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Abstract

Neural Ordinary Differential Equations (NODEs) have proven successful in learn-
ing dynamical systems in terms of accurately recovering the observed trajectories.
While different types of sparsity have been proposed to improve robustness, the
generalization properties of NODEs for dynamical systems beyond the observed
data are underexplored. We systematically study the influence of weight and fea-
ture sparsity on forecasting as well as on identifying the underlying dynamical
laws. Besides assessing existing methods, we propose a regularization technique to
sparsify “input-output connections” and extract relevant features during training.
Moreover, we curate real-world datasets consisting of human motion capture and
human hematopoiesis single-cell RNA-seq data to realistically analyze different
levels of out-of-distribution (OOD) generalization in forecasting and dynamics
identification respectively. Our extensive empirical evaluation on these challenging
benchmarks suggests that weight sparsity improves generalization in the presence
of noise or irregular sampling. However, it does not prevent learning spurious
feature dependencies in the inferred dynamics, rendering them impractical for pre-
dictions under interventions, or for inferring the true underlying dynamics. Instead,
feature sparsity can indeed help with recovering sparse ground-truth dynamics
compared to unregularized NODEs.

1 Introduction

Extreme over-parameterization has shown to be part of the success story of deep neural networks
[52, 5, 4]. This has been linked to evidence that over-parameterized models are easier to train,
perhaps because they develop “convexity-like” properties that help convergence of gradient descent
[10, 14]. However, over-parameterization comes at the cost of additional computational footprint
during training and inference [13]. Therefore, motivation for sparse neural networks are manifold
and include: (i) imitation of human learning, where neuron activity is typically sparse [2], (ii)
computational efficiency (speed up, memory reduction, scalability) [20], (iii) interpretability [51], as
well as (iv) avoiding overfitting or improving robustness [6].

Enforcing sparsity in model weights, also called model pruning, and its effects for standard predictive
modelling tasks have been extensively studied in the literature [20]. However, sparsity in continuous-
depth neural nets for modeling dynamical systems and its effects on generalization properties is still
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underexplored. Neural Ordinary Differential Equations (NODEs) [11] have been introduced as the
limit of taking the number of layers in residual neural networks to infinity, resulting in continuous-
depth (or continuous-time) neural nets. NODEs were originally predominantly used for predictive
tasks such as classification or regression, where they learn some dynamics serving the predictive
task. These networks have also shown great promise for modeling noisy and irregular time-series.
More recently, it has been stated that NODEs can also be thought of as learning the underlying
dynamics (i.e., the ODE) that actually govern(s) the evolution of the observed trajectory. In the
prior scenario (predictive performance), a large body of literature has focused on regularizing the
number of model evaluations required for a single step of the ODE solver for improving the efficiency
[16, 22, 17, 39, 18, 38]. These regularization techniques rely on learning one out of many possible
equivalent dynamical systems giving rise to the same ultimate performance, but are easier and faster
to solve. Crucially, these regularizers do not explicitly target sparsity in the model weights or in the
features used by the model.
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Figure 1: Model vs feature sparsity

In the latter scenario (inferring dynamical laws), we as-
sume the existence of a ground truth ODE that governs
the dynamics of the observed trajectories. Here, two types
of sparsity may be of interest. First, motivated by stan-
dard network pruning, sparsity in model weights (weight
sparsity or model sparsity) can reduce computational re-
quirements for inference [28], see Figure 1(top). Second,
it has been argued that feature sparsity, i.e., reducing the
number of inputs a given output of the NODE relies on,
can improve identifiability of the underlying dynamical
law [3, 7, 30], see Figure 1(bottom). The motivation for
feature sparsity often relies on an argument from causality,
where it is common to assume sparse and modular causal
dependencies between variables [45, 54].

In this paper, we empirically assess the impact of various
types of sparsity-enforcing methods on the performance
of NODEs on different types of OOD generalization for
both prediction and for inferring dynamical laws on real-
world datasets. While most existing methods target weight
sparsity, we highlight that feature sparsity can improve
interpretability and dynamical system inference by propos-
ing a new regularization technique for continuous-time
models. Specifically, our main contributions are the following:

• We propose PathReg2, a differentiable L0-based regularizer that enforces sparsity of “input-output
paths” and leads to both feature and weight sparsity.

• We extend L0 regularization [31] and LassoNet [26] to NODEs and perform extensive comparisons
with existing models including vanilla NODE [11], C-NODE [3], GroupLasso for NODEs [7], and
our PathReg.

• We define a useful metric for evaluating feature sparsity, demonstrate the differences between
weight and feature sparsity, and explore whether and when one implies the other.

• To cover at least part of the immense diversity of time-series problems, each of which implying
different types of OOD challenges, we curate large, real-world datasets consisting of human motion
capture (mocap.cs.cmu.edu) as well as human hematopoiesis single-cell RNA-seq [32] data for
our empirical evaluations.

2 Background

2.1 Continuous-depth neural nets

Among the plethora of deep learning based methods to estimate dynamical systems from data
[29, 44, 27, 38], we focus on Neural Ordinary Differential Equations (NODEs). In NODEs, a neural
network with parameters θ is used to learn the function fθ ≈ f from data, where f defines a (first

2The python implementation is available at: https://github.com/theislab/PathReg
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order) ODE in its explicit representation Ẋ = f(X, t) [11]. Starting from the initial observation X(a)
at some time t = a, an explicit iterative ODE solver is deployed to predict X(t) for t ∈ (a, b] using
the current derivative estimates from fθ. The parameters θ are then updated via backpropagation
on the mean squared error (MSE) between predictions and observations. As discussed extensively
in the literature, NODEs can outperform traditional ODE parameter inference techniques in terms
of reconstruction error, especially for non-linear dynamics f [11, 15]. In particular, one advantage
of NODEs over previous methods for inferring non-linear dynamics such as SINDy [9] is that no
dictionary of non-linear basis functions has to be pre-specified.

A variant of NODEs for second order systems called SONODE exploits the common reduction
of higher-order ODEs to first order systems [37]. The second required initial condition, the initial
velocity Ẋ(a), is simply learned from X(a) via another neural network in an end-to-end fashion. Our
experiments build on the public NODE and SONODE implementations. However, our framework
is readily applicable to most other continuous-depth neural nets including Augmented NODE [15],
latent NODEs [44], and neural stochastic DEs [27, 48].

2.2 Sparsity and generalization

Two prominent motivations for enforcing sparsity in over-parameterized deep learning models are
(a) pruning large networks for efficiency (speed, memory), (b) as a regularizer that can improve
interpretability or prevent overfitting. In both cases, one aims at preserving (as much as possible)
i.i.d. generalization performance, i.e., performance on unseen data from the same distribution as the
training data, compared to a non-sparse model [20].

Another line of research has explored the link between generalizability of neural nets and causal
learning [45], where generalization outside the i.i.d. setting, is conjectured to require an underlying
causal model. Deducing true laws of nature purely from observational data could be considered an
instance of inferring a causal model of the world. Learning the correct causal model enables accurate
predictions not only on the observed data (next observation), but also under distribution shifts for
example under interventions [45]. A common assumption in causal modeling is that each variable
depends on (or is a function of) few other variables [45, 54, 36, 8]. In the ODE context, we interpret
the variables (or their derivatives) that enter a specific component fi as causal parents, such that we
can write Ẋi = f(pa(Xi), t) [35]. Thus, feature sparsity translates to each variable Xi having only
few parents pa(Xi), which can also be interpreted as asking for “simple” dynamics. Since weight
sparsity as well as regularizing the number of function evaluations in NODEs can also be considered
to bias them towards “simpler dynamics”, these notions are not strictly disjoint, raising the question
whether one implies the other.

In terms of feature sparsity, Aliee et al. [3], Bellot et al. [7] study system identification and causal
structure inference from time-series data using NODEs. They suggest that enforcing sparsity in
the number of causal interactions improves parameter estimation as well as predictions under in-
terventions. Let us write out fθ as a fully connected net with L hidden layers parameterized by
θ := (W l, bl)L+1

l=1 as

fθ(X) = WL+1σ(. . . σ(W 2σ(W 1X + b1) + b2) . . .) (1)

with element-wise activation function σ, l-th layer weights W l, and biases bl. Aliee et al. [3] then
seek to reduce the overall number of parents of all variables by attempting to cancel all contributions
of a given input on a given output node through the neural net. In a linear setting, where σ(x) = x,
the regularization term is defined by3

∥A∥1,1 = ∥WL+1 . . .W 1∥1,1 (2)

where Aij = 0 if and only if the i-th output is constant in the j-th input. In the non-linear setting,
for certain σ(x) ̸= x, the regularizer ∥A∥1,1 = ∥|WL+1| · · · |W 1|∥1,1 (with entry wise absolute
values on all W l) is an upper bound on the number of input-output dependencies, i.e., for each
output i summing up all the inputs j it is not constant in. Regularizing input gradients [42, 41, 43] is
another alternative to train neural networks that depend on fewer inputs, however it is not scalable to
high-dimensional regression tasks.

3The 1, 1 norm ∥W∥1,1 is the sum of absolute values of all entries of W .
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Bellot et al. [7] instead train a separate neural net fθi : Rn → R for each variable Xi and penalize
NODEs using GroupLasso on the inputs via

n∑
k,i=1

∥[W 1
i ]·,k∥2 (3)

where W 1
i is the weight matrix in the input layer of fi and [W 1

i ]·,k refers to the kth column of
W 1

i that should simultaneously (as a group) be set to zero or not. While enforcing strict feature
sparsity (instead of regularizing an upper bound), parallel training of multiple NODE networks can
be computationally expensive (Figure 1, bottom). While this work suggests that sparsity of causal
interactions helps system identification, its empirical evaluation predominantly focuses on synthetic
data settings, leaving performance on real data underexplored.

Another recent work suggests that standard weight or neuron pruning improves generalization for
NODEs [28]. The authors show that pruning lowers empirical risk in density estimation tasks and
decreases Hessian’s eigenvalues, thus obtaining better generalization (flat minima). However, the
effect of sparsity on identifying the underlying dynamics as well as the generalization properties of
NODEs to forecast future values are not assessed.

3 Sparsification of neural ODEs

In an attempt to combine the strengths of both weight and feature sparsity, we propose a new
regularization technique, called PathReg, which compares favorably to both C-NODE [3] and
GroupLasso [7]. Before introducing PathReg, we describe how to extend existing methods to NODEs
for an exhaustive empirical evaluation.

3.1 Methods

L0 regularization. Inspired by [31], we use a differentiable L0 norm regularization method that
can be incorporated in the objective function and optimized via stochastic gradient descent. The L0
regularizer prunes the network during training by encouraging weights to get exactly zero using a set
of non-negative stochastic gates z. For an efficient gradient-based optimization, Louizos et al. [31]
propose to use a continuous random variable s with distribution q(s) and parameters ϕ, where z is
then given by

s ∼ q(s | ϕ), z = min(1,max(0, s)) . (4)

Gate z is a hard-sigmoid rectification of s2 that allows the gate to be exactly zero. While we have the
freedom to choose any smoothing distribution q(s), we use binary concrete distribution [33, 21] as
suggested by the original work [31]. The regularization term is then defined as the probability of s
being positive

q(z ̸= 0 | ϕ) = 1−Q(s ≤ 0 | ϕ) , (5)

where Q is the cumulative distribution function of s. Minimizing the regularizer pushes many gates
to be zero, which implies weight sparsity as these gates are multiplied with model weights. L0
regularization can be added directly to the NODE network fθ.

LassoNet is a feature selection method [26] that uses an input-to-output skip (residual) connection
that allows a feature to participate in a hidden unit only if its skip connection is active. LassoNet can
be thought of as a residual feed-forward neural net Y = STX + hθ(X), where hθ denotes another
feed-forward network with parameters θ, S ∈ Rn×n refers to the weights in the residual layer, and Y
are the responses. To enforce feature sparsity, L1 regularization is applied to the weights of the skip
connection, defined as ||S||1,1 (where ∥ · ∥1,1 denotes the element-wise L1 norm). A constraint term
with factor ρ is then added to the objective to budget the non-linearity involved for feature k relative
to the importance of Xk

min
θ,S

LE(θ,S) + λ||S||1 subject to ∥[W 1]·,k∥∞ ≤ ρ||[S]·,k||2 for k ∈ {1, . . . , n} , (6)

where [W 1]·,k denotes the kth column of the first layer weights of hθ, and [S]·,k represents the kth

column of S. When ρ = 0, only the skip connection remains (standard linear Lasso), while ρ → ∞
corresponds to unregularized network training.
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Figure 2: The distributions of network weights and paths weights (over the entries of the matrix in
Eq. 13) using PathReg applied to single-cell data in Section 4.3. PathReg increases both model and
feature sparsity.

LassoNet regularization can be extended to NODEs by adding the skip connection either before or
after the integration (the ODE solver). If added before the integration, which we call Inner LassoNet,
a linear function of X is added to its time derivative

Ẋ = STX + fθ(X, t) , X(0) = x0 . (7)

Adding the skip connection after the integration (and the predictor o), called Outer LassoNet, yields

Xt = STXt + o(ODESolver(fθ, x0, t0, t)) . (8)

PathReg (ours). While L0 regularization minimizes the number of non-zero weights in a network, it
does not necessarily lead to feature sparsity meaning that the response variables can still depend on
all features including spurious ones. To constrain the number of input-output paths, i.e., to enforce
feature-sparsity, we regularize the probability of any path throughout the entire network contributing
to an output. To this end, we use non-negative stochastic gates z = g(s) similar to Eq. 4, where the
probability of an input-output path P being non-zero is given by

q(P ≠ 0) =
∏
z∈P

q(z ̸= 0 | ϕ) (9)

and we constrain
#paths∑
i=1

∏
z∈Pi

q(z ̸= 0 | ϕ) (10)

to minimize the number of paths that yield non-zero contributions from inputs to outputs. This is
equivalent to regularizing the gate adjacency matrix Az = GL+1 · . . . ·G1. Where Gl is a probability
matrix corresponding to the probability of the l-th layer gates being positive. Then, Azij represents
the sum of the probabilities of all paths between the i-th input and the j-th output. Ultimately, we
thus obtain our PathReg regularization term

∥Az∥1,1 = ∥GL+1 . . . G1∥1,1 with Gl
ij = ql(zij ̸= 0 | ϕi,j) , (11)

where ql(zij ̸= 0) with parameters ϕi,j is the probability of the l-th layer gate zij being nonzero.
Regularizing ∥Az∥1,1, minimizes the number of paths between inputs and outputs and induces no
shrinkage on the actual values of the weights. Therefore, we can utilize other regularizers on θ such
as ∥A∥1,1 in conjunction with PathReg similar to Eq. 2. In this work, we consider the following
overall loss function

R(θ, ϕ) = Eq(s|ϕ)

[
1

N

( N∑
i=1

L
(
o(f(xi; θ ⊙ g(s)), yi

))]
+ λ0∥Az∥1,1 + λ1∥A∥1,1

= LE(θ, ϕ) + λ0∥Az∥1,1 + λ1∥A∥1,1 (12)

where L corresponds to the loss function of the original predictive task, LE the overall predictive loss,
o is the NODE-based model with f modeling time derivatives, g(·) := min(1,max(0, ·)), λ0, λ1 ≥ 0
are regularization parameters, and ⊙ is entry-wise multiplication. LE measures how well the model
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Table 1: Results for the synthetic second-order ODE.

MSE SPARSITY (%)

MODEL TRAIN EXTRAPOLATION FEATURES WEIGHTS

BASE 1.3× 10−4 3.2× 10−3 47.9 11.1
L0 1.9× 10−2 3.3× 10−2 0.0 49.6
C-NODE 6.6× 10−5 4.1× 10−4 75.5 16.7
PATHREG 6.3× 10−5 3.9× 10−4 75.5 35.2
LASSONET 8.4× 10−3 4.0× 10−2 0.0 0.0
GROUPLASSO 8.8× 10−5 1.5× 10−3 61.1 6.0

fits the current dataset. While ∥A∥1,1 shrinks the actual values of weights θ in an attempt to zero out
entire paths, ∥Az∥1,1 enforces exact zeros for entire paths at once. When Azij = 0 the output i is
constant in input j. In practice, during training the expectation in Eq. 12 is estimated as usual via
Monte Carlo sampling.

Unlike GroupLasso [7], PathReg does not require training of multiple networks in parallel. Moreover,
unlike C-NODE [3], PathReg leads to exact zeros in the weight matrices and requires no choice of
threshold for deciding which paths are considered as zeros (see Figure 2).

3.2 Training sparse models

Sparsity can generally be enforced during or after model training. In this paper, we study two main
approaches [20] to train sparse models: (i) sparse training, where we add regularizers already during
model training; (II) training and iterative sparsification, where we iteratively increase regularization
parameters only after the model has been trained (close to) to convergence. A detailed description of
our training procedures and architecture choices for each experiment is provided in Appendix A.

3.3 Assessing feature sparsity

For models regularized with L0 or PathReg the natural measure for feature sparsity is

(|WL+1| ⊙GL+1) · . . . · (|W 1| ⊙G1) , (13)

where absolute values are taken entry-wise. LassoNet also allows for a natural feature sparsity
metric by counting the non-zero input weights

∑n
j=1 ∥W

(1)
j ∥2 > ϵ of the first hidden layer, where

n denotes the number of input features and ϵ is a small tolerance parameter. To evaluate feature
sparsity for other feed-forward continuous-depth models, we count the number of non-zero elements
in A = |WL+1| · · · |W 1| again with entry wise absolute values on all W and within some tolerance ϵ
(set to 1e− 5 in our experiments). This amounts to an upper bound on the number of input-output
dependencies: while we can have Ai,j ̸= 0 even though Xj /∈ pafθ (Xi), Ai,j = 0 always implies
Xj /∈ pafθ (Xi).

4 Results

In this section, we present empirical results on several datasets from different domains including
human motion capture data and large-scale single-cell RNA-seq data. We demonstrate the effect of
the different sparsity methods including L0 [31], C-NODE [3], LassoNet [26], GroupLasso [7], and
our PathReg on the generalization capability of continuous-depth neural nets. We address different
aspects of generalization by assessing the accuracy of these models for time-series forecasting and
the identification of the governing dynamical laws. In all examples, we assume that the observed
motion can be (approximately) described by a system of ODEs where variables correspond directly
to the observables of the trajectories.

4.1 Sparsity for system identification

We motivate sparsity for NODEs starting with a simple second-order NODE as used by Aliee et al.
[3]. The differential equations explaining this system are presented in Appendix B.1. The questions

6



Base -

L0 Model

C-NODE Model

PathReg Model + 

Feature

LassoNet Feature

Method

N
am

e

Re
gu

la
riz

at
io

n

ap

pl
ie

d 
on

Overall Performance Sparsities

O
ve

ra
ll


Sc
or

e

O
ve

ra
ll


Pe
rfo

rm
an

ce

Worst         Best

8.5e-3     2.0e-4

Performance (MSE)

Ranking

Best


Worst

Tr
ai

n

W

al
k

Tr
ai

n

G

ol
f

Tr
ai

n

W

av
e

Te
st



G
ol

f

O
ve

ra
ll


Sp
ar

si
tie

s

W
ei

gh
t

Fe
at

ur
e

Te
st

 

W

al
k Min         Max


0.0         84.33

Sparsity (%)

Figure 3: Qualitative result comparison for the human motion capture data. Circle sizes indicate
the scaled (continuous) metrics: MSE (blue) and sparsity (in %) (green). The lengths of bar show
the mean metric over all sparsities / performances for a method. Different shades of the same color
indicate the ranking from best to worst method within a given column. The overall score (orange)
is the average over all the scores, including both performance and sparsity, for each method across
datasets. We then rank the methods accordingly. PathReg yields the best overall results in this
comparison.

that we try to answer here are whether different sparsity methods can (i) learn the true underlying
system, and (ii) forecast into the future (extrapolate). For this linear system, the adjacency matrix
represents the exact coefficients in Eq. 14. The results summarized in Tables 1 and 2 show that
PathReg, C-NODE, LassoNet, and GroupLasso perform well with respect to reconstruction error.
Moreover, PathReg, C-NODE, and GroupLasso lead to higher sparsity and outperform other methods
for extrapolation. Among these methods, only PathReg and C-NODE are able to learn the true system
with the lowest error4.

4.2 Sparsity improves time-series forecasting

We next demonstrate the robustness of sparse models for both reconstructing and extrapo-
lating human movements using real motion capture data from mocap.cs.cmu.edu. Each
datapoint is 93-dimensional (31 joint locations with three dimensions each) captured over
time. We select three different movements including walking, waving, and golfing, and use
100 frames each for training. After training, we query all models to extrapolate the next
100 frames. For walking and golfing, where multiple trials are available, we also test the
model on unseen data in the sense that it has not seen any subset of those specific se-
quences (despite having trained on other sequences depicting the same type of movement).

train	data

extrapolation

PathReg

Base

PathReg

Base

test	data

Figure 4: Human-movement reconstructions and
extrapolation.

Generally, for time-series forecasting, it is not
straight forward to give precise definitions of
in-, and out-of-distribution. In Table 7 in Ap-
pendix C, we show a grid of plots illustrating
loss and sparsity as a function of the regular-
ization parameter λ of each method on this
dataset. We show detailed results in Table 3
in Appendix C and summarize them concisely
in Figure 3. We did not manage to scale Grou-
pLasso to this 93-dimensional dataset. While
all other models show comparative performance
(in terms of MSE error), only PathReg achieves
strong levels of both weight and feature sparsity
(quantitative comparison is in Table 3). The re-
sults show that PathReg outperforms other meth-

4GroupLasso is originally designed for first-order ODEs. Here, we use an augmented version of that feeding
also the initial velocities to the network. Therefore, a direct comparison with its adjacency matrix is not entirely
adequate.
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Figure 5: Single-cell RNA-seq Data. Shown are 2D UMAP visualisation of training data colored
by cell types and pseudotime (top) where each point is a cell, and the expressions of three genes
and their predictions over pseudo time using C-NODE (top) and PathReg (bottom). The predictions
across all genes are presented in Figure 9.

ods with respect to MSE for both train and test datasets while resulting in the highest model and
feature sparsity.

We further examine the extrapolation (in time) capability of these models. We observe that all sparsity
regularization techniques improve extrapolation over unregularized NODEs. Figure 4 qualitatively
illustrates the reconstruction and extrapolation performance of both the baseline and PathReg for
the walking dataset (visually, the results are similar to PathReg for other regularizers). While these
models perform well for extrapolation and generalization to unseen data, we show that only PathReg
and C-NODE are able to avoid using spurious features for forecasting. Figures 7 and 8 in Appendix C
show that PathReg and C-NODE learn sensible and arguably correct adjacency matrices (derived
from joint connectedness), whereas L0 and LassoNet fail to sparsify the input-output interactions
appropriately (more details in Appendix C.2). Since we use second-order NODEs for this dataset, the
adjacency matrix described in Section 3.3 represents how the acceleration predicted by fθ of each
joint point (e.g., Xi) depends on the positions as well as the velocities of other joint points (e.g., Xj).
In case the dependency is non-constant, we infer that the joint point Xi interacts with Xj .

4.3 Sparsity improves dynamic identification for single-cell data

Finally, we explore how pruning (i) improves real-world generalization and (ii) helps to learn gene-
gene interactions in human hematopoiesis single-cell multiomics data [32] (GEO accession code =
GSE194122). The regulatory (or causal) dependencies between genes can explain cellular functions
and help understanding biological mechanisms [1]. Gene interactions are often represented as a
gene regulatory network (GRN) where nodes correspond to genes and directed edges indicate regula-
tory interactions between genes. Reliable GRN inference from observational data is exceptionally
challenging and still an open problem in genomics [40]. As human regulatory genes known as
transcription factors (∼ 1,600 [25]), do not individually target all genes (potentially up to ∼ 20,000),
the inferred GRN is expected to be sparse. Thus, predicting the expression of a gene should depend
on few other genes that can be restricted using sparsity-enforcing regularizers.
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Figure 6: Comparison results using the single-cell RNA-seq Data. PathReg shows best overall results,
as well as with regard to performance, and to sparsity. The models are trained with batch S1D2, and
tested using other four batches.

For assessing real-world generalization of various sparsity-enforcing methods, we use human bone
marrow data of four diverse donors, generated at three different sites using five sequencing batches
(the pre-processing steps applied to the data are discussed in Appendix B.3). In this experiment, we
train NODE models with one batch (S1D2), and later test those using other four batches (S1D1, S2D1,
S2D4, and S3D6). Notably, time-resolved ground truth dynamics of cells throughout their lifetime
are not available, because all existing genome-wide technologies are destructive to the cells [32].
Therefore, scRNA-seq only offers static snapshots of data and the temporal order of cell states is
commonly estimated based on certain distances between their measured transcriptomes. Following
that, we first apply the diffusion pseudo-time (DPT) ordering approach [19], a diffusion map based
manifold learning technique, to rank the cells. This allows to generate a cell fate mapping from
hematopoietic stem cells (HSC) into three biological lineages that are used for training: Monocyte,
Erythroid, and B cells (Figure 5). NODEs are then trained using highly-variable genes (529 genes)
with time taken to be the inferred pseudo-time (Figure 9).

The train and test MSE across 5 batches and three pruning methods are presented in Table 5 and
Table 7 in Appendix C.3 and summarized in Figure 6. While all regularized models achieve decent
predictive performance, PathReg outperforms the other methods in most scenarios. We further
study the transcription-factor-to-target-gene interactions via the adjacency matrices filtered for
transcription factors (columns) and target genes (rows) (see Appendix B.3 for more details). The
adjacency matrix A demonstrates what transcription factors (on columns) are used for predicting the
expression value of a target gene (on rows). |Aij | > ϵ for a small threshold ϵ = 1e− 5 can then be
interpreted as an interaction between gene i and gene j being present in the data (see Figure 10 for
an illustrating example). For visualisation purposes, Figure 11 only shows the adjacency matrices
across the Erythroid lineage. However, the results are comparable for other lineages. The used list
of transcription factors and target genes are extracted using chromatin and sequence-specific motif
information (we again refer to Appendix B.3 for more details). Since ground truth dynamics are not
known for GRNs, validating the inferred interactions for multiple cell types is a challenging task.
However, we observe that PathReg and L0 are able to remove the interactions between pairs known to
not directly causally influence each other, including target genes (called spurious features in Table 5
and further discussed in Appendix B.3), while the other models fail in that regard. Assessed by the
literature, we also observe that known Erythroid transcription factors are inferred as important by
both PathReg and L0 (RUNX1 [24], ETV6 [49], NFIA [34], MAZ [12], GATA1 [53]).

5 Conclusion and discussion

We have shown the efficacy of various sparsity enforcing techniques on generalization of continuous-
depth NODEs and proposed PathReg, a regularizer acting directly on entire paths throughout a
neural network and achieving exact zeros. We curate real-world datasets from different domains
consisting of human motion capture and single-cell RNA-seq data. Our findings demonstrate that
sparsity improves out-of-distribution generalization (for the types of OOD considered) of NODEs
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when our objective is system identification from observational data, extrapolation of a trajectory,
or real-world generalization to unseen biological datasets collected from diverse donors. Finally,
we show that unlike weight sparsity, feature sparsity as enforced by PathReg can indeed help
in identifying the underlying dynamical laws instead of merely achieving strong in-distribution
predictive performance. This is particularly relevant for applications like gene-regulatory network
inference, where the ultimate goal is not prediction and forecasting, but revealing the true underlying
regulatory interactions between genes of interest. We hope that our empirical findings as well as
curated datasets can serve as useful benchmarks to a broader community and expect that extensions of
our framework to incorporate both observational and experimental data will further improve practical
system identification for ODEs. Finally, our path-based regularization technique may be of interest to
other communities that aim at enforcing various types of shape constraints or allowed dependencies
into deep learning based models5.
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