2) are the same {0, 0.01, 0.1, 1, 10}. The tuning set for step652

size η0 is set as {0.01, 0.1, 1, 10}. The theoretical choices of step size η0 in SGD-TS are intractable,653

so for the tuning methods in Section 6, we make the following modifications:654

1. OP [9]: We modify OPLINUCB to tune step size η0 only.655

2. Corral [3]: We modify the CORRAL model selection framework to tune step size η0 only.656

3. Corral-Combined [3]: We modify the CORRAL model selection framework to tune657

all three hyper-parameters α(1), α(2) and η0. And the tuning set contain all possible658

combinations of these three hyper-parameters.659

4. TL (Our work, Algorithm 1): This is our proposed Algorithm 1, where we use the660

two-layer bandit structure to tune the step size η0 only.661

5. TL-Combined (Our work, Algorithm 1): This method tunes all three hyper-parameters662

α(1), α(2) and η0 using Algorithm 1, but with the tuning set containing all the possible663

combinations of the three hyper-parameters.664

6. Syndicated (Our work, Algorithm 2): This method keeps three separate tuning sets for665

α(1), α(2) and η0 respectively. It uses the Syndicated Bandits framework in Algorithm 2.666

For OP Corral and TL, since they do not tune the two exploration parameters, α(1) and α(2) are667

set as the theoretical values as in [14]. Results reported in Figure 4 are averaged over 10 repeated668

experiments. From the plots, we can see that 1) our proposed Syndicated Bandits framework669

outperforms TL-combined method since now there are in total three hyper-parameters and the regret670

of TL-combined depends on the number of hyper-parameters exponentially. 2) Tuning all 3 hyper-671

parameters significantly outperforms tuning only the step size as in OP, Corral and TL. This further672

indicates that tuning multiple hyper-parameters is better than tuning fewer. On the other hand, it673

suggests that the theoretical choices of the exploration parameters do not always perform better than674

the fine-tuned results. 3) Our proposed TL algorithm outperforms OP and Corral when tuning only675

the step size.676
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Figure 4: Comparison of hyper-parameters selection methods in SGD-TS.
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