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Abstract

Decentralized optimization is an emerging paradigm in distributed learning in
which agents achieve network-wide solutions by peer-to-peer communication with-
out the central server. Since communication tends to be slower than computation,
when each agent communicates with only a few neighboring agents per iteration,
they can complete iterations faster than with more agents or a central server. How-
ever, the total number of iterations to reach a network-wide solution is affected
by the speed at which the agents’ information is “mixed” by communication. We
found that popular communication topologies either have large maximum degrees
(such as stars and complete graphs) or are ineffective at mixing information (such
as rings and grids). To address this problem, we propose a new family of topologies,
EquiTopo, which has an (almost) constant degree and a network-size-independent
consensus rate that is used to measure the mixing efficiency.
In the proposed family, EquiStatic has a degree of Θ(ln(n)), where n is the network
size, and a series of time-dependent one-peer topologies, EquiDyn, has a constant
degree of 1. We generate EquiDyn through a certain random sampling procedure.
Both of them achieve an n-independent consensus rate. We apply them to decentral-
ized SGD and decentralized gradient tracking and obtain faster communication and
better convergence, theoretically and empirically. Our code is implemented through
BlueFog and available at https://github.com/kexinjinnn/EquiTopo.

1 Introduction

Modern optimization and machine learning typically involve tremendous data samples and model
parameters. The scale of these problems calls for efficient distributed algorithms across multiple
computing nodes. Traditional distributed approaches usually follow a centralized setup, where each
node needs to communicate with a (virtually) central server. This communication pattern incurs
significant communication overheads and long latency.

Decentralized learning is an emerging paradigm to save communications in large-scale optimization
and learning. In decentralized learning, all computing nodes are connected with some network
topology (e.g., ring, grid, hypercube, etc.) in which each node averages/communicates locally with
its immediate neighbors. This decentralized setup allows each node to communicate with fewer
neighbors and hence has a much lower overhead in per-iteration communication. However, local
averaging is less effective in “mixing” information, making decentralized algorithms converge slower
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Table 1: Comparison between different commonly-used topologies. “Static Exp.”: static exponential graph;
“O.-P. Exp.”: one-peer exponential graph; “E.-R. Rand”: Erdos-Renyi random graph G(n, p) with probability
p = (1 + a) ln(n)/n for some a > 0; “Geo. Rand”: geometric random graph G(n, r) with radius r2 =
(1 + a) ln(n)/n for some a > 0. Undirected graphs can admit symmetric gossip matrices. If some graph has a
dynamic pattern, its associated gossip matrix will vary at each iteration.

Topology Connection Pattern Degree Consensus Rate size n

Ring [22] undirect. static Θ(1) 1−Θ(1/n2) arbitrary
Grid [22] undirect. static Θ(1) 1−Θ(1/(n ln(n))) arbitrary

Torus [22] undirect. static Θ(1) 1−Θ(1/n) arbitrary
Hypercube [31] undirect. static Θ(ln(n)) 1−Θ(1/ ln(n)) power of 2
Static Exp.[37] directed static Θ(ln(n)) 1−Θ(1/ ln(n)) arbitrary
O.-P. Exp.[37] directed dynamic 1 finite-time conv.† power of 2

E.-R. Rand [22] undirect. static Θ(ln(n))� Θ(1) arbitrary
Geo. Rand [5] undirect. static Θ(ln(n)) 1−Θ(ln(n)/n) arbitrary

D-EquiStatic directed static Θ(ln(n)) ρ ∈ (0, 1)‡ arbitrary
U-EquiStatic undirect. static Θ(ln(n)) ρ ∈ (0, 1)‡ arbitrary
OD-EquiDyn directed dynamic 1

√
(1 + ρ)/2 arbitrary

OU-EquiDyn undirect. dynamic 1
√
(2 + ρ)/3 arbitrary

† One-peer exponential graph has finite-time exact convergence only when n is the power of 2.
� Θ(ln(n)) is the averaged degree; its maximum degree can be O(n) with a non-zero probability.
‡ Constant ρ = Θ(1) is independent of network-size n.

than their centralized counterparts. Therefore, seeking a balance between communication efficiency
and convergence rate in decentralized learning is critical.

The network topology (or graph) determines decentralized algorithms’ per-iteration communication
and convergence rate. The maximum graph degree controls the communication cost, whereas the
connectivity influences the convergence rate. Intuitively speaking, a densely-connected topology
enables decentralized methods to converge faster but results in less efficient communication since
each node needs to average with more neighbors. Selecting an appropriate network topology is key
to achieving light communication and fast convergence in decentralized learning.

1.1 Prior arts in topology selections

Gossip matrix and consensus rate. Given a connected network of size n and its associated doubly-
stochastic gossip matrix W ∈ Rn×n (see the definition in § 2), its consensus rate β determines
how effective the gossip operation Wx is to mix information (see more explanations in § 2). It is a
long-standing topic in decentralized learning to seek topologies with both a small maximum degree
and a fast consensus rate (i.e., a small β as close to 0 as possible).

Static graphs. Static topologies maintain the same graph connections throughout all iterations.
The directedness, degree, and consensus rate of various common topologies are summarized in
Table 1. The ring, grid, and torus graphs [22] are the simplest sparse topologies with Θ(1) maximum
degree. However, their consensus rates quickly approach 1 as network size n increases, which
leads to inefficient local averaging. The hypercube graph [31] maintains a nice balance between
degree and consensus rate since ln(n) varies slowly with n. However, this graph cannot be formed
when size n is not the power of 2. The static exponential graph extends hypercubes to graphs with
any size n, but its directed communications cannot enable symmetric gossip matrices required in
well-known decentralized algorithms such as EXTRA [28], Exact-Diffusion [40], NIDS [16], D2 [30].
Two widely-used random topologies, i.e., the Erdos-Renyi graph [20, 3] and the geometric random
graph [4, 5], are also listed in Table 1. It is observed that the Erdos-Renyi graph achieves a network-
size-independent consensus rate with a Θ(ln(n)) averaged degree in expectation. However, it is
worth noting that the communication overhead in network topology is determined by the maximum
degree. Since some nodes may have much more neighbors than others in a random realization, the
maximum degree in the Erdos-Renyi graph can be O(n) with a non-zero probability. Moreover, the
random graphs listed in Table 1 are undirected. The may not be used in scenarios where directed
graphs are preferred.
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Dynamic graphs. Dynamic graphs allow time-varying topologies between iterations. When an
exponential graph allows each node to cycle through all its neighbors and communicate only to a
single node per iteration, we achieve the time-varying one-peer exponential graph [2, 37]. When the
network size n is the power of 2, a sequence of one-peer exponential graphs can together achieve
periodic global averaging. However, its consensus rate is unknown for other values of n. A closely
related work Matcha [34] proposed a disjoint matching decomposition sampling strategy when
training learning models. While it decomposes a static dense graph into a series of sparse graphs with
small degrees, the consensus rates of these dynamic graphs are not established.

Finally, it is worth noting that the consensus rates of all graphs (except for the Erdos-Renyi graph)
discussed above are either unknown or dependent on size n. Their efficiency in mixing information
gets less effective as n goes large.

1.2 Main results

Motivation. Since existing network topologies suffer from several limitations, we ask the follow-
ing questions. Can we develop topologies that have (almost) constant degrees and network-size-
independent consensus rates that admit both symmetric and asymmetric matrices of any size? Can
these topologies allow one-peer dynamic variants? This paper provides affirmative answers.

Main results and contributions. This paper develops several novel graphs built upon a set of basis
graphs in which the label difference between any pair of connected nodes are equivalent. With a
general name EquiTopo, these new graphs can achieve network-size-independent consensus rates
while maintaining (almost) constant graph degrees. Our contributions are:

• We construct a directed graph named D-EquiStatic that has a network-size-independent consensus
rate ρ with a degree Θ(ln(n)). Furthermore, we develop an one-peer time-varying variant named
OD-EquiDyn to achieve a network-size-independent consensus rate with degree 1.

• We construct a undirected graph U-EquiStatic, which has a network-size-independent consensus
rate ρ with degree Θ(ln(n)). It admits symmetric gossip matrices that are required by various
important algorithms. We also develop an one-peer time-varying and undirected variant named
OU-EquiDyn to achieve a network-size-independent consensus rate with degree 1.

• We apply the EquiTopo graphs to two well-known decentralized algorithms, i.e., decentralized
stochastic gradient descent (SGD) [6, 17, 12] and stochastic gradient tracking (SGT) [23, 36,
7, 35], to achieve the state-of-the-art convergence rate while maintaining Θ(ln(n)) (with D/U-
EquiStatic) or 1 (with OD/OU-EquiDyn) degree in per-iteration communication.

The comparison between EquiTopo and other common topologies in Table 1 shows that the EquiTopo
family (especially the one-peer variants) has achieved the best balance between maximum graph
degree and consensus rate. The comparison between EquiTopo and other common topologies when
applying to DSGD and DSGT are listed in Tables 3 and 4 in Appendix C.2 and Table 2.

Note. This paper considers scenarios in which any two nodes can be connected when necessary. The
high-performance data center cluster is one such scenario in which all GPUs are connected with
high-bandwidth channels, and the network topology can be fully controlled. EquiTopo may not be
applied to wireless network settings where two remote nodes cannot be connected directly.

1.3 Other related works

In decentralized optimization, decentralized gradient descent [24, 6, 26, 39] and dual averaging [8] are
well-known approaches. While simple and widely used, their solutions are sensitive to heterogeneous
data distributions. Advanced algorithms that can overcome this drawback include explicit bias-
correction [28, 40, 16], gradient tracking [23, 7, 25, 36], and dual acceleration [27, 33]. Decentralize
SGD is extensively studied in [6, 17, 2] to solve stochastic problems. It has been extended to
directed [2, 37] or time-varying topologies [12, 21, 34, 37], asynchronous settings [18], and data-
heterogeneous scenarios [30, 35, 1, 11, 19] to achieve better performances.
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Figure 1: The set of the basis graphs {G(A(u))}5u=1 for n = 6.

2 Notations and Preliminaries

Notations. We let 1n ∈ Rn be the all-ones vector and I ∈ Rn×n be the identity matrix. Furthermore,
we define J = 1

n1n1
T
n and Π = I − J . A matrix A = [aij ] ∈ Rn×n is nonnegative if aij ≥ 0

for all 1 ≤ i, j ≤ n. A nonnegative matrix A is doubly stochastic if A1n = AT1n = 1n. Given
a matrix A ∈ Rm×n, ‖A‖2 is its spectral norm. For x ∈ Rn, ‖x‖ is its Euclidean norm. We let
[n] = {1, · · · , n}. Throughout the paper, we define a mod operation that returns a value in [n] as

i mod n =

{
` if i = kn+ ` for some k ∈ Z and ` ∈ [n− 1],
n if i = kn for some k ∈ Z. (1)

Network. Given a graph G(V, E) with a set of n nodes V and a set of directed edges E . An edge
(j, i) ∈ E means node j can directly send information to node i. For undirected graphs, (j, i) ∈ E if
and only if (i, j) ∈ E . Node i’s degree is the number of its in-neighbors |{j|(j, i) ∈ E}|. A one-peer
graph means that the degree for each node is at most 1.

Weight matrices. To facilitate the local averaging step in decentralized algorithms, each graph is
associated with a nonnegative weight matrix W = [wij ] ∈ Rn×n, whose element wij is non-zero
only if (j, i) ∈ E or i = j. One benefit of an undirected graph is that it can be associated with a
symmetric matrix. Given a nonnegative weight matrix W ∈ Rn×n, we let G(W ) be its associated
graph such that (j, i) ∈ E if wij > 0 and i 6= j.

Consensus rate. For weight matrices {W (t)}t≥0 ⊆ Rn×n, the consensus rate β is the minimum
nonnegative number such that for any t ≥ 0 and vector x ∈ Rn with the average x̄ = 1

n

∑n
i=1 xi,

E
[∥∥∥W (t)x − x̄ · 1n

∥∥∥2] ≤ β2 ‖x − x̄ · 1n‖2 ,

or equivalently, E
[
‖ΠW (t)x‖2

]
≤ β2‖Πx‖2. For W (t) ≡ W , β essentially equals ‖ΠW ‖2.

3 Directed EquiTopo Graphs

3.1 Basis weight matrices and basis graphs

Given a graph of size n, we introduce a set of doubly stochastic basis matrices {A(u,n)}n−1
u=1 , where

A(u,n) = [a
(u,n)
ij ] ∈ Rn×n with

a
(u,n)
ij =


n−1
n , if i = (j + u) mod n,
1
n , if i = j,
0, otherwise.

(2)

Their associated graphs {G(A(u,n))}n−1
u=1 are called basis graphs. A basis graph G(A(u,n)) has

degree one and the same label difference (i − j) mod n for all edges (j, i). The set of five basis
graphs {G(A(u,6))}5u=1 for n = 6 is shown in Fig. 1. When n is clear from the context, we omit it
and write A(u) instead.

3.2 Directed static EquiTopo graphs (D-EquiStatic)

Our directed graphs are built on the above basis graphs, and a weight matrix has the form

W = 1
M

∑M
i=1 A

(ui), (3)
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where ui ∈ [n− 1] and M > 0 is the number of basis graphs we will sample. Throughout this paper,
the multiset {ui}Mi=1 are called basis index. It is possible that ui = uj for some i 6= j. Since each
A(u) has the form (2), the matrix W is doubly stochastic, and all nodes of the directed graph G(W )
have the same degree that is no more than M .

Since G(W ) is a directed static graph and built with M basis graphs, we name it D-EquiStatic. The
following theorem shows that we can construct a weight matrix W such that its consensus rate is
independent of the network size n by setting M properly. The proofs of all theorems are in the
Appendix.

Theorem 1 Let A(u) be defined by (2) for any u ∈ [n − 1]. For any constant ρ ∈ (0, 1), we
can choose a sequence of u1, · · · , uM from [n − 1] with M = Θ

(
ln (n) /ρ2

)
and construct the

D-EquiStatic weight matrix W as in (3) such that the consensus rate of W is ρ, i.e.,

‖ΠWx‖ ≤ ρ ‖Πx‖ , ∀x ∈ Rn (4)

The graph G(W ) has degree at most M . In the following, we will just say that the degree is Θ(ln(n)).
As ρ is tunable, we choose ρ as a constant, e.g., ρ = 0.5. A method of constructing D-EquiStatic
weight matrix W can be found in Appendix A.1.

Remark 1 Compared to all common topologies listed in Table 1, D-EquiStatic achieves a better
balance between degree and consensus rate. Moreover, D-EquiStatic works for any size n ≥ 2.
Different from the Erdos-Renyi random graph and the geometric random graph, whose degree cannot
be predefined before the implementation, we can easily specify the degree M for D-EquiStatic.

3.3 One-peer directed EquiTopo graphs (OD-EquiDyn)

While D-EquiStatic achieves a size-independent consensus rate with Θ(ln(n)) degree, we develop a
one-peer dynamic variant to further reduce its degree. Given a weight matrix W of form (3) and its
associated basis matrix {A(ui)}Mi=1, the one-peer directed variant, or OD-EquiDyn for short, samples
a random A(u) per iteration and utilizes it as the one-peer weight matrix, see Alg. 1. Since each
node in G(A(u)) has exactly one neighbor, the graph G(W (t)) has degree one for every iteration t.
Note that W (t) is a random time-varying weight matrix. Its consensus rate (in expectation) can be
characterized as below.

Algorithm 1: OD-EquiDyn weight matrix generation at iteration t

Input: constant η ∈ (0, 1); basis index {u1, u2, . . . , uM} from a weight matrix W of form (3);
Pick vt from uniform distribution over the basis index {u1, u2, . . . , uM};
Produce basis matrix A(vt) according to (2);
Output: W (t) = (1− η)I + ηA(vt)

Theorem 2 Let the one-peer directed weight matrix W (t) be generated by Alg. 1. It holds that

E
[ ∥∥∥ΠW (t)x

∥∥∥2 ] ≤ (1− 2η(1− η)(1− ρ)
)
‖Πx‖2 , ∀x ∈ Rn

where ρ is the consensus rate of the weight matrix W (which can be tuned freely as in Theorem 1).

Remark 2 The OD-EquiDyn graph has a degree of 1 no matter how dense the input matrix W

is. When η = 1/2, which is used in our implementations, it holds that E‖ΠW (t)x‖2 ≤ (1 +

ρ)/2 ‖Πx‖2 for any x ∈ Rn. Thus, the OD-EquiDyn graph maintains the same Θ(1) degree as ring,
grid, and the one-peer exponential graph but with a faster size-independent consensus rate.

Remark 3 For basis index {1, · · · , n − 1} (W = J ), Alg. 1 returns a sequence of OD-EquiDyn
graphs with E‖ΠW (t)x‖2 ≤ 1

2 ‖Πx‖2 when η = 1
2 because ‖ΠJx‖ = 0 implies ρ = 0.

Remark 4 Although the Erdos-Renyi random graph also enjoys Θ(1) consensus rate and Θ(ln(n))
average degree (see Table 1), its maximum degree could be as large as Θ(n) which implies that
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Figure 2: A few realizations of the OU-EquiDyn graphs for n = 6, s = 1, and u ∈ {1, 2, 3, 4, 5}.

Erdos-Renyi random graphs could be highly unbalanced. Moreover, Erdos-Renyi random graphs
are undirected graphs, while EquiStatic graphs can be both directed (Section 3) and undirected
(Section 4). In addition, the structure of EquiStatic allows simple construction of one-peer random
graphs which preserve Θ(1) consensus, while it is still an open problem on whether Erdos-Renyi
random graphs admit one-peer variants with Θ(1) consensus rate.

4 Undirected EquiTopo Graphs

The implementation of many important algorithms such as EXTRA [28], Exact-Diffusion [40],
NIDS [16], decentralized ADMM [29], and the dual-based optimal algorithms [27, 33, 13] rely
on symmetric weight matrices. Moreover, devices in full-duplex communication systems can
communicate with one another in both directions, and undirected networks are natural to be utilized.
These motivate us to study undirected graphs.

4.1 Undirected static EquiTopo graphs (U-EquiStatic)

Given a D-EquiStatic weight matrix W and its associated basis matrices {A(ui)}Mi=1, we directly
construct an undirected weight matrix name U-EquiStatic by

W̃ = 1
2 (W +W T ) = 1

2M

∑M
i=1(A

(ui) + [A(ui)]T ), (5)

whose basis index are {ui,−ui}Mi=1 because A(−u) = [A(u)]T .

Since W̃ is built upon W and ΠW = WΠ, the following theorem follows directly from∥∥∥ΠW̃
∥∥∥
2
=

1

2

∥∥ΠW + (ΠW )T
∥∥
2
≤ 1

2

(
‖ΠW ‖2 +

∥∥∥(ΠW )
T
∥∥∥
2

)
= ‖ΠW ‖2 .

Theorem 3 Let W be a D-EquiStatic matrix with consensus rate ρ and W̃ be the U-EquiStatic
matrix defined by (5). It holds that∥∥∥ΠW̃ x

∥∥∥ ≤ ρ ‖Πx‖ , ∀x ∈ Rn. (6)

4.2 One-peer undirected EquiTopo graphs (OU-EquiDyn)

Constructing a one-peer undirected graph OU-EquiDyn is not as direct as U-EquiStatic because
1
2 (A

(u) + [A(u)]T ) admits a graph with degree 2, see Appendix B.1 for an illustration.

Alg. 2 shows a method to construct a series of OU-EquiDyn matrices with degree 1. Starting from
node s, we connect a node with the uth node after it, as long as both of them have not been connected
to any other nodes. Fig. 2 illustrates the process when s = 1 and u = 1, · · · , 5 for a network of size
6. Some nodes have no neighbors at realizations u = 2 and u = 4. This phenomenon is caused by
the restriction that each node has no more than one neighbor. For instance, when u = 2, node 5 wants
to connect with node 1 but node 1 has already been connected to node 3. Thus, there exist node pairs
that are never connected when s = 1. To resolve this issue, we let the starting index s be sampled
randomly from [n]. Fig. 8 in Appendix B.1 illustrates the scenarios when s = 3. It is observed that
the pairs {3, 5} and {4, 6} are now connected to each other. The node version of OU-EquiDyn is
illustrated in Alg. 4 of Appendix. B.2.
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Algorithm 2: OU-EquiDyn weight matrix generation at iteration t

Input: η ∈ (0, 1); basis index {ui,−ui}Mi=1 from a symmetric weight matrix W̃ ∈ Rn×n of
form (5);

Pick vt ∈ {ui,−ui}Mi=1 and st ∈ [n] uniformly at random;
Initialize A = [aij ] = I and bi = 0, ∀i ∈ [n];
for j = (st : st + n− 1 mod n) do

i = (j + vt) mod n;
if bi = 0 and bj = 0 then

aij = aji = (n− 1)/n;
aii = ajj = 1/n;
bi = 1, bj = 1;

end
end

Output: W̃
(t)

= (1− η)I + ηA

Theorem 4 Let W̃ be a U-EquiStatic matrix with consensus rate ρ, and W̃
(t)

be an OU-EquiDyn
matrix generated by Alg. 2, it holds that

E
[∥∥ΠW̃

(t)
x
∥∥2] ≤ (1− 4

3
η(1− η)(1− ρ)

)
‖Πx‖2 , ∀x ∈ Rn.

Remark 5 Theorem 4 implies that the OU-EquiDyn graph can achieve a size-independent consensus
rate with a degree at most 1. When η = 1/2, it holds that E‖ΠW (t)x‖2 ≤ [(2 + ρ)/3]‖Πx‖2.

When W̃ = J and the basis index {1, · · · , n− 1} are input to Alg. 2, we obtain an OU-EquiDyn

sequence W̃
(t)

such that E‖ΠW̃
(t)
x‖2 ≤ (2/3)‖Πx‖2.

Remark 6 An alternative OU-EquiDyn matrix construction that relies on the Euclidean algorithm is
in Appendix B.4.

5 Applying EquiTopo Matrices to Decentralized Learning

We consider the following distributed problem over a network of n computing nodes:

min
x∈Rd

f(x ) =
1

n

n∑
i=1

fi(x ) (7)

where fi(x ) := Eξi∼Di
[F (x ; ξi)

]
. The function fi(x ) is kept at node i, and ξi denotes the local

data that follows the local distribution Di. Data heterogeneity exists if local distributions {Di}ni=1

are not identical. Throughout this section, we let x (t)
i be node i’s local model at iteration t, and

x̄ (t) = 1
n

∑n
i=1 x

(t)
i .

Assumptions. We make the following standard assumptions to facilitate analysis.

A.1 Each local cost function fi(x) is differentiable, and there exists a constant L > 0 such that
‖∇fi(x )−∇fi(y)‖ ≤ L ‖x − y‖ for all x ,y ∈ Rd.

A.2 Let g (t)
i = ∇F (x

(t)
i ; ξ

(t)
i ). There exists σ2 > 0 such that for any t and i

E
ξ
(t)
i ∼Di

g
(t)
i = ∇fi(x

(t)
i ), and E

ξ
(t)
i ∼Di

[ ∥∥∥g (t)
i −∇fi(x

(t)
i )
∥∥∥2 ] ≤ σ2.

A.3 (For DSGD only) There exists b2 such that 1
n

∑n
i=1 ‖∇fi(x )−∇f(x )‖ ≤ b2 for all x ∈ Rd.

5.1 Decentralized stochastic gradient descent

The decentralized stochastic gradient descent (DSGD) [6, 17, 12] is given by

x
(t+1)
i =

∑n
j=1 w

(t)
ij

(
x
(t)
j − γg

(t)
j

)
, (8)
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where the weight matrix W (t) = [w
(t)
ij ] can be time-varying and random. Applying the EquiTopo

matrices discussed in § 3-4, we achieve the following convergence results, whose proof follows
Theorem 2 in [12] directly, and is omitted here. More results for DSGD are given in Appendix C.1.

Theorem 5 Consider the DSGD algorithm (8). Under Assumptions A.1-A.3, it holds that

1

T + 1

T∑
t=0

E
[ ∥∥∥∇f(x̄ (t))

∥∥∥2 ] = O
( σ√

nT
+

β
2
3σ

2
3

T
2
3 (1− β)

1
3

+
β

2
3 b

2
3

T
2
3 (1− β)

2
3

+
β

T (1− β)

)
,

• where β = ρ with D-EquiStatic W or U-EquiStatic W̃ ;

• where β =
√
(1 + ρ)/2 for OD-EquiDyn W (t) (Alg. 1 with η = 1/2), and β =

√
(2 + ρ)/3 for

OU-EquiDyn W̃
(t)

(Alg. 2 with η = 1/2).

For a sufficiently large T , the term O(1/
√
nT ) dominates the rate, and we say the algorithm reaches

the linear speedup stage. The transient iterations are referred to as those iterations before an algorithm
reaches the linear-speedup stage. We compare the per-iteration communication, convergence rate,
and transient iterations of DSGD over various topologies in Tables 3 and 4 of the Appendix. It is
observed that OD/OU-EquiDyn endows DSGD with the lightest communication, fastest convergence
rate, and smallest transient iteration complexity.

5.2 Decentralized stochastic gradient tracking algorithm

The decentralized stochastic gradient tracking algorithm (DSGT) [23, 7, 25, 36, 35] is given by

x
(t+1)
i =

∑n
j=1 w

(t)
ij

(
x
(t)
j − γy

(t)
j

)
;

y
(t+1)
i =

∑n
j=1 w

(t)
ij y

(t)
j + g

(t+1)
i − g

(t)
i , y

(0)
i = g

(0)
i .

(9)

The following result of DSGT does not appear in the literature since it admits an improved convergence
rate for stochastic decentralized optimization over asymmetric or time-varying weight matrices.
Existing works on DSGT assume weight matrix to be either symmetric [11, 1] or static [35].

Theorem 6 Consider the DSGT algorithm in (9). If {W (t)}t≥0 have consensus rate β, then under
Assumptions A.1-A.2, it holds for T ≥ 1

1−β that

1

T + 1

T∑
t=0

E
[
‖∇f(x̄ (t))‖2

]
= O

( σ√
nT

+
σ

2
3

(1− β)T
2
3

+
1

(1− β)
2
T

)
.

When utilizing the EquiTopo matrices, the corresponding β is specified in Theorem 5. Note that
DSGT achieves linear speedup for large T . The per-iteration communication and convergence rate
comparison of DSGT over different topologies is in Table 2. OD/OU-EquiDyn endows DSGT with
the lightest communication, fastest convergence rate, and smallest transient iteration complexity.

6 Numerical Experiments

This section presents experimental results to validate EquiTopo’s network-size-independent consensus
rate and its comparison with other commonly-used topologies in DSGD on both strongly-convex
problems and non-convex deep learning tasks. More experiments for EquiTopo in DSGT and all
implementation details are referred to Appendix D.

Network-size independent consensus rate. This simulation examines the consensus rates of all
four EquiTopo graphs. We recursively run the gossip averaging x (t+1) = W (t)x (t) with x (0) ∈ Rn

initialized arbitrarily and W (t) ∈ Rn×n generated as D-EquiStatic (Eq. (3)), OD-EquiDyn (Alg. 1),
U-EquiStatic (Eq. (5)), and OU-EquiDyn (Alg. 2), respectively. Fig. 3 depicts how the quantity
‖x (t) − Jx (0)‖ evolves when n ranges from 1000 to 10, 000 with D-EquiStatic topology. See
Appendix D for all other EquiTopo graphs, which also achieve network-size independent consensus
rates when n varies. These results are consistent with Theorems 1 - 4.
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Table 2: Per-iteration communication and computation complexity of the DSGT under different topologies.

Topology Per-iter Comm. Convergence Rate Trans. Iters.

Ring Θ(1) O
(

σ√
nT

+ n2σ
2
3

T
2
3

+ n4

T

)
O(n15)

Torus Θ(1) O
(

σ√
nT

+ nσ
2
3

T
2
3

+ n2

T

)
O(n9)

Static Exp. Θ(ln(n)) O
(

σ√
nT

+ ln(n)σ
2
3

T
2
3

+ ln2(n)
T

)
O(n3 ln6(n))

O.-P. Exp. 1 O
(

σ√
nT

+ ln(n)σ
2
3

T
2
3

+ ln2(n)
T

)
O(n3 ln6(n))

D(U)-EquiStatic Θ(ln(n)) O
(

σ√
nT

+
(
σ
T

) 2
3 + 1

T

)
O(n3)

OD (OU)-EquiDyn 1 O
(

σ√
nT

+
(
σ
T

) 2
3 + 1

T

)
O(n3)
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Figure 3: The D-EquiStatic topology can achieve
network-size independent consensus rate.
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OU-EquiDyn
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Figure 4: OD/OU-EquiDyn is faster than other
topologies (i.e., ring, grid, and one-peer exponen-
tial graph) with Θ(1) degree in consensus rate.

Comparison with other topologies. We now compare EquiTopo’s consensus rate with other
commonly-used topologies. Fig. 4 illustrates the performance of several graphs with Θ(1) degree
when running gossip averaging. We set n = 4900 so that the grid graph can be organized as 70× 70.
OD/OU-EquiDyn is much faster than other topologies. Note that each node in OD-EquiDyn, OU-
EquiDyn, and O.-P. Exp. has exactly one neighbor per iteration. More experiments on graphs with
Θ(ln(n)) degrees and on scenarios with smaller network sizes are in Appendix D.

DSGD with EquiTopo: least-square. We next apply D/U-EquiStatic graphs to DSGD when solving
the distributed least square problems. In the experiment, we let n = 300 and set M = 9 so that
D/U-EquiStatic has the same degree as the exponential graph. Fig. 5 depicts that D/U-EquiStatic
converges much faster than a static exponential graph, especially in the initial stages when the learning
rate is large. The U-EquiStatic performs slightly better than D-EquiStatic since its bi-directional
communication enables the graph with better connectivity.

DSGD with EquiTopo: deep learning. We consider the image classification task with ResNet-
20 model [9] over the CIFAR-10 dataset [14]. We utilize BlueFog [38] to support decentralized
communication and topology setting in a cluster of 17 Tesla P100 GPUs. Fig. 6 illustrates how D/U-
EquiStatic compares with static exp., ring, and centralized SGD in training loss and test accuracy. It
is observed that D/U-EquiStatic has strong performance. They achieve competitive training losses to
centralized SGD but slightly better test accuracy. Meanwhile, they also outperform static exponential
graphs in test accuracy by a visible margin (D-EquiStatic: 92%, U-EquiStatic: 91.7%, Static Exp.:
91.5%). Experiments with EquiDyn topologies and results on MNIST dataset [15] are in Appendix D.
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Figure 5: D/U-EquiStatic in DSGD. λ2 is the second largest eigenvalue.

Figure 6: Train loss and test accuracy comparisons among different topologies for ResNet-20 on CIFAR-10.

7 Conclusion

This paper proposes EquiTopo graphs that achieve a state-of-the-art balance between the maximum
degree and consensus rate. The EquiStatic graphs are with Θ(ln(n)) degrees and n-independent
consensus rates, while their one-peer variants, EquiDyn, maintain roughly the same consensus rates
with a degree at most 1. EquiTopo enables decentralized learning with light communication and fast
convergence. To the best of our knowledge, we are not aware of any negative social impacts in our
results.
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