A Appendix

A.1 Algorithm for the Proposed Message Passing

Algorithm 1 The Proposed Message Passing

1: for:=1,...,ndo
2. forj=1,....,kdo

3: Compute d;; = ||p; — ijg
4:  end for
5:  Get reference nodes via
fi = argminge n, (dir), si = argminge a3 (dik)
6: end for
7: fori=1,...,ndo
8. forj=1,....kdo
9: Get reference nodes via

fi\j_{fi, if fi #j ,fj\i—{fj’ if fj # i

si, otherwise sj, otherwise

10: Compute angles via

92] = anglel (fl> ia .7)7

¢ij = angley(planey, ; .., planey, ; ;),
. end for Tij = angleg(planey, ; ;. plane; j ¢ ),
12:  Update node features via Eq. 1
13: end for

As rigorously shown in Algorithm 1 , there are two nested loops in the message passing. For each
nested loop, the complexity for the outer loop is O(n), and the complexity for the inner loop is
O(k). Particularly, within the inner loop, the operations are picking proper reference nodes, thus
the complexity is simply O(1). Overall, the total complexity of our message passing is O(nk).
Importantly, the efficiency of our method is also demonstrated in Sec. 6 that ComeNet is 6-10 times
faster than SphereNet. Actually, the training time of ComENet is similar to SchNet whose complexity
is also O(nk).

A2 SE@3)

SE(3) is the Special Euclidean group in 3 dimensions, including all rotations and translations in 3D.
It is the set of 4 x 4 real matrices of the form

ri1 T2 T3t
ROt t _ 21 722 723 tg (l)
0 1 T3] T32 T33 i3

0 0 0 1

where Rot € SO(3) and t € R3. The SO(3) is the set of 3 x 3 real matrices Rot satisfying
RotT Rot = I and det(Rot) = 1.

A.3 Proofs of Lemma 1

Proof. We employ contradiction to prove it. Basically, there exist two cases when adding this new
node j, as illustrated in Fig. 1 and described as following. Case (1): i has more than one neighboring
nodes c12,...; Case (2): i only has one neighboring node c;.

Generally, in case (1), we need to prove p;; is uniquely defined as (dij, 055, Pij); in case (2), we need
to prove p, ; is uniquely defined as (d;;, 0;;, 7.,:;). We assume there exists another location for j such

that there is a different relative location vector ﬁij, and this assumption leads to contradiction. The
proofs of both cases are provided below. O
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Figure 1: Two cases for proving Lemma 1 when generalizing the size of a 3D graph from & to k + 1.

Proof of case (1): In case (1), we need to prove p,; is uniquely defined as (dij, 05, ¢i;). Based on
the notations defined in Sec. 2.4, we have

2

(Pijo i) = dij,
(Pif,»Pij) = dig, dijcosty,
<T(pis,;)ﬂT(pij)> = ||T(pis7¢) |||T(Pij)||603¢ij7 @)
<T(pis,;) X T(pij)7pifl> =di, || T(p;s,) |||T(Pij)||3m¢ij7

where 7" denotes an operator of projection to the plane perpendicular to p,;,. Apparently, all the
quantities on the right side are known based on Sec. 2.4. Assume the solution set contains at least
two different solutions p,; and f)ij. Eq. 2 can simply imply that

<pifi’pij - I~)ZJ> =0,
<T(pis,;)apij - IN’”> =0, 3)
<T(pisi) X (pij - ﬁij)vpifi> =0.

Apparently, both T'(p,,,) and p,; — p;; are in the plane perpendicular to p,,. Hence, T'(p;,,) ¥
(p;; — P;;) = ap,y, holds for some o # 0. However, from Eq. 3, we have

Since a # 0 and p,, # 0, Eq. 4 causes a contradiction. Thus, the solution set contains a unique
solution.

Proof of case (2): In case (2), we need to prove p;; is uniquely defined by (d;;, 6,5, 7¢,;). Based on
the notations defined in Sec. 2.4 and Sec. 2.2, we have

_ 2

<pijapij> =d;;,

(Pis,»Pij) = dig, dijcostij,

<T(Pfiffi\i)7T(pij)> =T(py,y,..)

<T(Pfiffi\i) X T(pij)apifi> = difiHT(Pfiffi\)

T (pi;)llcosTe,s, 5)

HlT(pij)”SinTCﬂ)

where T still denotes an operator of projection to the plane perpendicular to p, ;,. Similarly, all the
quantities on the right side are known based on Sec. 2.4 and Sec. 2.2. Assume the solution set



contains at least two different solutions p,; and p; ;- Eq. 5 can simply imply that
(Pif, Pij —Bij) =0,
<T(Pfl-ffi\i)v Pij — E-j> =0,

N (6)
<T(Pfiffi\i) X (pij - pij)vpifi> =0.

Both T'(py, ffq‘,\i) and p,; — p,; are in the plane perpendicular to p, ;,. Hence, T'(p, ff,;\i) x (psj —
ﬁij) = ap;y, holds for some « # 0. However, from Eq. 6, we have

<T(Pfiffi\,i) X (pij - ﬁij)7pifi> =« <pifi7pifi> =0. %

Since a # 0 and p, ¢, # 0, Eq. 7 causes a contradiction. Thus, the solution set contains a unique
solution.

A.4 Model architecture

Interaction Layer updates each node feature vector v based on features of the neighboring nodes and
the corresponding 3D information in P. Firstly, it converts 3D information in P to a set of geometries
based on the proposed complete geometric transformation 7 and message passing scheme. Since
distance is the most important geometry, we also consider d in global representation and split the
output of 7T into two tuples (d, 8, ¢) and (d, 7), for local and global representations, respectively.

Importantly, the tuples (d, 6, ¢) and (d, 7) cannot serve as immediate inputs to the network. They
need to be transformed into physically meaningful vectors based on quantum-based basis functions.
As in previous studies [6, 3, 8, 4], we test different basis functions including MLP, Gaussian and
sine functions, spherical Bessel functions, and spherical harmonics. We found spherical Bessel
and spherical harmonics perform best. Formally, the basis function for tuple (d, 6, ¢) is TBF

Je (ﬂfid) Y/ (0, ¢), where je(-) is a spherical Bessel function of order ¢, Y™ is a spherical harmonic
function of degree m and order /, c is the cutoff, and 5y, is the n-th root of the Bessel function of
order . The basis function for tuple (d, 7) is SBF j, (%d) Y (7). These two basis functions are
also used in SphereNet [8] and GemNet [4].

The two physically meaningful vectors from TBF and SBF are then imported into a local convolution
layer and a global convolution layer, respectively. For both convolution layers, we use the Graph-
Conv [9] implemented in the PyTorch Geometric library [2]. The vectors from the basis functions are
used as edge weights in the convolution layers. The outputs of local and global convolution layers are
concatenated to generate a new node feature vector. Then the concatenated vector is forwarded into
several linear layers to generate the updated feature vector v'.

A.5 Data Description

0OC20. The Open Catalyst 2020 (OC20) dataset [1] is a newly released dataset to model and discover
catalysts. Specifically, the goal is efficient DFT approximation of structure relaxation, which is
a fundamental calculation in catalysis to determine a structure’s activity and selectivity. All the
structures in the dataset contain a surface and an adsorbate, and the surface is defined by a unit cell that
is periodic in all directions. There are three tasks including Structure to Energy and Forces (S2EF),
Initial Structure to Relaxed Structure (IS2RS), and Initial Structure to Relaxed Energy (IS2RE).

In this work, we focus on Initial Structure to Relaxed Energy (IS2RE) task, which is the most common
task in catalysis as the relaxed energies are often correlated with catalyst activity and selectivity. The
dataset for IS2RE is originally split into training, validation, and test sets. The training set contains
460,328 structures and the validation set has four splits including in-domain (ID), out-of-domain
adsorbate (OOD Ads), out-of-domain catalyst (OOD Cat), and out-of-domain adsorbate and catalyst
(OOD Both), with 24,733, 24,961, 24,738, 24,971 structures respectively.



Molecule3D. The Molecule3D dataset [13] is a newly proposed large-scale dataset, including around
4 million molecules with precise ground-state geometries derived from DFT. The dataset is collected
from PubChemQC [10] and designed for predicting 3D geometries from molecular graphs [13] while
we aim to learn representations and predict properties for molecules based on their geometries. The
dataset contains 3,899,647 molecules and is split into training, validation, and test sets via random
and scaffold split with ratio 6:2:2. Random split ensures the training, validation, and test data are
sampled from the same distribution while scaffold split leads to a distribution shift between training
and test data. The evaluation metric is the MAE between the predictions and the ground truth.

QM09. The QM9 dataset [1 1] is a widely used dataset for predicting various properties of molecules.
It includes geometric, energetic, electronic, and thermodynamic properties for 134k stable small
organic molecules. The dataset is split into three sets, where the training set contains 110,000, the
validation set contains 10,000, and the test set contains 10,831 molecules. The twelve properties are
dipole moment (1), isotropic polarizability (), highest occupied molecular orbital energy (egomo),
lowest unoccupied molecular orbital energy (e umo), gap between egomo and € umo, electronic
spatial extent (<R2>), zero point vibrational energy (ZPVE), internal energy at OK (Up), internal
energy at 298.15K (U) , enthalpy at 298.15K (H), free energy at 298.15K (G) , and heat capavity at
298.15K (¢y).

A.6 Experimental Setup

ComENet. The values/search space of model and training hyperparameters for ComENet on OC20,
Molecule3D, and QM9 are provided in Table 1 and Table 2. For Molecule3D and QM9, the optimal
hyperparameters are chosen by the performance on the validation sets. For OC20, since the final
comparison results are on validation set, we firstly use 10% of the training data to choose optimal
hyperparameters, then train our model on whole training data. Specifically, we use a larger cutoff
value for OC20 to generate graphs and larger hidden dimensions for OC20 and Molecule3D. All
models are trained on NVIDIA GeForce RTX 2080 Ti 11GB GPU for Molecule3D and QM9. For the
0OC20 dataset, we use NVIDIA RTX A6000 48GB GPU. Note that one experiment is only conducted
on one GPU.

Baselines for Molecule3D. As Molecule3D is a newly proposed dataset, we run experiments and
provide results for baseline methods including GIN-Virtual [5], SchNet [12], DimeNet++[7] and
SphereNet [&8]. All the models are trained on one GPU (Nvidia GeForce RTX 2080 Ti 11GB). The
model hyperparameters and training hyperparameters are listed in Table 3 and Table 4. The optimal
hyperparameters are chosen by the performance on validation set. Note that for DimeNet++[7] and
SphereNet [8], the maximum batch size is 32 due to the GPU memory limitation.

Table 1: Model hyperparameters for ComENet.

\ Values/ search space

Model Hyperparameters \ 0C20 Molecule3D QM9
Number of layers 4,5,6 4,5,6,8 4,5,6
Cutoff 6.0, 8.0 5.0 5.0
Hidden dim 128, 256, 512 128,256,512 128, 256
Hidden dim in Self-Atom layer 128,256,512 128,256,512 128, 256
Number of layers in Self-Atom layer 2,3,4 2,3,4 2,3,4
Number of layers of the MLP in Interaction layer 2,3,4 2,3,4 2,3,4
Distance embedding dim 6,12 6,12 6,12
Angle embedding dim 3,6 3,6 3,6




Table 2: Training hyperparameters for ComENet.

\ Values/ search space

Training hyperparameters \ 0C20 Molecule3D QM9
Epochs 20 300 1000
Batch size 64, 128 128, 256 32,64, 128
Learning rate 1e-3, 5e-4, 2e-4 le-3, Se-4, 2e-4 le-3, 5e-4,2e-4 1le-3, Se-4, 2e-4
Learning rate decay factor 0.4,0.5,0.6 0.4,0.5,0.6 04,0.5,0.6
Learning rate decay epochs Milestone [4,7,10,12] 20, 30, 50 100, 200
Warmup epochs 2 - -
Warmup factor 0.2 - -

Table 3: Model hyperparameters for baseline methods on Molecule3D.

\ Values/ search space

Model Hyperparameters | GIN-Virtual ~SchNet DimeNet++ SphereNet

Number of layers 4,6, 8 4,6,8 3,4,5,6 3,4,5,6
Cutoff - 10.0 6.0 6.0
Hidden dim 600 256 128 128

Table 4: Training hyperparameters for baseline methods on Molecule3D.

Values/ search space

Training hyperparameters |  GIN-Virtual SchNet DimeNet++ SphereNet

Epochs 300 300 300 300

Batch size 64, 128, 256 64, 128, 256 16, 32 16, 32

Learning rate le-3, 5e-4,2e-4  1le-3, 5e-4,2e-4 1le-3, S5e-4, 2e-4  1e-3, S5e-4, 2e-4

Learning rate decay factor 04,0.5,0.6 0.4,0.5,0.6 0.4,0.5,0.6 0.4,0.5,0.6

Learning rate decay epochs 20, 30, 50 20, 30, 50 20, 30, 50 20, 30, 50
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