
A Directed EquiTopo Graphs

A.1 Construction of a D-EquiStatic graph

A practical method to construct a D-EquiStatic weight matrix W is provided in Alg. 3. We should
mention that the “while" loop in the algorithm is adopted to guarantee ‖ΠW ‖2 ≤ ρ.

Algorithm 3: A practical method for D-EquiStatic weight matrix generation
Input: Network size n; desired consensus rate ρ ∈ (0, 1); probability p

Set M =
⌈

8
3ρ2 ln(2n/p)

⌉
and initialize W = I ;

while ‖ΠW ‖2 > ρ do
Sample M i.i.d random variables u1, u2, . . . , uM uniformly from [n− 1];
Generate basis weight matrices {A(ui)}Mi=1 according to (2);
Construct W by (3);

end
Output: The D-EquiStatic weight matrix W and its associated basis indices {ut}Mt=1

A.2 Proof of Theorem 1

Before showing properties of W defined by (3), we provide two lemmas as follows.

Referring to Theorem 1.6 of [32], we have the following result for a sequence of random matrices.

Lemma 1 (Matrix Bernstein) Consider a sequence of K independent random n × n matrices
{M i}Ki=1. Assume that each random matrix satisfies

E[M i] = 0, and ‖M i‖2 ≤ R almost surely.

Define

σ2 := max
{∥∥∥∑K

i=1
E[M iM

T
i]
∥∥∥
2
,
∥∥∥∑K

i=1
E[M T

i M i]
∥∥∥
2

}
.

It holds that

P
(∥∥∥∑K

i=1
M i

∥∥∥
2
≥ δ
)
≤ 2n exp

(
− δ2/2

σ2 +Rδ/3

)
, ∀δ ≥ 0.

Lemma 2 For any matrix B = [bij] ∈ Rn×n, it holds that

‖B‖2 ≤ max{‖B‖1 , ‖B‖∞}.

Proof. By definition,

‖B‖2 = sup
‖x‖≤1,‖y‖≤1

xTBy .

Moverover, for all ‖x‖ ≤ 1, ‖y‖ ≤ 1, we have

(xTBy)2 ≤
(∑

i,j

|bij |x2
i

)(∑
i,j

|bij |y2j
)
≤ ‖B‖1 ‖B‖∞ .

Thus, Lemma 2 holds. �

Theorem 1 (Formal restatement of Theorem 1) Let A(u) be defined by (2) for any u ∈ [n− 1] and
the D-EquiStatic weight matrix W be constructed by (3) with {ui}Mi=1 following an independent and
identical uniform distribution from [n− 1]. For any size-independent consensus rate ρ ∈ (0, 1) and
probability p ∈ (0, 1), if M ≥ 8

3ρ2 ln
2n
p it holds with probability at least 1− p that

‖ΠWx‖ ≤ ρ ‖Πx‖ , ∀x ∈ Rn. (10)

14

Proof. Notice that
E[A(ui)] = J , ∀i ∈ {1, 2, . . . ,M}.

Since each A(ui) is doubly stochastic, it follows from Lemma 2 that∥∥∥A(ui) − J
∥∥∥
2
=
∥∥∥ΠA(ui)

∥∥∥
2
≤ ‖Π‖2

∥∥∥A(ui)
∥∥∥
2
≤ 1.

Consequently,
M∑
i=1

E
[∥∥∥(A(ui) − J)(A(ui) − J)T

∥∥∥
2

]
≤

M∑
i=1

E
[∥∥∥ΠA(ui)

∥∥∥2
2

]
≤ M.

Analogously,
∑M

i=1 E
[∥∥∥(A(ui) − J)T (A(ui) − J)

∥∥∥
2

]
≤ M. By Lemma 1,

P
(
‖W − J‖2 ≥ ρ

)
=P
(∥∥∥∥∑M

i=1
(A(ui) − J)

∥∥∥∥
2

≥ Mρ
)

≤2n exp
(
− M2ρ2/2

M +Mρ/3

)
≤ 2n exp

(
− M2ρ2/2

M +M/3

)
≤ p,

i.e.,
P(‖ΠW ‖2 ≤ ρ) ≥ 1− p.

Note that ΠW = ΠWΠ. If ‖ΠW ‖2 ≤ ρ, then

‖ΠWx‖2 = ‖ΠWΠx‖2 ≤ ‖ΠW ‖22 ‖Πx‖2 ≤ ρ2 ‖Πx‖2 .
Therefore, the conclusion holds. �

The relation M ≥ 8
3ρ2 ln(2n/p) is required for theoretical analysis, and it is very conservative. In

practice, we can set M to be far less than 8
3ρ2 ln(2n/p) and repeat the process described in the formal

version of Theorem 1 until we find a desirable W (see Alg. 3). In addition, the verification condition
‖ΠW ‖2 ≤ ρ in Alg. 3 can also be dropped in implementations so that we only conduct the “while”
loop once. We find that these relaxations can still achieve W with an empirically fast consensus rate
(see the illustration in the experiments).

Remark 7 We have much flexibility in the choice of p, such as p = 1/2 or p = 1/n. If p ∈
(1/poly (n), 1), the corresponding value of M will only differ in constants.

A.3 Proof of Theorem 2

Due to ΠA(vt) = A(vt)Π = ΠA(vt)Π, it follows from Alg. 1 that

E
[∥∥∥ΠW (t)x

∥∥∥2] = E
[∥∥∥Π((1− η)I + ηA(vt)

)
x
∥∥∥2]

≤ (1− η)2 ‖Πx‖2 + 2η(1− η)(Πx)TE
[
ΠA(vt)

]
Πx + η2E

[∥∥∥A(vt)
∥∥∥2
2

]
‖Πx‖2

Notice that E
[
A(vt)

]
= W and ‖ΠWy‖ ≤ ρ ‖Πy‖, ∀y ∈ Rn. Therefore,

E
[∥∥∥ΠW (t)x

∥∥∥2] ≤ ((1− η)2 + 2ηρ(1− η) + η2
)
‖Πx‖2

=
(
1− 2η(1− η)(1− ρ)

)
‖Πx‖2 .

The proof is completed. �

B One-Peer Undirected EquiTopo Graphs (OU-EquiDyn)

B.1 Illustration for basis graphs of OU-EquiDyn

The associated graph of Â
(u)

= 1
2 (A

(u) + [A(u)]T) with n = 6 are given in Fig. 7. Clearly, there
exist non-one-peer graphs.

Consider n = 6. The OU-EquiDyn graphs generated by Alg. 2 (when s = 3) are presented in Fig. 8.

15

Figure 7: Undirected graphs generated by Â
(u)

= 1
2
(A(u) + [A(u)]T).

Figure 8: One-peer undirected graphs generated in Alg. 2 with s = 3 and u = 1, . . . , 5.

B.2 Node version of Alg. 2

From the node’s perspective, an equivalent version of Alg. 2 is presented in Alg. 4. In the remainder
of Appendix B, we denote bxc as the largest integer no greater than x. We also denote the traditional
mod operator as

mod(a, b) = a− b ·
⌊a
b

⌋
.

If vt = n/2, every node i is connected to node (i + n/2) mod n for Alg. 2, which is the same as
Alg. 4.

If vt < n
2 , then q = vt. In Alg. 2, nodes {st, st + 1, · · · , st + q − 1} mod n

are connected to {st + q, st + q + 1, · · · , st + 2q − 1} mod n, respectively. If j ∈
{st + q, st + q + 1, · · · , st + 2q − 1} mod n, then new edges cannot be added because they
have been connected. Similar process starts from connecting node (st + 2q) mod n with node
(st + 3q) mod n, and as a result, for vt < n

2 , Alg. 2 can be interpreted as follows: divide [n] into q
disjoint subsets:

C` = {i ∈ [n] : i = (st + `+ d · q) mod n, d ∈ Z} , 0 ≤ ` < q.

Equivalently,

C` =

{
i ∈ [n] : i = (st + `+ d · q) mod n, 0 ≤ d ≤

⌊
n− 1− `

q

⌋}
.

For node i, we define k(i) = mod(i − st, n), d(i) = bk(i)/qc and r(i) = mod(k(i), q). Then,
i ∈ Cr(i) and i = (st + r(i) + d(i) · q) mod n.

In each C`, st + ` is connected with st + `+ q, st + `+ 2q is connected with st + `+ 3q, Thus,
if |C`| is even, every node in C` has a neighbor. If |C`| is odd (equivalently,

⌊
n−1−`

q

⌋
is odd), the

node `+ q ·
⌊
n−1−`

q

⌋
is idle and the others has neighbors.

Define

C ′
` =

C`, if

⌊
n−1−`

q

⌋
is odd{

i ∈ [n] : i = (st + `+ d · q) mod n, 0 ≤ d <
⌊n− 1− `

q

⌋}
, otherwise.

Then, node i has a neighbor if and only if it is in the set C ′
r(i). In addition, for node i in C ′

r(i), it is
connected to (i+ q) mod n if d(i) is even; and connected to (i− q) mod n if d(i) is odd.

16

Algorithm 4: OU-EquiDyn weight matrix generation at iteration t (from nodes’ perspective)

Input: η ∈ (0, 1); basis index {ui,−ui}Mi=1 from a weight matrix W̃ ∈ Rn×n of form (5);
Initialize A = [aij] = I ;
for node i = 1 to n (in parallel) do

Pick vt from {ui,−ui}Mi=1 and st ∈ [n] uniformly at random using the common random
seed;

if vt ≤ n/2 then
q = vt;
k(i) = mod(i− st, n);

end
else

q = n− vt;
k(i) = mod(i− st + q, n);

end
r(i) = mod(k(i), q);
d(i) = bk(i)/qc;
if b(n− 1− r(i))/qc is odd or d(i) < b(n− 1− r(i))/qc then

if d(i) is even then
j = (i+ q) mod n;

end
else

j = (i− q) mod n;
end
aij = (n− 1)/n;
aii = 1/n;

end
end

Output: W̃
(t)

= (1− η)I + ηA

In Alg. 4, we compute r(i) and d(i) firstly, and then check whether node i is in C ′
r(i). If i ∈ C ′

r(i)

and d(i) is even (odd) , then it is connected to (i+ q) mod n ((i− q) mod n). Otherwise, node i is
idle, i.e., aii = 1. This yields the equivalence between Alg.2 and Alg. 4 for the case of vt < n/2.

If vt > n/2, let q = n − vt < n/2. Then the nodes in {st, st + 1, · · · , st + q − 1} mod n are
connected to the nodes {st + vt, st + 1 + vt, · · · , st + q − 1 + vt} mod n respectively. Note that
(i+vt) mod n is equivalent to (i−q) mod n. Then, equivalently, nodes {st, st + 1, · · · , st + q − 1}
mod n are connected with {st − q, st − q + 1, · · · , st − 1} mod n, respectively. Similar process
starts from connecting node (st + 2q) mod n with node (st + q) mod n. Then, the undirected graph
generated with the starting point st and the label difference vt > n/2 is equivalent to the undirected
graph generated with the starting point (st − q) mod n and the label difference q. So by setting
k(i) = mod(i− (st − q), n), the proof follows by similar arguments for the case vt < n/2.

B.3 Proof of Theorem 4

We first provide the following three lemmas. In the remainder of Appendix B, for any matrix
A = [aij] ∈ Rn×n, we denote its edge set as

E(A) = {(i, j) ∈ [n]× [n] : aij > 0, i 6= j} .

Denote the matrix A generated at the t-th iteration of Alg. 2 by Ã
(vt)

= [ã
(vt)
ij] ∈ Rn×n. Note that

Ã
(vt)

is also stochastic even when vt is given since st is randomly chosen from [n].

17

Lemma 3 For any n ≥ 2, it holds for Ã
(vt)

defined by Alg. 2 that it holds that

E
[
|E(Ã

(vt)
)|
]
≥ 2n

3
.

Proof. Because |E(Ã
(vt)

)| is invariant with respect to st, it suffices to prove |E(Ã
(vt)

)| ≥ 2n/3 for
st = 1.

For vt ≤ n/2, we define m = bn/(2vt)c and r = mod(n, 2vt), then, m ≥ 1. Notice that node i is
connected with i+ vt for any i ∈ {`+ 2dvt : 1 ≤ ` ≤ vt, 0 ≤ d < m}.

If r ≤ vt, then the last r nodes are idle. As m ≥ 1, we have n = 2vtm+ r ≥ 2vt + r ≥ 3r. Thus,

|E(Ã
(vt)

)| ≥ n− r ≥ n− 1

3
n =

2

3
n.

If r > vt, then node i in {2mvt + ` : 1 ≤ ` ≤ r − vt} is connected to i + vt. As a result, only
the nodes in {2mvt + ` : r − vt + 1 ≤ ` ≤ vt} are idle, i.e., 2vt − r nodes are idle. We have
n = 2mvt + r > 3vt from m ≥ 1 and r > vt. Consequently,

|E(Ã
(vt)

)| ≥ n− (2vt − r) ≥ n− vt ≥
2

3
n.

We have shown |E(Ã
(vt)

)| ≥ 2
3n for vt ≤ n/2.

For vt > n/2, recall that we have shown in Appendix B.2 that the undirected graph generated with
label difference vt and starting point st equals the undirected graph generated with label difference
q = n− vt < n/2 and starting point (st − q) mod n. Since the number of edges is invariant with
the starting point, the case vt > n/2 has been reduced to vt < n/2. This completes the proof. �

Lemma 4 For any symmetric matrix B = [bij] ∈ Rn×n, if B1n = 0n, then

xTBx = −1

2

∑
i,j

bij(xi − xj)
2, ∀x ∈ Rn.

Proof. The i-th entry of Bx is

[Bx]i =
∑
j

bijxj = biixi +
∑
j:j 6=i

bijxj =
∑
j

bij(xj − xi).

Hence,

xTBx =
∑
i,j

bijxi(xj − xi).

Due to BT = B , we have

xTBx =
∑
i,j

bijxj(xi − xj).

Averaging the above equations yields the result. �

Lemma 5 For any n ≥ 2, it holds for Ã
(vt)

that

E[Ã
(vt)

] � 1

3
I +

1

3

(
A(vt) + [A(vt)]T)

)
.

Proof. If vt = n/2, then Ã
(vt)

= A(vt) = [A(vt)]T . By Lemma 4, xT
(
I −A(vt)

)
x ≥ 0, i.e.,

A(vt) � I . Thus,

Ã
(vt)

= A(vt) � 1

3
I +

2

3

(
A(vt) + [A(vt)]T

)
.

18

Consider vt 6= n/2. Notice that E(Ã
(vt)

) ⊂ E
(
A(vt) + [A(vt)]T

)
and |E(A(vt) + [A(vt)]T)| ≤ 2n.

By Lemma 3 and the fact that st is from the uniform distribution over [n], it holds for any (i, j) ∈
E(A(vt) + [A(vt)]T) that

P[(i, j) ∈ E(Ã
(vt)

)] ≥ 1

2n
E[|E(Ã

(vt)
)|] ≥ 1

3
.

By the construction of Ã
(vt)

in Alg. 2 and A(vt) in (2), the non-diagonal and non-zero entries are
n−1
n . It follows from Lemma 4 that for any x ∈ Rn, we have

xTE[I− Ã
(vt)

]x =
n− 1

2n
E

[∑
(i,j)∈E(Ã(vt))

(xi − xj)
2

]

=
n− 1

2n

∑
(i,j)∈E(A(vt)+[A(vt)]T)

P[(i, j) ∈ E(Ã
(vt)

)](xi − xj)
2

≥ n− 1

6n

∑
(i,j)∈E(A(vt)+[A(vt)]T)

(xi − xj)
2

=
1

3
xT
(
2I−A(vt) − [A(vt)]T

)
x .

Rearranging the terms, we derive

E
[
Ã

(vt)
]
� 1

3
I +

1

3

(
A(vt) + [A(vt)]T

)
.

This completes the proof. �

Proof of Theorem 4 It follows from Lemma 5 that

E
[
Ã

(vt)
]
� 1

3
I +

1

3
E
[
A(vt) + [A(vt)]T

]
=

1

3
I +

2

3
W̃ .

Consequently,

E
[∥∥∥ΠW̃

(t)
x
∥∥∥2] = E

[∥∥∥Π((1− η)I + ηÃ
(vt)
)
x
∥∥∥2]

≤ (1− η)2 ‖Πx‖2 + 2η(1− η)(Πx)TE
[
Ã

(vt)]
Πx + η2E

[∥∥∥Ã(vt)
∥∥∥2
2

]
‖Πx‖2 .

Combining the above two inequalities, we derive

E
[∥∥∥ΠW̃

(t)
x
∥∥∥2] ≤ ((1− η)2 +

2

3
η(1− η) +

4

3
ηρ(1− η) + η2

)
‖Πx‖2

=
(
1− 4

3
η(1− η)(1− ρ)

)
‖Πx‖2 .

Thus, the proof is completed. �

B.4 An alternative construction of OU-EquiDyn

Alg. 5 provides a different way to construct one-peer undirected graphs which achieve a similar
consensus rate as the graphs generated by Alg. 2 but with a different structure.

We denote the matrix A generated at the t-th iteration of Alg. 5 by A
(vt)

= [a
(vt)
ij] ∈ Rn×n. Next,

we explain the motivation of Alg. 5.

Denote gcd(a, b) as the greastest common divisor of a and b. Let d = gcd(vt, n) and ṽt = vt/d,
ñ = n/d. Then, ṽt and ñ are coprime.

Firstly, we divide [n] into d disjoint subsets:

C` = {i ∈ [n] : mod(i− st, d) = `} , 0 ≤ ` < d.

19

Algorithm 5: Alternative OU-EquiDyn weight matrix generation at iteration t (from nodes’
perspective)

Input: η ∈ (0, 1); basis index {ui,−ui}Mi=1 from a weight matrix W̃ ∈ Rn×n of form 5;
Initialize A = [aij] = I ;
for node i = 1 to n (in parallel) do

Pick vt from {ui,−ui}Mi=1 and st ∈ [n] uniformly at random using the common random
seed;

Compute d = gcd(vt, n) and find 1 ≤ b ≤ n/d− 1 such that mod(b · vt, n) = d by
Euclidean algorithm;

Set ñ = n/d, and m(i) = mod(b(i− st)/dc · b, ñ);
if ñ is even or m(i) < ñ− 1 then

if m is even then
j = (i+ vt) mod n;

end
else

j = (i− vt) mod n;
end
aij = (n− 1)/n;
aii = 1/n;

end
end

Output: W̃
(t)

= (1− η)I + ηA

Clearly,
∣∣C`

∣∣ = n/d = ñ, ∀0 ≤ ` < d.

We claim that

C` = {st + `+mvt mod n : 0 ≤ m < ñ} , 0 ≤ ` < d. (11)

To proof the claim, we denote the RHS of (11) by C̃`. Since vt can be divided evenly by d, for any
i ∈ C̃`, it satisfies mod(i, d) = mod((st + `), d). Combining with the fact that C̃` ⊂ [n], we have
C̃` ⊂ C`.

Then, since ñ and ṽ are coprime, for any 0 ≤ m1 < m2 < ñ, mod(m1ṽt, ñ) 6= mod(m2ṽt, ñ).
Then, mod(m1vt, n) 6= mod(m2vt, n). Thus,

∣∣∣C̃`

∣∣∣ = ñ =
∣∣C`

∣∣. Combining with C̃` ⊂ C`, we

have C` = C̃`.

The above analysis also implies that for each i ∈ C`, there exists a unique 0 ≤ m(i) < d such that
i = (st + `+m(i)vt) mod n.

By (11), a natural way to construct one-peer undirected graphs is: in each C`, connect st + ` with
st+`+vt, connect st+`+2vt with st+`+3vt, Equivalently, i is connected with (i+vt) mod n
if m(i) is even and connected with (i− vt) mod n if m(i) is odd.

In this way, if ñ is even, every node in C` has a neighbor, ∀0 ≤ ` < d, i.e., every node in [n] has a
neighbor. Equivalently, a node i ∈ C` has a neighbor if it is in the set

C
′
` =

{
C`, if ñ is even
{(st + `+mvt) mod n : 0 ≤ m < ñ− 1} , if ñ is odd

(12)

To give a practical way of the process described above from each node’s perspective, for each
node i ∈ C`, we provide a more efficient way to compute the unique 0 ≤ m(i) < ñ such that
i = (st + `+m(i)vt) mod n. Firstly, for each i ∈ C`, since ` = mod(i− st, d), we have

i = (st + `+ b(i− st)/dc · d) mod n.

20

Then, by Bézout’s theorem, since ñ and ṽt are coprime, there exist integers 1 ≤ b ≤ ñ− 1 and b′

such that b · vt + b′ · n = d. The pair (b, b′) can be computed by the Euclidean algorithm in O(ln(n))
time. Then,

b(i− st)/dc · d = b(i− st)/dc · (bvt + b′n).

Define m(i) = mod(b(i− st)/dc · b, ñ), then, we have (b(i− st)/dc · d) mod n = m(i)vt mod n,
Thus, i = (st + `+m(i)vt) mod n.

In Alg. 5, each node i computes ñ and its m(i) firstly. If ñ is even, every node has a neighbor. If ñ is
odd but m(i) < ñ− 1, then i ∈ C

′
` where ` = mod (i− st, d), i.e., i also has a neighbor. In this

way, each node can determine whether it has a neighbor in this iteration. If node i has a neighbor, as
we have described above, it is connected with (i + vt) mod n if m(i) is even and (i − vt) mod n
otherwise.

The following lemma is used to prove Lemma 7.

Lemma 6 Let d = gcd(vt, n), then

E
[
|E(A(vt)

)|
]
= (2d) ·

⌊ n

2d

⌋
≥ 2n

3
.

Proof. Define C` and C
′
` as in (11) and (12). If n can be divided by 2d evenly, i.e.,

∣∣C`

∣∣ = ñ is even

for any 0 ≤ ` < d. Then, every node has a neighbor, i.e.,
∣∣∣E(A(vt)

)
∣∣∣ = n = (2d) ·

⌊
n
2d

⌋
.

If n cannot be divided by 2d evenly, by (12), in each C`, there is one node idle in this iteration. Then,
we also have

∣∣∣E(A(vt)
)
∣∣∣ = n− d = (2d) ·

⌊
n
2d

⌋
. As d = gcd(vt, n), we have n = (2k + 1)d, with

k ∈ Z. Since vt can be divided by d evenly and vt ≤ n − 1, we have d < n. Thus, k ≥ 1, i.e.,
n ≥ 3d. Then,

∣∣∣E(A(vt)
)
∣∣∣ = n− d ≥ n− n

3 = 2n
3 .

Since the above analysis holds for arbitrary st ∈ [n], the lemma is proved. �

The following lemma follows by similar arguments with Lemma 5.

Lemma 7 For any n ≥ 2, the output matrix A
(vt) of Algorithm 2 satisfies

E[A(vt)
] � 1

3
I +

1

3

(
A(vt) + [A(vt)]T)

)
.

The following consensus rate for Alg. 5 is proved similarly to Theorem 4.

Theorem 7 Let W̃ be a U-EquiStatic matrix with consensus rate ρ, and W̃
(t)

be an OU-EquiDyn
matrix generated by Alg. 5, it holds that

E
[∥∥ΠW̃

(t)
x
∥∥2] ≤ (1− 4

3
η(1− η)(1− ρ)

)
‖Πx‖2 , ∀x ∈ Rn.

C Applying EquiTopo Matrices to Decentralized Learning

C.1 Convergence of DSGD for strongly convex cost functions

We assume that fi(x) is µ-strongly convex for any i, i.e., there exists a constant µ > 0 such that

fi(y) ≥ fi(x) + 〈∇fi(x),y − x 〉+ µ

2
‖y − x‖2 , ∀x ,y ∈ Rd.

As we have tested the performance of DSGD with EquiTopo matrices for strongly convex cost
functions, we attach the following convergence result of the algorithm (8). The proof follows by [12,
Theorem 2] (or Appendix A.4 therein) and is omitted here.

21

Theorem 8 Consider the DSGD algorithm (8) utilizing the EquiTopo matrices, and fi being µ-
strongly convex for all i. Under Assumptions A.1-A.3, it holds that

1

HT

T∑
t=0

h(t)E
[
f(x̄ (t))− f(x ∗)

]
= Õ

(σ2

nT
+

κβσ2

(1− β)T 2
+

κβb2

(1− β)2T 2
+

1

1− β
exp

(
− (1− β)T

κ

))
where κ = L/µ, Õ(·) hides constants and polylogarithmic factors, positive weights h(t) =

(
1− µγ

2

)t
,

and HT =
∑T

t=0 h
(t). Furthermore,

• β = ρ with D-EquiStatic W or U-EquiStatic W̃ ;

• β =
√
(1 + ρ)/2 for OD-EquiDyn W (t) (Alg. 1 with η = 1/2), and β =

√
(2 + ρ)/3 for

OU-EquiDyn W̃
(t)

(Alg. 2 with η = 1/2).

C.2 Transient iteration

The computation of transient iteration.

For nonconvex cost functions, the convergence rate of (8) is given by

1

T

T−1∑
t=0

E
[∥∥∥∇f(x̄ (t))

∥∥∥2] = O
(σ√

nT
+

β
2
3σ

2
3

T
2
3 (1− β)

1
3

+
β

2
3 b

2
3

T
2
3 (1− β)

2
3

+
β

T (1− β)

)
To reach the linear speedup stage, the iteration T has to be sufficiently large so that the

√
nT -term

dominates, i.e., σ√
nT

≥ β
2
3 σ

2
3

T
2
3 (1−β)

1
3
, σ√

nT
≥ β

2
3 b

2
3

T
2
3 (1−β)

2
3
, and moreover, σ√

nT
≥ β

T (1−β) . Then

T ≥ β4n3

(1−β)2σ2 , T ≥ β4b4n3

(1−β)4σ6 , and T ≥ β2n
(1−β)2σ2 . Substituting β into the inequalities, transient

iterations under different networks can be computed. Similar methods can be adopted for the transient
iterations of the distributed gradient tracking algorithm.

Under different network topologies, for non-convex and strongly convex cost functions, convergence
results and transient iterations are shown in Table 3 and 4. The results indicate that the proposed
networks are at faster rates.

Table 3: For non-convex cost functions, per-iteration communication and convergence rate comparison between
DSGD over different topologies. The smaller the transient iteration complexity is, the faster the algorithm
converges.

Topology Per-iter Comm. Convergence Rate Trans. Iters.

Ring Θ(1) O
(

σ√
nT

+ n
2
3 σ

2
3

T
2
3

+ n
4
3 b

2
3

T
2
3

+ n2

T

)
O(n11)

Torus Θ(1) O
(

σ√
nT

+ n
1
3 σ

2
3

T
2
3

+ n
2
3 b

2
3

T
2
3

+ n
T

)
O(n7)

Static Exp. Θ(ln(n)) O
(

σ√
nT

+ ln
1
3 (n)σ

2
3

T
2
3

+ ln
2
3 (n)b

2
3

T
2
3

+ ln(n)
T

)
O(n3 ln4(n))

O.-P. Exp. 1 O
(

σ√
nT

+ ln
1
3 (n)σ

2
3

T
2
3

+ ln
2
3 (n)b

2
3

T
2
3

+ ln(n)
T

)
O(n3 ln4(n))

D(U)-EquiStatic Θ(ln(n)) O
(

σ√
nT

+ σ
2
3

T
2
3
+ b

2
3

T
2
3
+ 1

T

)
O(n3)

OD (OU)-EquiDyn 1 O
(

σ√
nT

+ σ
2
3

T
2
3
+ b

2
3

T
2
3
+ 1

T

)
O(n3)

C.3 Decentralized stochastic gradient tracking algorithm

We write local variables compactly into matrix form, for instance

X (t) =
[
x
(t)
1 , · · · ,x (t)

n

]T
∈ Rn×d, ∇F

(
X (t)

)
=
[
∇f1

(
x
(t)
1

)
, · · · ,∇fn

(
x (t)

)]T
∈ Rn×d.

22

Table 4: For strongly convex cost functions, per-iteration communication and convergence rate comparison
between DSGD over different topologies. The smaller the transient iteration complexity is, the faster the
algorithm converges.

Topology Per-iter Comm. Convergence Rate Trans. Iters.

Ring Θ(1) Õ
(

σ2

nT + κn2σ2

T 2 + κn4b2

T 2

)
Õ(κn5)

Torus Θ(1) Õ
(

σ2

nT + κnσ2

T 2 + κn2b2

T 2

)
Õ(κn3)

Static Exp. Θ(ln(n)) Õ
(

σ2

nT + κ ln(n)σ2

T 2 + κ ln2(n)b2

T 2

)
Õ(κn ln2(n))

O.-P. Exp. 1 Õ
(

σ2

nT + κ ln(n)σ2

T 2 + κ ln2(n)b2

T 2

)
Õ(κn ln2(n))

D(U)-EquiStatic Θ(ln(n)) Õ
(

σ2

nT + κσ2

T 2 + κb2

T 2

)
Õ(κn)

OD (OU)-EquiDyn 1 Õ
(

σ2

nT + κσ2

T 2 + κb2

T 2

)
Õ(κn)

The matrices Y (t),G(t) ∈ Rn×d are defined analogously. We also denote ∇F
(
X (−1)

)
= G(−1) =

0 for notational simplicity.

Clearly, the DSGT algorithm can be simplified as(
X (t+1)

Y (t+1)

)
=

(
W (t) −γW (t)

0 W (t)

)(
X (t)

Y (t)

)
+

(
0

G(t+1) −G(t)

)
. (13)

For simplicity, we define

W (j:k) = W (k) · · ·W (j), ∀k ≥ j ≥ 0,

and moreover, W (j:k) = I for j > k.

Notice that(
W (k) −γW (k)

0 W (k)

)
· · ·
(
W (j) −γW (j)

0 W (j)

)
=

(
W (j:k) −γ (k − j + 1)W (j:k)

0 W (j:k)

)
.

Consequently, it holds for all t ≥ 1 that

X (t) = W (0:(t−1))X (0) − γ

t−1∑
j=0

(t− j)W (j:(t−1))
(
G(j) −G(j−1)

)
. (14)

Moreover, we have two inequalities as follows.

Lemma 8 For any t ≥ 1 and β ∈ (0, 1), we have

t2β2(t−1) ≤ c1

(1− β)
2 β

t−1, t2βt−1 ≤ c2

(1− β)
2

(
1 + β

2

)t−1

,

where c1 = 4, c2 = 16.

Proof. Define r(x) = x2βx−1, where x ≥ 1. Then, for the first inequality, it suffices to show that
r(x) ≤ c1/(1− β)2 for x ≥ 1. Due to r′(x) = xβx−1 (2 + x lnβ), r(x) attains its maximum at
x0 = max

{
1,− 2

ln β

}
.

If − 2
ln β > 1, by combining with the fact that lnβ ≤ β − 1 < 0 for β ∈ (0, 1), we have

x2βx−1 ≤ r

(
− 2

lnβ

)
=

4

(lnβ)
2 β

− 2
ln β−1 ≤ 4

(lnβ)
2 ≤ 4

(1− β)
2 .

23

If − 2
ln β ≤ 1, then

x2βx−1 = r (1) = 1 ≤ 4

(1− β)
2 .

The second inequality follows by similar arguments and the fact that
√
β ≤ 1+β

2 . The proof is
completed. �

The following lemma is a generalization of Cauchy-Schwartz inequality. Its proof follows by using
‖A+B‖2F ≤ 1

α ‖A‖2F + 1
1−α ‖B‖2F (α ∈ (0, 1)) repeatedly.

Lemma 9 Consider a sequence of matrices {B i}mi=1. If α1, α2, · · · , αm > 0 and
∑m

i=1 αi ≤ 1,
then ∥∥∥∥∥

m∑
i=1

B i

∥∥∥∥∥
2

F

≤
m∑
i=1

1

αi
‖B i‖2F .

We define a potential function as

Φ(t) =
4βt

(1− β)
2E
[∥∥∥ΠX (0)

∥∥∥2
F

]
+

16c1nγ
2

(1− β)
4σ

2

+
4c2γ

2

(1− β)
4

t−1∑
j=0

(
1 + β

2

)t−j−1

E
[∥∥∥∇F

(
X (j)

)
−∇F

(
X (j−1)

)∥∥∥2
F

]
, ∀t ≥ 1,

(15)

and moreover,

Φ(0) =
4

(1− β)
2

∥∥∥ΠX (0)
∥∥∥2
F
+

16c1nγ
2

(1− β)
4σ

2. (16)

The following Lemma 10 and Lemma 11 are used to prove Lemma 12. Theorem 6 follows by
combining Lemma 12 with the descent lemma (Lemma 14).

Lemma 10 Consider the DSGT (9). Let Assumptions A.1 and A.2 hold. If
{
W (t)

}
t≥0

have

convergence rate β, i.e., E
[∥∥∥ΠW (t)y

∥∥∥2] ≤ β2 ‖Πy‖2 for any y ∈ Rn, then

E
[∥∥∥ΠX (t)

∥∥∥2
F

]
≤ 1− β

2
Φ(t), ∀t ≥ 0.

Proof. The case t = 0 follows by definition directly.

For t ≥ 1, we define

Q(t,1) = W (0:(t−1))X (0) − γ

t−1∑
j=0

(t− j)W (j:(t−1))
(
∇F

(
X (j)

)
−∇F

(
X (j−1)

))
,

and

Q(t,2) = −γ

t−1∑
j=0

(t− j)W (j:(t−1))
(
G(j) −∇F

(
X (j)

)
−G(j−1) +∇F

(
X (j−1)

))
.

Recalling (14) gives

X (t) = Q(t,1) +Q(t,2).

Then

E
[∥∥∥ΠX (t)

∥∥∥2
F

]
≤ 2E

[∥∥∥ΠQ(t,1)
∥∥∥2
F

]
+ 2E

[∥∥∥ΠQ(t,2)
∥∥∥2
F

]
.

24

Rearranging Q(t,2) yields

Q(t,2) =− γW (t−1)
(
G(t−1) −∇F

(
X (t−1)

))
− γ

t−2∑
j=0

(
(t− j)W (j:(t−1)) − (t− j − 1)W ((j+1):(t−1))

)(
G(j) −∇F

(
X (j)

))
.

By Assumption A.2 and the assumption on consensus rate, we have

E
[∥∥∥ΠQ(t,2)

∥∥∥2
F

]
=γ2E

[∥∥∥ΠW (t−1)
(
G(t−1) −∇F

(
X (t−1)

))∥∥∥2
F

]
+ γ2

t−2∑
j=0

E
[∥∥∥((t− j)ΠW (j:(t−1)) − (t− j − 1)ΠW ((j+1):(t−1))

)(
G(j) −∇F

(
X (j)

))∥∥∥2
F

]

≤γ2β2E
[∥∥∥G(t−1) −∇F

(
X (t−1)

)∥∥∥2
F

]
+ γ2

t−2∑
j=0

4 (t− j)
2
β2(t−j−1)E

[∥∥∥G(j) −∇F
(
X (j)

)∥∥∥2
F

]

≤4nγ2
t∑

j=1

j2β2(j−1)σ2.

By Lemma 8, we have

nγ2
t∑

j=1

j2β2(j−1)σ2 ≤ nc1γ
2

(1− β)
2

t∑
j=1

βj−1σ2 ≤ nc1γ
2

(1− β)
3σ

2.

As a result,

E
[∥∥∥ΠQ(t,2)

∥∥∥2
F

]
≤ 4nc1γ

2

(1− β)
3σ

2.

Moreover,

E
[∥∥∥ΠQ(t,1)

∥∥∥2
F

]
≤ 1

(1− β)βt
E
[∥∥∥ΠW (0:(t−1))X (0)

∥∥∥2
F

]
+

t−1∑
j=0

γ2 (t− j)
2

(1− β)βt−j−1
E
[∥∥∥ΠW (j:(t−1))

(
∇F

(
X (j)

)
−∇F

(
X (j−1)

))∥∥∥2
F

]

≤ βt

(1− β)
E
[∥∥∥ΠX (0)

∥∥∥2
F

]
+

γ2

1− β

t−1∑
j=0

(t− j)
2
βt−j−1E

[∥∥∥∇F
(
X (j)

)
−∇F

(
X (j−1)

)∥∥∥2
F

]

≤ βt

1− β
E
[∥∥∥ΠX (0)

∥∥∥2
F

]
+

c2γ
2

(1− β)
3

t−1∑
j=0

(
1 + β

2

)t−j−1

E
[∥∥∥∇F

(
X (j)

)
−∇F

(
X (j−1)

)∥∥∥2
F

]
,

where the first inequality follows by Lemma 9 and the fact that (1− β)
∑t

j=0 β
j < 1, the second

inequality is by the assumption on consensus rate, and the third inequality is by Lemma 8.

Therefore, the conclusion holds by the definition of Φ(t). �

25

Lemma 11 Consider the DSGT (9). Let Assumptions A.1 and A.2 hold. If γ ≤ 1
L , it holds for t ≥ 0

that

E
[∥∥∥∇F

(
X (t+1)

)
−∇F

(
X (t)

)∥∥∥2
F

]
≤6nγ2L2E

[∥∥∥∇f
(
x̄ (t)

)∥∥∥2]+ 9L2E
[∥∥∥ΠX (t)

∥∥∥2
F

]
+ 3L2E

[∥∥∥ΠX (t+1)
∥∥∥2
F

]
+ 3γ2L2σ2.

Proof. Clearly,

E
[∥∥∥∇F

(
X (t+1)

)
−∇F

(
X (t)

)∥∥∥2
F

]
≤ 3E

[∥∥∥∇F
(
X̄

(t+1))−∇F
(
X̄

(t))∥∥∥2
F

]
+ 3E

[∥∥∥∇F
(
X (t+1)

)
−∇F

(
X̄

(t+1))∥∥∥2
F

]
+ 3E

[∥∥∥∇F
(
X (t)

)
−∇F

(
X̄

(t))∥∥∥2
F

]
.

It follows from Assumption A.1 that

E
[∥∥∥∇F

(
X (t+1)

)
−∇F

(
X (t)

)∥∥∥2
F

]
≤3L2

(
E
[∥∥∥X̄ (t+1) − X̄

(t)
∥∥∥2
F

]
+ E

[∥∥∥ΠX (t+1)
∥∥∥2
F

]
+ E

[∥∥∥ΠX (t)
∥∥∥2
F

])
.

(17)

Notice that by induction,
∑n

i=1 y
(t) =

∑n
i=1 g

(t). Recalling (9) gives

x̄ (t+1) − x̄ (t) =
γ

n

n∑
i=1

y (t) =
γ

n

n∑
i=1

g (t)

=
γ

n

n∑
i=1

[
∇fi

(
x̄ (t)

)
+
(
∇fi

(
x
(t)
i

)
−∇fi

(
x̄ (t)

))
+
(
g
(t)
i −∇fi

(
x
(t)
i

))]
=γ∇f

(
x̄ (t)

)
+

γ

n

n∑
i=1

[(
∇fi

(
x
(t)
i

)
−∇fi

(
x̄ (t)

))
+
(
g
(t)
i −∇fi

(
x
(t)
i

))]
.

(18)

By Assumptions A.1 and A.2, we derive

E
[∥∥∥x̄ (t+1) − x̄ (t)

∥∥∥2]

=γ2E

∥∥∥∥∥∇f
(
x̄ (t)

)
+

1

n

n∑
i=1

(
∇fi

(
x
(t)
i

)
−∇fi

(
x̄ (t)

))∥∥∥∥∥
2
+

γ2σ2

n

≤2γ2E
[∥∥∥∇f

(
x̄ (t)

)∥∥∥2]+ 2γ2L2

n
E
[∥∥∥ΠX (t)

∥∥∥2
F

]
+

γ2σ2

n
.

(19)

Due to γ ≤ 1
L , we have

E
[∥∥∥x̄ (t+1) − x̄ (t)

∥∥∥2] ≤ 2γ2E
[∥∥∥∇f

(
x̄ (t)

)∥∥∥2]+ 2

n
E
[∥∥∥ΠX (t)

∥∥∥2
F

]
+

γ2σ2

n
. (20)

Then the conclusion follows (17), (20) and
∥∥∥X̄ (t+1) − X̄

(t)
∥∥∥2
F
= n

∥∥x̄ (t+1) − x̄ (t)
∥∥2. �

Lemma 12 Consider the DSGT (9). Let Assumptions A.1 and A.2 hold. Suppose that
{
W (t)

}
t≥0

have consensus rate β and y ∈ Rn. If 48c2γ
2L2

(1−β)4
≤ 1

2 , then

T∑
t=0

E
[∥∥∥ΠX (t)

∥∥∥2
F

]
≤2Φ(0) +

48c2nγ
4L2

(1− β)
4

T∑
t=1

E
[∥∥∥∇f

(
x̄ (t−1)

)∥∥∥2]+ 8c2γ
2

(1− β)
4

∥∥∥∇F
(
X (0)

)∥∥∥2
F

+
24c2γ

4L2

(1− β)
4 (T + 1)σ2 +

16c1nγ
2

(1− β)
3 (T + 1)σ2.

26

Proof. By the definition of Φ(t) in (15), we have that for t ≥ 0,

Φ(t+1) ≤
(
1 + β

2

)
Φ(t) +

4c2γ
2

(1− β)
4E
[∥∥∥∇F

(
X (t)

)
−∇F

(
X (t−1)

)∥∥∥2
F

]
+

8c1nγ
2

(1− β)
3σ

2. (21)

Then, for t ≥ 0, by Lemma 10 and (21), we have

E
[∥∥∥ΠX (t)

∥∥∥2
F

]
≤ 1− β

2
Φ(t)

≤Φ(t) − Φ(t+1) +
4c2γ

2

(1− β)
4E
[∥∥∥∇F

(
X (t)

)
−∇F

(
X (t−1)

)∥∥∥2
F

]
+

8c1nγ
2

(1− β)
3σ

2.

For t ≥ 1, by Lemma 11, we derive

E
[∥∥∥ΠX (t)

∥∥∥2
F

]
≤ Φ(t) − Φ(t+1) +

24c2nγ
4L2

(1− β)
4 E

[∥∥∥∇f
(
x̄ (t−1)

)∥∥∥2]
+

36c2γ
2L2

(1− β)
4 E

[∥∥∥ΠX (t−1)
∥∥∥2
F

]
+

12c2γ
2L2

(1− β)
4 E

[∥∥∥ΠX (t)
∥∥∥2
F

]
+

12c2γ
4L2

(1− β)
4 σ2 +

8c1nγ
2

(1− β)
3σ

2.

(22)

It follows by the definition of Φ(t) that

Φ(1) ≤
(
1 + β

2

)
Φ(0) +

4c2γ
2

(1− β)
4

∥∥∥∇F
(
X (0)

)∥∥∥2
F
+

8c1nγ
2

(1− β)
3σ

2.

By Lemma 10, we obtain∥∥∥ΠX (0)
∥∥∥2
F
≤ 1− β

2
Φ(0) ≤ Φ(0) − Φ(1) +

4c2γ
2

(1− β)
4

∥∥∥∇F
(
X (0)

)∥∥∥2
F
+

8c1nγ
2

(1− β)
3σ

2. (23)

Taking sum on both sides of (22) and noting that 48c2γ
2L2

(1−β)4
≤ 1

2 , Φ(T+1) ≥ 0, the lemma is proved. �

Lemma 13 is standard in the analysis of gradient tracking methods. We attach its proof for complete-
ness.

Lemma 13 Consider the DSGT (9). Let Assumptions A.1 and A.2 hold. If γ ≤ 1
4L , then

E
[
f
(
x̄ (t+1)

)]
≤ E

[
f
(
x̄ (t)

)]
− γ

4
E
[∥∥∥∇f

(
x̄ (t)

)∥∥∥2]+ γL2

n
E
[∥∥∥ΠX (t)

∥∥∥2
F

]
+

γ2L

2n
σ2.

Proof. By Assumption A.1, we have

E
[
f
(
x̄ (t+1)

)]
≤ E

[
f
(
x̄ (t)

)]
− E

[〈
∇f
(
x̄ (t)

)
, x̄ (t+1) − x̄ (t)

〉]
+

L

2
E
[∥∥∥x̄ (t+1) − x̄ (t)

∥∥∥2] .
It follows from (9) that

E
[〈

∇f
(
x̄ (t)

)
, x̄ (t+1) − x̄ (t)

〉]
=γE

[〈
∇f

(
x̄ (t)

)
,∇f

(
x̄ (t)

)
+

1

n

n∑
i=1

(
∇fi

(
x
(t)
i

)
−∇fi

(
x̄ (t)

))〉]

≥γE
[∥∥∥∇f

(
x̄ (t)

)∥∥∥2]− γ

2
E
[∥∥∥∇f

(
x̄ (t)

)∥∥∥2]− γ

2n

n∑
i=1

E
[∥∥∥∇fi

(
x
(t)
i

)
−∇fi

(
x̄ (t))

∥∥∥]2
≥γ

2
E
[∥∥∥∇f

(
x̄ (t)

)∥∥∥2]− γL2

2n
E
[∥∥∥ΠX (t)

∥∥∥
F

]2
,

where the first equality is by Assumption A.2 and (18); the second inequality is by Assumption A.1.

27

Recalling (19) yields

E
[
f
(
x̄ (t+1)

)]
≤E

[
f
(
x̄ (t)

)]
− γ

2
(1− 2γL)E

[∥∥∥∇f
(
x̄ (t)

)∥∥∥2]+ γL2

2n
(1 + 2γL)E

[∥∥∥ΠX (t)
∥∥∥2
F

]
+

γ2σ2L

2n

≤E
[
f
(
x̄ (t)

)]
− γ

4
E
[∥∥∥∇f

(
x̄ (t)

)∥∥∥2]+ γL2

n
E
[∥∥∥ΠX (t)

∥∥∥2
F

]
+

γ2σ2L

2n
.

The lemma is proved. �

Referring to Lemma 26 of [11], we have the following result.

Lemma 14 Let A,B,C, T and α be positive constants. Define

g(γ) =
A

γT
+Bγ + Cγ2.

Then

inf
γ∈(0,α]

g (γ) ≤ 2

(
AB

T

) 1
2

+ 2C
1
3

(
A

T

) 2
3

+
A

αT
.

Proof of Theorem 6 Define f∗ = infx f(x), F0 = f
(
x̄ (0)

)
− f∗, C0 =

∥∥∥ΠX (0)
∥∥∥2
F

and D0 =∑n
i=1

∥∥∥∇fi

(
x
(0)
i

)∥∥∥2. It suffices to show that

1

T + 1

T∑
t=0

E
[∥∥∥∇f

(
x̄ (t)

)∥∥∥2
F

]

≤O

(√
F0Lσ2

nT
+

1

1− β

(
F0Lσ

T

) 2
3

+
F0

(1− β)
2
T

+
L2C0

(1− β)
2
nT

+
D0

nT

)
.

(24)

Let γ ≤ (1−β)2

50L to satisfy the conditions in Lemmas 12 and 13. Then, we have

1

T + 1

T∑
t=0

E
[∥∥∥∇f

(
x̄ (t)

)∥∥∥2
F

]

≤ 4

γ (T + 1)

(
f
(
x̄ (0)

)
− f∗

)
+

4L2

n (T + 1)

T∑
t=0

E
[∥∥∥ΠX (0)

∥∥∥2
F

]
+

2γL

n
σ2

≤ 4

γT

(
f
(
x̄ (0)

)
− f∗

)
+

2γL

n
σ2 +

8L2

nT
Φ(0) +

32c2γ
2L2

(1− β)
4
nT

∥∥∥∇F
(
X (0)

)∥∥∥2
F

+
192c2γ

4L4

(1− β)
4
(T + 1)

T∑
t=1

E
[∥∥∥∇f

(
x̄ (t−1)

)∥∥∥2]+ 96c2γ
4L4

(1− β)
4
n
σ2 +

64c1γ
2L2

(1− β)
3 σ2.

If γ ≤ 1−β
10L , then 192c2γ

4L4

(1−β)4
≤ 1

2 . Then, we have

1

T + 1

T∑
t=0

E
[∥∥∥∇f

(
x̄ (t)

)∥∥∥2
F

]
≤ 8

γT

(
f
(
x̄ (0)

)
− f∗

)
+

4γL

n
σ2 +

192c2γ
4L4

(1− β)
4
n
σ2

+
16L2

nT
Φ(0) +

64c2γ
2L2

(1− β)
4
nT

∥∥∥∇F
(
X (0)

)∥∥∥2
F
+

128c1γ
2L2

(1− β)
3 σ2.

(25)

28

By (16) and c1 = 4, c2 = 16 defined in Lemma 8, if γ ≤ (1−β)2

50L and T ≥ 1
1−β , we have

1

T + 1

T∑
t=0

E
[∥∥∥∇f

(
x̄ (t)

)∥∥∥2
F

]
≤ 8

γT

(
f
(
x̄ (0)

)
− f∗

)
+

4γL

n
σ2

+
1

T

(
64L2

(1− β)
2
n

∥∥∥ΠX (0)
∥∥∥2
F
+

1024γ2L2

(1− β)
4
n

∥∥∥∇F
(
X (0)

)∥∥∥2
F

)

+
2048γ2L2

(1− β)
4
T
σ2 +

3072γ4L4

(1− β)
4
n
σ2 +

512γ2L2

(1− β)
3 σ

2

≤ 8

γT

(
f
(
x̄ (0)

)
− f∗

)
+

5γL

n
σ2 +

2560γ2L2

(1− β)
3 σ2

+
1

nT

(
64L2

(1− β)
2

∥∥∥ΠX (0)
∥∥∥2
F
+
∥∥∥∇F

(
X (0)

)∥∥∥2
F

)
.

(26)

To meet the conditions of Lemma 12, Lemma 13, (25), (26), it suffices to let γ ≤ (1−β)2

50L . Then, (24)
follows by setting g (γ) to be the RHS of (26), A = 8

(
f
(
x̄ (0)

)
− f∗), B = 5L

n σ2, C = 2560L2

(1−β)3
σ2

and α = (1−β)2

50L in Lemma 14. �

D Numerical Experiments

D.1 Network-size independent consensus rate

In this experiment, we set M = 5 ln(n) for D-EquiStatic and M = 2 ln(n) for U-EquiStatic, which
is consistent with Theorems 1 and 3. For OD-EquiDyn and OU-EquiDyn, we set M = 5 ln(n) and
η = 0.5. Fig. 9 shows that the consensus rate is independent of the network size for all EquiTopo
graphs. The results are obtained by averaging over 3 independent random experiments.

0 25 50 75 100 125 150 175 200
Iteration

10 12

10 9

10 6

10 3

100

103

||x
(t)

x
||

D-EquiStatic

n = 1000
n = 2000
n = 3000
n = 4000
n = 5000

0 25 50 75 100 125 150 175 200
Iteration

10 12

10 10

10 8

10 6

10 4

10 2

100

102

||x
(t)

x
||

U-EquiStatic

n = 1000
n = 2000
n = 3000
n = 4000
n = 5000

0 25 50 75 100 125 150 175 200
Iteration

10 13

10 10

10 7

10 4

10 1

102

||x
(t)

x
||

OD-EquiDyn

n = 1000
n = 2000
n = 3000
n = 4000
n = 5000

0 25 50 75 100 125 150 175 200
Iteration

10 13

10 10

10 7

10 4

10 1

102

||x
(t)

x
||

OU-EquiDyn

n = 1000
n = 2000
n = 3000
n = 4000
n = 5000

Figure 9: The EquiTopo graphs can achieve network-size independent consensus rates.

D.2 Comparison with other topologies

We compare the consensus rate between topologies with one-peer or Θ(ln(n)) neighbors on network-
size n = 300 and n = 4900. In the one-peer case, each topology has exactly one neighbor. For
OD-EquiDyn and OU-EquiDyn, we set M = n− 1 and η = 0.5. In the Θ(ln(n)) neighbors case, we
set M = 9 and M = 13 for n = 300 and n = 4900, respectively, so that the number of neighbors is
identical to the static exponential graph for a fair comparison. The results are obtained by averaging
over 10 and 3 independent random experiments for n = 300 and n = 4900, respectively.

D.3 DSGD with EquiTopo

Least-square The distributed least square problems are defined with fi(x) = ‖Aix − bi‖2, in
which x ∈ Rd and Ai ∈ RK×d. In the simulation, we let d = 10 and K = 50. At node i, we
generate each element in Ai following standard normal distribution. Measurement bi is generated

29

0 20 40 60 80 100 120
Iteration

10 12

10 10

10 8

10 6

10 4

10 2

100

102

||x
(t)

x
||

n = 300

Static Exp. 2=0.80
U-EquiStatic 2=0.63
D-EquiStatic 2=0.71

0 20 40 60 80 100 120
Iteration

10 12

10 10

10 8

10 6

10 4

10 2

100

102

||x
(t)

x
||

n = 300

Ring
Grid
O.-P. Exp.
OU-EquiDyn
OD-EquiDyn

0 20 40 60 80 100 120
Iteration

10 12

10 10

10 8

10 6

10 4

10 2

100

102

||x
(t)

x
||

n = 4900

Static Exp. 2=0.86
U-EquiStatic 2=0.62
D-EquiStatic 2=0.69

0 20 40 60 80 100 120
Iteration

10 11

10 8

10 5

10 2

101

104

||x
(t)

x
||

n = 4900

Ring
Grid
O.-P. Exp.
OU-EquiDyn
OD-EquiDyn

Figure 10: Consensus rate comparison among different network topologies in average consensus problem. Left:
all graphs are with Θ(ln(n)) degree. Right: all graphs are with Θ(1) degree.

by bi = Aix
? + si with a given arbitrary x ? ∈ Rd where si ∼ N (0, σ2

sI) is some white noise. At
each iteration t, each node will generate a stochastic gradient via ∇̂f i(x) = ∇f i(x) + n i where
n i ∼ N (0, σ2

nI) is a white gradient noise. By adjusting constant σn, we can control the noise
variance. In this experiment, we set σs = 0.1 and σn = 1. The network size n is 300, and we set
M = 9 so that D/U-EquiStatic has the same degree as the static exponential graph. After fixing
M , we sample the basis until the second-largest eigenvalue of the gossip matrix is small enough.
The initial learning rate is 0.037 and decays by 1.4 every 40 iterations. The results are obtained by
averaging over 10 independent random experiments.

Deep learning

MNIST. We utilize EquiTopo graphs in DSGD to solve the image classification task with CNN over
MNIST dataset [15]. Like the CIFAR-10 experiment, we utilize BlueFog [38] to support decentralized
communication and topology settings in a cluster of 17 Tesla P100 GPUs. The network architecture is
defined by a two-layer convolutional neural network with kernel size 5 followed by two feed-forward
layers. Each convolutional layer contains a max pooling layer and a Rectified Linear Unit (ReLu).
We generate D/U-EquiStaic with M = 4 and sample OD/OU-EquiDyn with M = 16 and η = 0.53.
The local batch size is 64, momentum is 0.5, the learning rate is 0.01, and we train for 20 epochs.
Centralized SGD and Ring are included for comparison. See Fig. 11 for the training loss and test
accuracy of D/U-EquiStaic and OD/OU-EquiDyn graphs. See Table 5 for the test accuracy calculated
by averaging over last 3 epochs. EquiTopo graphs achieve competitive train loss and test accuracy to
centralized SGD.

CIFAR-10. We use the ResNet-20 model implemented by [10]. In this experiment, we train for
130 epochs with local batch size 8, momentum 0.9, weight decay 10−4, and the initial learning rate
0.01, which is divided by 10 at 50th, 100th, and 120th epochs. We follow the data augmentation
from [14], a 4 × 4 padding followed by a random horizontal flip and a 32 × 32 random crop. We
generate D/U-EquiStaic with M = 5 and sample OD/OU-EquiDyn with M = 16 and η = 0.53. See
Fig. 12 for the training loss and test accuracy of OD/OU-EquiDyn. See Table 5 for the test accuracy
calculated by averaging over last 5 epochs.

D.4 DSGT with EquiTopo

In addition to the DSGD experiments, we apply the OD/OU-EquiDyn graphs to the DSGT algorithm
when solving logistic regression with non-convex regularizations, i.e., fi(x) = 1

L

∑L
`=1 ln(1 +

30

Figure 11: Train loss and test accuracy comparisons among different topologies for CNN on MNIST.

Figure 12: Train loss and test accuracy comparisons among different topologies for ResNet-20 on CIFAR-10.

Table 5: Comparison of test accuracy(%) with different topologies over MNIST and CIFAR-10 datasets.

Topology MNIST Acc. CIFAR-10 Acc.
Centralized SGD 98.34 91.76

Ring 98.32 91.25
Static Exp. 98.31 91.48
O.-P. Exp. 98.17 90.86

D-EquiStatic 98.29 92.01
U-EquiStatic 98.26 91.74
OD-EquiDyn 98.39 91.44
OU-EquiDyn 98.12 91.56

exp(−yi,`h
T
i,`x)) +R

∑d
j=1 x

2
[j]/(1 + x2

[j]) where x[j] is the j-th element of x , and {h i,`, yi,`}L`=1

is the data kept by node i. Data heterogeneity exists when local data ξi follows different distributions
Di in problem (7). To control data heterogeneity across the nodes, we first let each node i be
associated with a local solution x ?

i , and such x ?
i is generated by x ?

i = x ?+v i where x ? ∼ N (0, I d)
is a randomly generated vector while v i ∼ N (0, σ2

hI d) controls the similarity between each local
solution. Generally speaking, a large σ2

h results in local solutions {x ?
i } that are vastly different

from each other. With x ?
i at hand, we can generate local data that follows distinct distributions. At

node i, we generate each feature vector h i,` ∼ N (0, I d). To produce the corresponding label yi,`,
we generate a random variable zi,` ∼ U(0, 1). If zi,` ≤ 1 + exp(−yi,`h

T
i,`x

?
i), we set yi,` = 1;

otherwise yi,` = −1. Clearly, solution x ?
i controls the distribution of the labels. This way, we can

31

easily control data heterogeneity by adjusting σ2
h. Furthermore, to easily control the influence of

gradient noise, we will achieve the stochastic gradient by imposing a Gaussian noise to the real
gradient, i.e., ∇̂f i(x) = ∇f i(x) + si in which si ∼ N (0, σ2

nI d). We can control the magnitude of
the gradient noise by adjusting σ2

n.

We let d = 10, L = 1000, n = 300, R = 0.001, and σh = 0.2 in the simulation. For OD/OU-
EquiDyn, we set M = n− 1 and η = 0.5. The learning rate for OD/OU-EquiDyn and O.-P. Exp. is 3
and 1.5, respectively so that all of them converge to the same level of accuracy. The left plot in Fig. 13
depicts the performance of different one-peer graphs in DSGT. The right plot in Fig. 13 illustrates
how O.-P. Exp. behaves if it has the same learning rate 3 as OU/OD-EquiDyn. The gradient norm is
used as a metric to gauge the convergence performance. The results are calculated by averaging over
10 independent random experiments. It is observed that OD/OU-EquiDyn converges faster than a
one-peer exponential graph.

0 50 100 150 200 250 300
Iteration

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Gr
ad

ie
nt

 N
or

m

O.-P. Exp.
OU-EquiDyn
OD-EquiDyn

0 50 100 150 200 250 300
Iteration

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Gr
ad

ie
nt

 N
or

m

O.-P. Exp.
OU-EquiDyn
OD-EquiDyn

Figure 13: OD/OU-EquiDyn in DSGT. Left: The learning rates for O.-P. Exp. and OU/OD-EquiDyn are 1.6
and 3, respectively, so that all algorithms achieve the same accuracy. Right: The learning rates for all algorithms
are 3 so that they share the same convergence rate in the initial stage.

32

	Directed EquiTopo Graphs
	Construction of a D-EquiStatic graph
	Proof of Theorem 1
	Proof of Theorem 2

	One-Peer Undirected EquiTopo Graphs (OU-EquiDyn)
	Illustration for basis graphs of OU-EquiDyn
	Node version of Alg. 2
	Proof of Theorem 4
	An alternative construction of OU-EquiDyn

	Applying EquiTopo Matrices to Decentralized Learning
	Convergence of DSGD for strongly convex cost functions
	Transient iteration
	Decentralized stochastic gradient tracking algorithm

	Numerical Experiments
	Network-size independent consensus rate
	Comparison with other topologies
	DSGD with EquiTopo
	DSGT with EquiTopo

