
Appendix overview

The appendix is subdivided into the following seven topics:

A Central angle property: Quick proof of the central angle property, used in Sect. 3.2 in the
recursive construction of relatively optimal solutions based on the optimal branching angles.

B Optimal L- and V-shaped branching: Derivation of the conditions listed in Tab. 1 under which
V- or L-branching are optimal.

C Optimal substructure of BOT solutions (Proof of Lem. 2.1): Formal proof of Lemma 2.1 on
the optimal substructure of BOT solutions.

D Properties of the functions f and h describing the optimal branching angles: Collection
of small lemmas on the monotonicity and other properties of the analytical expression for the
branching angles (cf. Eq. (3)).

E Non-optimality of higher-degree branchings: Technical proofs and numerical scheme to show
the non-optimality of higher-degree branchings discussed in Sect. 4.1.

F BOT on two-dimensional Riemannian manifolds: Formal proof of Theorem 5.1, which
generalizes the optimal branching conditions and other properties from the Euclidean plane to
embedded surfaces. A sketch of the proof can be found in Sect. 5.1.

G Algorithms: Additional details and experiments for the different algorithms presented in the
main paper. Section G.2 focuses on the numerical geometry optimization and Sect. G.3 on
the greedy algorithm for the topology optimization. Section G.1 holds a few examples of the
recursive geometric construction of relatively optimal solutions for BOT problems with multiple
sources.

A Central angle property

In this section, we present a geometric proof of the central angle property used in the geometric
construction of relatively optimal solutions for a given full tree topology (see Sect. 3.2). It states that
for a circle, as in Fig. 9a, the central angle ∠a1oa2 is twice the angle ∠a1qa2 = θ for all q on the
lower circle arc.
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Figure 9: (a) Illustration of the central angle theorem. (b) Isosceles triangles used in the geometric
proof.

Let us start by constructing the three isosceles triangles△oqa1,△oqa2 and△oa1a2 with angles as
denoted in Fig. 9b. Now consider the angular sums in the following triangles:

△qa1a2 : 2δ1 + 2δ2 + 2τ = 180◦ and △oa1a2 : γ + 2τ = 180◦ .

Subtracting the two equations immediately reveals that γ = 2δ1+2δ2 = 2θ and the proof is complete.

B Optimal L- and V-shaped branching

Below, we formally derive the conditions listed in Tab. 1 under which V- or L-branching provide
the optimal solution to a BOT problem with one source and two sinks. The proof is inspired by the
approach in [21], where subdifferentials are applied to the related Fermat-Torricelli problem.
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Definition B.1 (Subgradient and subdifferential). A vector v ∈ Rn is called a subgradient of a
convex scalar function g : Rn → R at a specific point y if for all x ∈ Rn it satisfies

g(x) ≥ g(y) + ⟨v, x− y⟩ (8)
The set of all subgradients of the function g at a given point y is called the subdifferential of g at y
and is denoted by ∂g(y).

From a geometric point of view, the subdifferential of g at y is the set of gradients of all straight
lines which cross g(y) and lie below the image of g. The subdifferential rule of Fermat follows
immediately from the definition and states that g achieves an absolute minimum at y if and only if
0 ∈ ∂g(y). Now, for g(b) = c · ∥b− a∥2 with c ∈ R and a ∈ Rn the subdifferential is given by

∂g(b) =

Bc , for b = a{
c b−a
∥b−a∥2

}
, elsewhere,

with Br = {v ∈ Rn : ∥v∥2 ≤ r}, the ball of radius r. Furthermore, it can be easily shown that for
g(x) = g1(x) + g2(x), one has ∂g(y) = ∂g1(y) + ∇g2(y), given that both g1 and g2 are convex
functions and g2 is differentiable.3 Using this, we calculate the subdifferentials of the cost function
of the 1-to-2 branching in Eq. (2). The subdifferentials at b = ai are of the form

∂C(ai) = Bmα
i
+
∑
j ̸=i

mα
j

ai − aj
∥ai − aj∥

.

Based on the rule of Fermat, the cost function achieves an absolute minimum at b = ai if and only if∥∥∥∥∥∥
∑
j ̸=i

mα
j

ai − aj
∥ai − aj∥

∥∥∥∥∥∥ ≤ mα
i . (9)

V-branching. We square condition (9) and evaluate it for i = 0 in order to determine under which
condition a V-shaped branching with b∗ = a0 is optimal:∥∥∥∥mα

1

a0 − a1
∥a0 − a1∥

+mα
2

a0 − a2
∥a0 − a2∥

∥∥∥∥2 = m2α
1 +m2α

2 + 2mα
1m

α
2 cos(ψ) ≤ m2α

0 = (m1 +m2)
2α

where ψ denotes the angle of the terminal triangle at a0, i.e., ψ = ∠a1a0a2. The condition in terms
of ψ reads

ψ ≥ arccos

(
1− k2α − (1− k)2α

2kα(1− k)α

)
= h(α, k) = θ∗1 + θ∗2 , (10)

where we have used the flow fraction k = m1/(m1+m2). We immediately recognize the expression
for the optimal branching angle θ∗1 + θ∗2 , cf. Eq. (3).

We already know that ψ = θ∗1 + θ∗2 on the lower circle arc of the pivot circle by construction. And
indeed one can easily check that ψ > θ∗1+θ

∗
2 if an only if the source a0 lies inside the lower half of the

pivot circle, as in Fig. 10. For that, we construct a line through a1 and a0 and the intersection of a1a0
with the lower pivot circle we denote by q. By construction of the pivot circle, ∠a1qa2 = θ∗1 + θ∗2 .
Using the angular sum in the triangle△a0qa2, one immediately obtains:

180◦ = δ + (180◦ − ψ) + (θ∗1 + θ∗2) → ψ − (θ∗1 + θ∗2) = δ > 0 .
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Figure 10: Sketch to show that ψ > θ∗1 + θ∗2 .

Hence, for a0 located inside the lower half of the pivot circle indeed ψ > θ∗1 +θ
∗
2 . A similar argument

can show that for any point outside the pivot circle the optimal V-branching condition is not fulfilled.
3The sum of a vector and a set of vectors, as in ∂g1(y) +∇g2(y), is known as the Minkowski sum.
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L-branching. Analogous to the above steps, one obtains conditions for optimal L1- and L2-
branching, where b∗ = a1 and b∗ = a2 respectively. Again squaring the general condition (9), now
for i = 1, 2, one eventually finds that

φ ≥ π − f(α, 1− k) = π − θ∗2 , (11)
ϱ ≥ π − f(α, k) = π − θ∗1 , (12)

where the angle φ and ϱ denote the angles of the terminal triangle located at a1 and a2,
i.e. φ = ∠a2a1a0 and ϱ = ∠a0a2a1 (see also Fig. 11c,d). Let us now demonstrate that these
conditions are indeed fulfilled if and only if the source is located in the L1- and L2-region, as marked
also in Fig. 5. The pivot point p is constructed such that ∠a1op = 2θ∗1 and ∠poa2 = 2θ∗2 , cf. Fig. 3b.
Besides that, by construction, we have that ∠pa1a2 = θ∗2 and ∠a1a2p = θ∗1 (as shown in Fig. 11c,d).
Then, looking at Fig. 11c, it is evident that indeed for any source a0 inside the L1-branching sector
the condition φ = ∠a2a1a0 ≥ π − θ∗2 holds. The respective condition (12) for L2-branching holds
true exactly inside the highlighted L2-region.

Definition B.2 (Transient and strict V- and L-branchings). A V- or L-branching for which the
inequality conditions (10)-(12) hold as equality is referred to as transient V- or L-branching. The
reason for this is that, in such a case, one of the terminal positions may be perturbed infinitesimally,
so that the condition is no longer fulfilled and the optimal solution transitions to a Y-shaped branching.
On the contrary, if an L- or V-branching condition is fulfilled as strict inequality, we call the L- or
V-branching strict.
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Figure 11: After constructing the pivot point the position of the source a0 determines whether a Y-,V-
or L-shaped branching is optimal.

B.1 Relation of V- and L-conditions between symmetric and asymmetric branchings

Let us briefly show that the corner cases of Y-, V- and L-branching work analogously for both flow
scenarios (described in Fig. 3a,d). The conditions under which L- and V-branching are optimal in
the asymmetric branching case could be again determined straightforwardly by plugging into the
subdifferential condition (9), as before. However, looking at Fig. 3a,d, we notice that the well-known
symmetric branching case can be transformed into the asymmetric case by relabeling a0 → a2,
a1 → a0 and a2 → a1. This relation provides a direct correspondence of the L- and V-branching
conditions. The conditions for the corner case are transferred according to Table 2. Note that the L-
and V-branching conditions for both cases are of the exact same form, only that for the asymmetric
case the stationary branching angles are ϑ∗i instead of θ∗i . Moreover, for fixed children positions a1
and a2, the position of the source again distinguishes between optimal Y-, V- and L-branching. The
partitioning of the lower half plane into the respective regions is completely analogous to Fig. 11a.
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symmetric branching asymmetric branching

V: ∠a1a0a2 ≥ θ∗1 + θ∗2 L2: ∠a0a2a1 ≥ θ∗1 + θ∗2 = π − ϑ∗
1

L1: ∠a2a1a0 ≥ π − θ∗2 V: ∠a1a0a2 ≥ π − θ∗2 = ϑ∗
1 + ϑ∗

2

L2: ∠a0a2a1 ≥ π − θ∗1 L1: ∠a2a1a0 ≥ π − θ∗1 = π − ϑ∗
2

Table 2: Relations between the L- and V-branching conditions (see Fig. 11) for symmetric and
asymmetric branchings.

C Optimal substructure of BOT solutions (Proof of Lem. 2.1)

In this section, we provide the formal proof to Lemma 2.1, repeated below for completeness:

Lemma C.1. (a) For a given tree topology, a BOT solutions is a relatively optimal if and only if every
(coupled) BP connects its (effective) neighbors at minimal cost. (b) In a globally optimal solution,
every subsolution restricted to a connected subset of nodes solves its respective subproblem globally
optimally.

Let us start with the following definition, which divides a BOT problem and its possible solutions
into subproblems and corresponding subsolutions.

Definition C.1 (Subproblems and subsolutions). A given BOT solution may be split into two
subsolutions, by choosing a number of edges {ei} and cutting them at points {xi}, so that the
topology is split into two connected components. This procedure induces two subproblems and two
subtopologies. Each subproblem consist of the terminals contained in the respective component plus
additional terminals at the positions xi. The demands or supplies of the additional terminals at xi are
equal to the amount of flow through the corresponding edge ei that was cut. The terminal becomes a
sink in one subproblem and a source in the other according to the direction of flow through ei. The
two subtopologies are given by the induced subgraph on all terminals contained in one component.
The subsolutions to the created subproblems are given by the subtopologies and the BP configurations
of the respective subsets of branching points contained in each subproblem. Note that using a number
of such splits a given solution may be divided into several subsolutions, each solving their respective
subproblem. An illustrative example can be found in Fig 12.

Figure 12: A BOT solution (left) is split into two subsolutions (right) by cutting an edge as indicated
by the dashed line.

Proof of the optimal substructure as necessary condition for optimality. The optimal substruc-
ture as necessary optimality condition follows immediately from the independence of the subproblems.
Given that a solution is minimal in cost (in the relative or global sense), each subproblems itself must
be minimal in that sense. Otherwise the cost of this subproblem could be decreased by (a) improving
the BP configuration or (b) the topology. In that case, also the full solution could be improved in cost
and could thus not be optimal.

Proof of the optimal substructure as sufficient condition for optimality. The optimal substructure
as sufficient optimality condition stems from the fact that, given a tree topology, the BOT cost function
is convex with respect to the BP positions. As a first step, let us prove the following lemmata:

Lemma C.2. Let b be a branching point with neighbors {ai}. Let the optimal position of b be at one
of its neighbors with the condition (9) fulfilled as equality, i.e. the branching is transient. Then, for
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every δ > 0 there exists a BP location bδ ∈ R2 away from all neighbors with ∥b− bδ∥2 < δ and a
continuous function f : R+ → R with limx→0 f(x) = 0, such that the gradient ∥∇b C(bδ)∥2 < ϵ for
0 < ϵ < f(δ).

Proof. Let C(b) be the cost of the subproblem with terminals ai. WLOG, the condition (9) is fulfilled
as equality for terminal a0, meaning that

∥v∥ = mα
0 with v :=

∑
i ̸=0

mα
i

a0 − ai
∥a0 − ai∥

. (13)

The optimal branching point is hence located at a0. Consider the alternative branching point position
bδ = a0 − δv with sufficiently small δ > 0, such that bδ is located away from all terminals. The
gradient with respect to the branching point position is well defined at bδ and reads:

∇b C(bδ) = −mα
0

v

∥v∥
+
∑
i ̸=0

mα
i

a0 − ai − δv
∥a0 − ai − δv∥

. (14)

Clearly, ∥∇b C(bδ)∥ can be brought arbitrarily close to zero as δ → 0, since

∥∇b C(bδ)∥2 = m2α
0 +m2α

0 − 2mα
0

〈
v,

v

∥v∥

〉
︸ ︷︷ ︸

=0

+O(δ) , (15)

comprising the terms which go to zero as δ → 0 in O(δ). The function absorbed in O(δ) therefore
provides the function f and bδ is the desired branching point with arbitrarily small gradient. The
argument works for both coupled and uncoupled branching points.

Lemma C.3. For a given full tree topology T , let B = {bi} be the ROS of a BOT problem with
terminals A = {ai}. Let B contain Y-branchings and transient V- or L-branchings. Then, for every
δ > 0 there exists a non-degenerate BP configuration Bδ and a continuous function f : R+ → R
with limx→0 f(x) = 0, such that ∥B −Bδ∥2 < δ and the gradient norm fulfills ∥∇B C(Bδ)∥2 < ϵ
for 0 < ϵ < f(δ).

Proof. Let us split the solutions into subsolutions at branching points that exhibit optimal
Y-branchings. They are kept fixed δi = 0 and have zero gradients. The resulting subproblems can
then be considered independently. It suffices to show that, for every individual subproblem, individual
displacements of the BPs exist that yield a non-degenerate BP configuration with arbitrarily small
gradients. If a subproblem consist of a single branching point, Lem. C.2 is directly applicable and the
infinitesimal displacement is chosen as described there. If multiple branching points are coupled in a
transient branching we proceed as follows: For the given topology, define a root node and apply the
recursive geometric construction with pivot points and pivot circles, as illustrated in Fig. 4. In the
construction, all pivot circles will meet at the position of the coupled branching point, which is the
geometric equivalent of condition (9) being fulfilled as equality, cf. Fig. 16. Then, starting from the
branching point furthest from the root node, take an infinitesimal step of size ∼ O(δ) towards its
corresponding pivot point, exactly as in Lem. C.2. Thereby, the optimal branching angles will almost
be realized and consequently the gradient of the resulting uncoupled BP will be arbitrarily small (as
shown explicitly in Lem. C.2). For the next BP in topological order (w.r.t. the chosen root node)
repeat the procedure with a step size even smaller of size ∼ O(δ2), again the optimal branching
angles are almost realized and the resulting gradient vanishes as δ → 0. Repeating, this procedure
for every of the finitely many branching points with smaller and smaller step sizes produces a
non-degenerate BP configuration with arbitrarily small gradient.

Based on Lem. C.3, we now prove that the optimality of each individual branching point is a sufficient
condition for relatively optimal solutions. Similar to the proof above we do not explicitly distinguish
between coupled and uncoupled branching points. Given a fixed tree topology, the BOT cost function
C({bi}) is a convex function of the branching point positions {bi}1≤i≤m. Let us summarize all
branching point coordinates in the vector B ∈ R2m and denote the configuration in which every BP
connects its neighbors at minimal cost by B∗ = {b∗i }. Due to the convexity it suffices to show that
the BP configuration {b∗i } is a local minimum of the cost function. We may distinguish the following
three cases:
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(a) If the BP configuration {b∗i } is non-degenerate, the cost function is differentiable and for
each BP one has∇bi C(b∗i ) = 0 and thus also∇B C(B∗) = 0.

(b) Let the BP configuration additionally contain BPs which are strictly anchored at one of their
neighbors (referred to as anchor), meaning that the inequality condition (9) holds strictly
(see also Def. B.2). Denote the subset of these BPs by {b̃j}. We intend to show that a
neighborhood around B∗ exists such that B∗ is the minimal cost configuration in it. If
the neighboring branching points of {b̃j} are moved away from B∗ only by a sufficiently
small δ, the optimal position for {b̃j} stays at their anchors, since the condition (9) will still
hold. Thus, we can find a sufficiently small neighborhood U around B∗, so that WLOG, the
coordinates of {b̃j} are fixed to be equal to the coordinates of their respective anchors, as
other configurations would be suboptimal. If a branching point is anchored at an external
node, its position is fixed to the terminal position and the cost function restricted to U no
longer depends on them. So, by choosing U sufficiently small, the cost function depends
only on BPs away from terminals. Summarize the remaining free branching points in the
vector Bf for which the gradient at B∗

f ⊂ B∗ is zero by assumption, i.e. ∇Bf
C(B∗

f ) = 0.
Thus, B∗ is a local minimum in U and due to the convexity an absolute minimum.

(c) Let the BP configuration additionally contain transient branchings, i.e. branching points
for which the condition (9) holds as equality. Denote them by {b̂k}. Again, the sufficiently
small neighborhood around B∗ is constructed, as before, to remove the dependency of C on
{b̃j}. However, the cost function still depends on the position of the {b̂k}, and C(Bf ) is not
differentiable at {b̂∗k} ⊂ B∗

f . Let us assume a BP configuration Bf,0 existed with cheaper
cost than B∗

f , i.e. C(B∗
f ) = C(Bf,0) + ∆ for some ∆ > 0. Lemma C.3 states that we can

find an arbitrarily small δ so that B∗
f + δ is non-degenerate and the gradient∇Bf

C(B∗
f + δ)

is arbitrarily small. Due to the convexity of C, the following inequality holds:

C(Bf,0) ≥ C(B∗
f + δ) + ⟨∇Bf

C(B∗
f + δ), Bf,0 − (B∗

f + δ)⟩
= C(B∗

f ) +O(∥δ∥2) + ⟨∇Bf
C(B∗

f + δ), Bf,0 − (B∗
f + δ)⟩︸ ︷︷ ︸

=: K(δ)

where we have used that C(B∗
f + δ) = C(B∗

f ) +O(∥δ∥2), using Big-O notation. All terms
which tend to zero as δ → 0 have been summarized inK(δ). K(δ) can be brought arbitrarily
close to zero by choosing a sufficiently small δ. In particular, there exists a δ > 0 so that
|K(δ)| < ∆/2. Using the assumption C(B∗

f ) = C(Bf,0) + ∆, this leads to:

C(Bf,0) ≥ C(B∗
f ) +K(δ) = C(Bf,0) + ∆ +K(δ) ≥ C(Bf,0) +

∆

2
,

which is a contradiction. Hence B∗, is again a local minimum.

D Properties of the functions f and h describing the optimal branching angles

The optimal branching angles are expressed in terms of the following functions f(α, k) and h(α, k),
defined for α ∈ [0, 1] and k ∈ (0, 1), cf. Eq. (3):

f(α, k) = arccos

(
k2α + 1− (1− k)2α

2kα

)
,

h(α, k) = arccos

(
1− k2α − (1− k)2α

2kα(1− k)α

)
.

Figure 13 shows f and h as functions of k for a number of different values of α. The two functions are
related by h(α, k) = f(α, k) + f(α, 1− k), so that h is symmetric around k = 1/2. Both functions
are defined for inputs α ∈ [0, 1] and k ∈ (0, 1). For α = 1, we have f(α = 1, k) = 0 = h(α = 1, k)
for all k, reflecting the fact that Y-shaped branchings are never optimal in the optimal transport case.
On the other hand, we have f(α = 0, k) = π/3 and h(α = 0, k) = 2π/3 for all k. This limit
corresponds to the Euclidean Steiner tree problem where in an optimal Y-branching all edges meet at
120◦. Moreover, considering the limits of k → 0 and k → 1, one finds that f(α, k → 0)→ π/2 and
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f(α, k → 1)→ 0. Consequently, h(α, k)→ π/2 for both k → 0 and for k → 1. In the following
three lemmas, we investigate the monotonicities of the two functions.
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Figure 13: The functions f and h vs. k for different values of α.

Lemma D.1. f(α, k) is strictly decreasing in k for all α ∈ (0, 1) and f(α, k) < π/2 for all
α ∈ [0, 1] and k ∈ (0, 1).

Proof. Since the inverse cosine function decreases monotonically, it is sufficient to show that the
argument is monotonically increasing. Let us consider its derivative

∂

∂k

(
k2α + 1− (1− k)2α

2kα

)
∼ k2α + (1− k)2α + 2k(1− k)2α−1 − 1 =: s(α, k) .

The ∼ indicates that we have dropped overall factors which were clearly positive, as we are only
interested in the sign of the derivative. First, note that s(α = 0, k) = 1+k

1−k > 0 and s(α = 1, k) = 0

for all k. Secondly, s(α, k) is strictly decreasing with respect to α:

∂s

∂α
= 2k2α log(k) + 2(1− k)2α log(1− k) + 4k(1− k)2α−1 log(1− k) < 0 .

Each of the above terms are negative due to the fact that k, (1− k) ∈ (0, 1). Together it follows that
s(α, k) is positive for any combination of α and k and the proof of the monotonicity is complete.
The fact that f(α, k → 0)→ π/2 for all α then immediately implies that f(α, k) < π/2.

Lemma D.2. For α ≤ 0.5, h(α, k) increases monotonically in k for k ∈ (0, 1/2] and decreases for
larger values of k. Conversely, for α ≥ 0.5, h(α, k) increases first until in reaches a maximum at
k = 1/2 and decreases afterwards.

Proof. The argument here follows the proof of Lemma 12.14 in [2]. Due to the monotonicity of
the inverse cosine function, it is again sufficient to investigate the expression in the argument. We
rewrite this expression trivially, so that it becomes a function of the fraction r := k

1−k and consider
the following derivative:

∂

∂r

(
(r + 1)2α − r2α − 1

2rα

)
∼ −(r + 1)2α − r2α + 1 + 2r(r + 1)2α−1 =: t(α, r)

We first note that t(α = 0, r) = r−1
r+1 ≤ 0 and that t(α = 0.5, r) = 0 as well as t(α = 1, r) = 0 for

all r. Next, we show that t(α, r) is a concave function with respect to r for r ≤ 1, which corresponds
to k ∈ (0, 1/2]:

∂2t

∂α2
= 4(r − 1)(r + 1)2α−1 log2(r + 1)− 4r2α log2(r) ≤ 0 ,

since r ≤ 1. Taken together, we conclude that t(α, r) ≤ 0 for all α ∈ [0, 0.5] and that t(α, r) ≥ 0
for all α ∈ [0.5, 1]. Moreover, since r increases monotonically w.r.t. k, the monotonicity of h(α, k)
holds for k ∈ (0, 1/2]. Due to the symmetry of h around k = 1/2, the proof is complete.

Lemma D.3. f(α, k) decreases monotonically in α for α ∈ [0.5, 1] and h(α, k) decreases monoton-
ically in α for all α ∈ [0, 1].
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Proof. As the inverse cosine function decreases monotonically, it is again sufficient to investigate the
derivative of the function in the arccos-argument. For f(α, k), we consider

∂

∂α

(
k2α + 1− (1−k)2α

2ka

)
=

1

2
k−α

(
log(k)︸ ︷︷ ︸
< 0

[ k2α + (1−k)2α − 1︸ ︷︷ ︸
≤ 0

]− 2(1−k)2α log(1−k)︸ ︷︷ ︸
< 0

)
> 0.

To see that in fact the expression in the square bracket is smaller or equal to zero, we exploit that for
α ≥ 0.5 the function k 7→ k2α is superadditive, so that 1 = 12α = (k+(1−k))2α ≥ k2α+(1−k)2α.
For h(α, k), we consider

∂

∂α

(
1− k2α − (1− k)2α

2kα(1− k)α

)
= −1

2
(1− k)−αk−α

(
log(k)︸ ︷︷ ︸
< 0

[k2α + 1− (1− k)2α]+

log(1− k)︸ ︷︷ ︸
< 0

[(1− k)2α + 1− k2α]
)
> 0 .

Since k, (1− k) ∈ (0, 1) clearly the expressions in square brackets are positive so that the overall
expression is positive too. In the respective regions, f(α, k) and h(α, k) are thus monotonically
decreasing in α.

E Non-optimality of higher-degree branchings

This section supplements Sect. 4.1 of the paper. First, we address the third and most involved
4-branching scenario in which a coupled 4-BP connects one source and three sinks (or equivalently 3
sources and 1 sink), see Fig. 14. We derive the inequalities listed in Proposition 4.2 and prove them
analytically for a large subset of the parameter space. For the remainder we present a numerical
argument (App. E.1.4). Lastly, we show by induction how, given that coupled 4-BPs are never globally
optimal, one can further rule out coupled n-BPs (with n effective neighbors) for all n > 4 (App. E.2).

E.1 Non-optimality of coupled 4-BPs between one source and three sinks

Let us start by providing the derivation of Proposition 4.2, which we repeat here for completeness:

Proposition E.1. Given a BOT problem with one source and three sinks, with demands m1,m2,m3

as in Fig. 14, a coupled 4-BP away from the terminals cannot be globally optimal if at least one of
the following inequalities holds true:

Γ = h
( m1

m1 +m2

)
− f(m1) + h

( m3

m3 +m2

)
− f(m3) > 0,

Γ1,∗ = f(1−m∗) + f
(
1− m2

1−m∗

)
− f(1−m∗ −m2) > 0,

Γ2,∗ = h
( m∗

m∗ +m2

)
+ f

( m2

1−m∗

)
− h(m∗) > 0

where ∗ = 1, 3. Note that Γ = Γ1,1 + Γ1,3 = Γ2,1 + Γ2,3.

Note that it is an important specification that we consider coupled 4-BPs away from the terminals.
For instance, in the OT case where α = 1, all BPs are located at the terminals and coupled BPs with
arbitrary number of neighbors may be globally optimal. For all following considerations, we assume
that α ∈ [0, 1).
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E.1.1 Derivation of the Γ-inequality

WLOG, let us normalize the masses so that m1 + m2 + m3 = 1 and determine the necessary
conditions under which all V-branchings are optimal:

γ1 ≥ π − f
(
α, 1− 1−m1

1

)
= π − f(α,m1) ,

γ2 ≥ π − f
(
α, 1− 1−m3

1

)
= π − f(α,m3) ,

γ3 ≥ h
(
α,

m3

m3 +m2

)
,

γ4 ≥ h
(
α,

m1

m1 +m2

)
. (16)

We intend to show that such a 4-BP can never be globally optimal by showing that for any combination
of α and the masses mi the sum of the lower bounds is already larger than 2π. This is equivalent to
proving that the following inequality holds true for all parameter combinations:

Γ := h
(
α,

m1

m1 +m2

)
− f(α,m1) + h

(
α,

m3

m3 +m2

)
− f(α,m3) > 0 . (17)

The inequality reflects that the problem setup is inherently symmetric under exchange of m1 and m3.
WLOG, we assume that m1 ≤ m3.

E.1.2 Derivation of the Γ1,∗- and Γ2,∗-inequalities

For a BOT solution to be globally optimal it means that it is the cheapest relatively optimal solution
of all possible full tree topologies. In our case of four terminals, there are three distinct topologies,
see Fig. 15. Let us assume that a globally optimal 4-BP away from the terminals exists and denote
the terminal positions by ai. Then, for all three topologies T1, T2 and T3, this branching point
configuration is the ROS, since clearly for all Ti a coupled 4-BP configuration can be realized by
coupling the two branching points.

Let us investigate graphically under which conditions a coupled 4-BP provides the relatively optimal
solution for the different topologies. Figure 16 shows the pivot circle and pivot point construction
for topology T1, where a0 has been chosen as root node. Let us refer to the line through p2 and the
intersection of the two pivot circles as transition line, for the following reason: If a0 was positioned to
the left of the transition line, the ROS of T1 would be non-degenerate, as shown in Fig. 4d for instance.
For a0 to the right of the transition line, the ROS of T1 is given by a coupled 4-BP. Hence, the
transition line marks the transition between a non-generate ROS of T1 and a coupled 4-BP solution.
Consequently, a0 must lie to the right of the transition line of T1. But, a0 must simultaneously also
lie on the appropriate side of the transition lines of the two other topologies T2 and T3. One can now
argue that the root node a0 can be moved along a continuous path onto the transition line of topology
T1, without crossing any of the other transition lines. In doing so, the coupled 4-branching stays
relatively optimal for all three topologies. Most importantly, it thereby stays globally optimal. During
this procedure the terminals a1, a2 and a3 stay fixed so that the pivot points and pivot circles as well
as the transition lines stay exactly the same. For topology T1 we have now arrived at a special case of
coupled 4-branching, in which the V- and L-branchings are transient (see Def. B.2). Let us refer to
such a BP configuration as transient 4-branching. As a consequence, the angle γ4 may be expressed
in terms of the following branching angles (see Fig. 16)

γ4 = β1 + β2 − θ1 = h(α,m1)− f
(
α,

m2

1−m1

)
. (18)
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Figure 14: Coupled 4-BP between one source and three sinks.
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All in all, the above argument shows that the existence of a globally optimal coupled 4-BP necessarily
implies the existence of a globally optimal transient 4-branching, which can be constructed by
changing only the coordinates of one of the terminals. Clearly, for the globally optimal and transient
4-BP of topology T1 all four necessary conditions for optimal V-branching must still apply. In order
to generally rule out globally optimal coupled 4-BPs, it is therefore sufficient to show that at least
one of the following two conditions is fulfilled for all parameter combinations α and mi:

1. the sum of the lower bounds on γi always exceeds 2π,
2. condition (16) is always incompatible with Eq. (18).

The first condition is equivalent to the following inequality, obtained by substituting the lower bound
for γ4 in (17) by (18):

Γ1,1(α,m1,m2) := f(α, 1−m1) + f
(
α, 1− m2

1−m1

)
− f(α, 1−m1 −m2) > 0 . (19)

The second condition can be expressed as inequality simply by combining (16) and (18):

Γ2,1(α,m1,m2) := h
(
α,

m1

m1 +m2

)
+ f

(
α,

m2

1−m1

)
− h(α,m1) > 0 . (20)

Proving one of these two inequalities already suffices to rule out globally optimal 4-branching between
one source and three sinks. Note that the three inequalities presented so far are not completely
independent but are related via Γ = Γ1,1 + Γ2,1. The above procedure of moving the root node onto
the transition line of topology T1 can be repeated exactly analogously for T2. This results in the
inequalities Γ1,3 and Γ2,3, which are of the exact same form except that m3 appears in all places
instead of m1. Note that, in both cases, we have used that a0 can be moved onto the transition lines
of T1 and T2 without crossing the transition line of topology T3. A justification for this is given in
form of the following lemma.
Lemma E.2. Starting from a globally optimal coupled 4-BP connecting the terminals {ai} and
located away from all terminals, one terminal node may be moved along a continuous path onto the
transition lines of topology T1 and T2 without crossing the transition line of topology T3 first.

Proof. Let us give a proof by contradiction. Assume that that a0 could actually be moved along
a continuous path onto the transition line of topology T3 without touching any of the other two
transition lines. Then, one may also move a0 infinitesimally further across the transition line of
topology T3, such that the ROS of T3 becomes non-degenerate. At the same time, for topology T1
and T2 the coupled 4-branching configuration stays relatively optimal. Now, since the ROS of T3
deviates from the coupled 4-branching configuration, the 4-branching can no longer be globally
optimal. Note that a coupled 4-BP can only be globally optimal if all three topologies agree.
Consequently, the ROS of T3 must be globally optimal. However, the non-degenerate solution of
T3 will necessarily contain a cycle. To see this, let b1 be the branching point connected to a0 and
b2 the other branching point in T3. After crossing the transition line of T3, the edge (b1, b2) at first
has finite but infinitesimal length, so that either one of the edges (b2, a1) or (b2, a3) must intersect
with (b1, a2), thereby creating a cycle in the ROS of T3 (cf. Fig. 15c). However, it was proven in [2]
that for α ∈ [0, 1) cyclic BOT solution cannot be globally optimal, so that we have arrived at a
contradiction.

To summarize, we have shown the following lemma:
Lemma E.3. The existence of any globally optimal 4-BP connecting one source and three sinks and
located away from the terminals implies the existence of two globally optimal transient 4-branchings,
one for topology T1 and one for T2.
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Figure 15: The three distinct full tree topologies connecting four terminals.
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Figure 16: Transient coupled 4-BP with a0 placed on the transition line of topology T1.

E.1.3 Analytical treatment of the inequalities

Γ > 0 for α ≤ 0.5: For α ≤ 0.5 we have h ≥ π/2 and f < π/2 for all combinations of mi

(see App. D) and thus clearly Γ > 0 if α ≤ 0.5. For all following arguments, we therefore assume
that α > 0.5. The following analytical arguments all rely on the properties of h and f , which are
listed and proven in App. D.

Γ > 0 for m1 ≥ 1/4: Using that f(α, k) is monotonically decreasing in k, the following loose
lower bound suffices to demonstrate that Γ > 0 if m1 ≥ 1/4:

Γ ≥ 2 min
k

h(α, k)− 2f(α,m1)

= 2 arccos(22α−1 − 1)− 2 arccos

(
m2α

1 + 1− (1−m1)
2α

2mα
1

)
,

where we have used that f(m1) ≥ f(m3) due to our assumption m1 ≤ m3 and that h(α, k) forms a
minimum at k = 1/2. For m1 = 1/4, one finds that this expression is truly positive if and only if

9α < 2 · 4α + 1 ,

which is fulfilled for all α ∈ [0, 1) due to the subadditivity of the function m 7→ mα, namely
9α = (4 + 4 + 1)α < 4α + 4α + 1. It follows that Γ > 0 also for all m1 > 1/4 due to the mono-
tonicity of f .

Γ2,3 > 0 for m3 ≥ 1/2: Inequalities Γ2,3 is fulfilled if m3 ≥ 1/2, since

Γ2,3(α,m3,m2) > h
(
α,

m3

m3 +m2︸ ︷︷ ︸
> m3

)
− h(α,m3) ≥ 0 for m3 ≥ 1/2 , (21)

where we have used that for α > 0.5, h(α, k) is monotonically increasing in k for k ∈ [0.5, 1), as
shown in Lem. D.2. The remaining parameter region, for which none of the inequalities have been
shown yet, can be characterized by the following conditions:

α > 0.5 , m1 < 0.25 and m2 ∈ [0.5−m1, 1− 2m1] . (22)
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Figure 17: m1-m2 parameter space largely ruled out analytically. In the white region the inequalities
are checked numerically.
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The constraints for m3 are implicitly represented, using that the normalization was chosen such that
m1 +m2 +m3 = 1. A visualization of the remaining region can be found in Fig. 17. Finally, we
propose a simple and watertight numerical scheme, which can be used to rule out almost the entire
remaining volume, already with little numerical effort.

E.1.4 Numerical treatment of the remaining parameter space

For the remaining parameter region characterized by the conditions in (22), we propose a numerical
scheme which checks the inequality Γ2,1 for all practically relevant parameter combinations of m1,
m2 and α. For this, we split the remaining volume into cuboids I = [α̌, α̂]× [m̌1, m̂1]× [m̌2, m̂2]
which are divided recursively into smaller cuboids based on the following octree scheme. For each
cuboid, we determine a lower bound of Γ2,1. This lower bound becomes tighter the smaller the
cuboid I . If, for a cuboid, this lower bound is not yet positive, it is divided further into eight new
cuboids by splitting each of the three intervals in half. This procedure is iterated until for all cuboids
the lower bound is truly positive. For all m1,m2, α in a cuboid I = [α̌, α̂]× [m̌1, m̂1]× [m̌2, m̂2],
the lower bound of Γ2,1 is obtained by minimizing each summand individually:

Γ2,1(α,m1,m2) ≥ min
I
h
(
α,

m1

m1 +m2

)
+min

I
f
(
α,

m2

1−m1

)
−max

I
h(α,m1)

= h
(
α̂,

m̂1

m̂1 + m̌2

)
+ f

(
α̂,

m̂2

1− m̂1

)
− h(α̌, m̌1) (23)

where we have used the crucial fact that for the remaining volume, characterized by (22), the
functions h(α, k) and f(α, k) are monotonically decreasing in both arguments. The proof of these
monotonicities can be found in App. D. Note that the described procedure allows to rigorously
confirm the inequality across a continuous region with finitely many evaluations.

For α→ 1 or m1 → 0, the value of Γ2,1 approaches zero, so that the above scheme cannot be used to
proof the inequality for values arbitrarily close to these limits. However, if we restrict us to m1 > δ
and α < 1 − ϵ for finite ϵ, δ > 0, the inequality Γ2,1 can be shown for practically all parameter
combinations with little numerical effort. For ϵ = δ = 10−3, using the proposed scheme, it was
checked in only a few minutes that the lower bound in Eq. (23) is larger than 10−4 everywhere in the
remaining volume. To be numerically on the safe side, we have stopped splitting a cuboid not if the
lower bound exceeded zero but set a suitable finite threshold, in this case 10−4. In other words, we
have stopped splitting a cuboid if its respective lower bound was > 10−4. The smallest terms which
occur during the arithmetic operations inside the functions h and f are of the order δ2, the largest
terms are of order one. It is therefore safe to say that numerical errors at the order of the machine
accuracy are negligibly small against the margin of 10−4 and we may say that all together globally
optimal 4-BPs are ruled out, for all practical parameter combinations. In principle, the presented
scheme can be used to check the inequality Γ2,1 up to even smaller ϵ and δ. The Python code of the
numerical scheme is made available at https://github.com/hci-unihd/BranchedOT.

E.2 Non-optimality of five- and higher-degree branchings

In this section, we formally prove that globally optimal coupled n-BPs not coincident with a terminal
can be ruled out in general, given that 4-BPs are not globally optimal. Lemma 2.1 states that a
solution is not globally optimal if any subsolution is not globally optimal. It will therefore suffice to
study the coupled BP as an isolated subproblem. Let us start by proving the following corollary
about the preservation of relative optimality under edge extensions for transient V- and L-branchings
(see Def. B.2):

Corollary E.4. Consider a BOT problem with terminals A = {ai} and let the BP configuration
B = {bi} be relatively optimal for a given topology T . Let B contain a transient V-branching
between two terminals, say a0 and a1 and denote the branching point connected to a0 and a1 by b1.
Otherwise, let B not contain any strict L-or V-branchings. Let us further denote the branching point
to which b1 is coupled in a transient V-branching by b2, as illustrated on the left side of Fig. 18. Then,
there exists a direction in which the zero length edge (b1, b2) can be extended to finite length l > 0
(cf. right side of Fig. 18) such that the new BOT problem (with shifted terminal positions) is solved
relatively optimally by the new BP configuration (with shifted b1).
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Proof. By assumption, the BP configuration of interest B = {bi} contains only Y-branchings and
transient V- and L-branchings. Then, according to Lemma C.3, there exists a set of arbitrarily small
displacements δi, one for each branching point bi, so that B + δ = {bi + δi} is a non-degenerate
BP configuration with arbitrarily small gradients ∥∇bi C(B + δ, A)∥. Note that the notation C(B,A)
emphasizes that the cost function also depends on the terminal positions. Since the BP configuration
B + δ is non-degenerate, any edge, in our case (b1, b2), can be easily expanded in length without
changing any of the branching angles, assuming that the extension preserves the direction of the edge
and that the BPs and terminals are moved along correspondingly. As the gradient ∇bi C depends only
on the directions of the edges meeting at bi (i.e. the branching angles), the gradient is not changed
by this procedure. Let us summarize the shifted BPs by Bshift and the shifted terminals by Ashift.
Then, ∥∇bi C(B + δ, A)∥ = ∥∇bi C(Bshift + δ, Ashift)∥ can also be made arbitrarily small as δ → 0.
Let us prove by contradiction that Bshift is the ROS of the BOT problem with terminals Ashift:
Assuming that a different BP configuration B0 ̸= Bshift was the ROS, there would exist a constant
∆ > 0, so that C(Bshift, Ashift) = C(B0, Ashift)+∆. However, since the cost is a convex function
w.r.t. the BPs, we have

C(B0, Ashift) ≥ C(Bshift + δ, Ashift) + ⟨∇bi C(Bshift + δ, Ashift), B0 − (Bshift + δ)⟩
= C(Bshift, Ashift) +O(δ) + ⟨∇bi C(Bshift + δ, Ashift), B0 − (Bshift + δ)⟩︸ ︷︷ ︸

=:K

.

As δ → 0, the latter two terms summarized by K can clearly be made arbitrarily small. In par-
ticular, there exists an δ > 0, such that |K| < ∆/2, which together with C(Bshift, Ashift) =
C(B0, Ashift) + ∆ implies that

C(B0, Ashift) ≥ C(Bshift, Ashift) +K > C(B0, Ashift) + ∆/2

and we have thereby arrived at a contradiction, similarly to the reasoning in part (c) of the proof in
App. C.
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Figure 18: Extension of the edge (b1, b2) in the direction of the pivot point p1, preserving relative
optimality.

Coming back to the non-optimality of coupled n-BPs, let us, for concreteness, consider a globally
optimal coupled 5-BP not coincident with a terminal. By induction, repeating the presented argument
one can then rule out all globally optimal n-BPs. The proof is by contradiction, so let us assume a
globally optimal 5-BP existed, between terminals a0, a1, a2, a3 and a4. In terms of enclosed angles γi
(see Fig. 19), it is a necessary condition that all γi must exceed their respective lower bound, specified
by the optimal V-branching conditions in Table 1 (Section 3.2). Again, for a 5-BP configuration to be
globally optimal all possible full tree topologies must agree on the 5-BP configuration as their relative
optimal solution. Starting from this configuration, one may continuously move one of the terminals,
e.g. a0, such that the globally optimal coupled 5-BP starts to decouple, meaning that a0 is moved
until for (at least) one of the possible topologies, say T̃ , the 5-BP configuration no longer provides
the ROS. This can always be achieved, for instance by bringing a0 sufficiently close to a1 so that a
Y-branching between the two terminals becomes optimal. Similar to the 4-branching case, the ROS
of such a topology T̃ in this moment becomes the globally optimal solution, as the other topologies
are still in the 5-branching configuration which can only be globally optimal if all topologies agree
on it. The globally optimal solution of topology T̃ must exhibit one of the following two properties

1. it contains one Y-branching and a coupled 4-BP or
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2. it is non-degenerate and contains only Y-branchings.

In the first case, it would mean that a coupled 4-BP exists which is globally optimal as subgraph of a
globally optimal solution (using the necessarily optimal substructure of Lem. 2.1). This contradicts
our assumption that 4-BPs are not globally optimal.

Regarding the second option, we proceed as follows. Let us move a0 back to the point in which the
coupled 5-BP configuration was still globally optimal but the ROS of T̃ is on the verge of decoupling
into a non-degenerate branching configuration. Denote this special location of the terminals by {a∗i }.
In this configuration an infinitesimal movement of a0 away from a∗0 can cause the ROS of T̃ to
transition from coupled 5-branching to a non-degenerate BP configuration, very much analogous to
the case of the transient 4-branching illustrated in Fig. 16. This means that in this configuration all V-
and L-branchings are transient in the ROS of T and WLOG we choose the labeling of the terminals
such that the V-branching between a∗0 and a∗1 is transient, cf. Fig. 19. At this point, let us split the set
of all possible full tree topologies T into the following subsets. The subset in which the terminals a0
and a1 are connected to a common branching point, say b1, is denoted by T (0,1). Let us label the
BP to which b1 is connected in these topologies by b2. The ROS of all topologies T ∈ T (0,1) for the
current BOT problem contains a transient V-branching at branching point b1. Moreover, let us single
out a specific subset in T (0,1), defined by the following condition:

T (0,1)
trans = {T ∈ T (0,1) : ROS of T is transient if the terminals are located at a∗i } .

Visibly, the branching at b1 appears as V-branching but it may also be seen as a Y-branching with a
zero length stub. Let us now extend this zero length edge between b1 and b2 to finite length l > 0 into
the direction of the pivot point between a∗0 and a∗1, as explained in the proof of Corollary E.4. The
two terminals a1 and a2 are shifted from a∗0 and a∗1 to a0(l) and a1(l) and Corollary E.4 guarantees
that the resulting BP configuration for all T ∈ T (0,1)

trans solves the new BOT problem relatively
optimally. For an illustration of the edge extension see Fig. 19. Note that for all T ∈ T (0,1)

trans this
ROS is the same. Now split this ROS into two subsolutions as indicted in Fig. 19. This induces two
subproblems and subtopologies, as described in Def. C.1. We focus on the upper right subproblem,
consisting of four terminals. Note that any topology T (4) on this four terminal subproblem, may be
induced as subtopology by a topology T ∈ T (0,1). Let us distinguish the following two cases: a) On
the four terminal subproblem the topology of the GOS, denoted by T ∗(4), is induced by a topology
T ∈ T (0,1)

trans. Or b) T ∗(4) is induced by a topology T ∈ T (0,1) \ T (0,1)
trans. In case a) the ROS of T ∗(4)

is given by the right subsolution in Fig. 19, as the edge extension preserved the relative optimality for
all T ∈ T (0,1)

trans. Hence, the globally optimal solution on the four terminal subproblem is given by a
coupled 4-BP and we have arrived at a contradiction.
Otherwise, in case b), we do not know the ROS of T ∗(4) a priori, but it cannot be a coupled
4-branching configuration and must hence be non-degenerate. Crucially, it must be non-degenerate
for any finite length extension l > 0, even if we consider the limit of l→ 0. But this means that the
ROS of T ∗(4) already transitions from a coupled 4-BP into a non-degenerate ROS, if the terminals a0
and a1 are perturbed infinitesimally (l > 0 but infinitesimal). Consequently, for l = 0 the ROS of
T ∗(4) is transient. But this means that T ∗(4) can be induced as a subtopology of a transient topology
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Figure 19: Edge extension to finite length l > 0 in a globally optimal and transient 5-branching
with transient V-branching between a0 and a1. The resulting ROS is split into two subsolutions, as
indicted by the red dashed line.

27



T ∈ T (0,1)
trans and we have arrived yet at another contradiction.

F BOT on two-dimensional Riemannian manifolds

In the following section, we prove that the optimal branching angles for Y-shaped branchings on
two-dimensional manifolds are the same as the optimal branching angles derived for BOT in the
Euclidean plane. An outline of the proof was given in Section 5.1. The same strategy, presented
below for the optimal branching angles, can be used to generalize other necessary conditions for
optimal BOT solutions to manifolds, as explained in Sect. F.2.

F.1 Optimal Y-branching on two-dimensional Riemannian manifolds

For a Y-shaped branching at BP b connecting the terminals a0, a1 and a2 in Euclidean plane the cost
function of BOT is given by

C(b) =
∑
i

mα
i ∥ai − b∥2 ,

where the mi are the known edge flows. Let us consider a two-dimensional Riemannian manifoldM
embedded into R3, for which the metric is induced by the standard Euclidean inner product in R3.
Let the geodesic distance be denoted by d(x, y). The generalized cost function for 1-to-2 branching
then reads

CM (b) =
∑
i

mα
i d(ai, b) .

All points b and ai now lie on the manifold and are assumed to have differing positions. In a solution
which minimizes CM the terminals ai are connected to b via geodesics. For b to be a valid solution
to the BOT problem on the manifold, these geodesics must exist. We denote the geodesic which
connects b and ai by vi(λ) ∈ M, parametrized by the length λ. The tangent space at b is denoted
by TbM. Furthermore, let n̂i be the unit tangent vectors of the geodesics vi(λ) at the branching
point b, i.e. n̂i = ∂λvi(λ)

∣∣
λ=0

. WLOG, for all following considerations let us rotate and translate the
manifold so that b ∈ R3 lies at the origin, i.e. b = 0, and that the tangent space TbM is equal to the
x1-x2-plane ofR3, i.e. TbM = R2 × {0}.

Restriction to a local subsolution on the manifold. SinceM is embedded into R3, there exists
an r > 0 and an environment U(r) ⊂ R3 around b = 0 such that the manifoldM∩ U(r) can be
represented as the graph of a function:

M∩ U(r) = {(x, u(x)) : x ∈ D(r) ⊂ R2} ,

where u is a smooth, scalar function u : D(r) → R, defined on the disk of radius r, denoted
by D(r) := {(x1, x2) ∈ R2 :

∥∥(x1, x2)T∥∥2 ≤ r}. Note that due to the mentioned rotation and
translation ofM, we have u(0) = 0 and ∇u(0) = 0, where ∇u denotes the gradient of u. The
existence of such a function u is guaranteed by the implicit function theorem. A formal proof can
be found in John M. Lee’s book [18] in Proposition 8.24. Further, let us define the orthogonal
projection σ from the manifold onto the x1-x2-plane as

σ :M∩ U(r)→ D(r)× {0},

(
x1
x2

u(x1, x2)

)
7→

(
x1
x2
0

)
. (24)

WLOG, r is chosen sufficiently small so that this projection is bijective. Now, Taylor’s theorem states
that u can be approximated by the following expansion around x = 0:

u(x) = u(0)︸︷︷︸
= 0

+⟨∇u(0)︸ ︷︷ ︸
= 0

, x⟩+O(∥x∥22) ∈ O(r2) , (25)
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where ⟨·, ·⟩ is the standard Euclidean inner product and we have introduced the Big-O notation. A
term is of order O(r2) if it goes to zero for r → 0 at least as fast as r2, or more formally:

p(r) ∈ O(q(r)) ⇔ lim
r→0

p(r)

q(r)
= c

for some finite constant c. Consequently, a point a = (x, u(x)) inM∩ U(r) and its projection onto
the plane σ(a) agree to first order, i.e.

∥σ(a)− a∥2 = u(x) ∈ O(r2) . (26)

One of the key ingredients when transferring BOT problems from two-dimensional surfaces to the
tangent plane TbM is the following Lemma about the difference between the Euclidean distance and
the geodesic distance:
Lemma F.1 (Relation between geodesic and Euclidean distance). Let r be a small radius, which char-
acterizes the environment U(r) around the origin b = 0 on a two-dimensional Riemannian manifold
as described above. Let a ∈M∩U be a point in this environment, located at a = (x, u(x)) ∈ R3 for
some x ∈ D(r) and u as above. Then, the geodesic distance can be expressed through the Euclidean
distance as

d(a, b) = ∥a− b∥2 +O(r3) . (27)

Proof. Let us first note that d(a, b) ≥ ∥a− b∥2. It is hence sufficient to show that d(a, b) ≤
∥a− b∥2 + O(r3). Let us consider the following curve γ(t) = (tx, u(tx)) on the manifold M,
which for t ∈ [0, 1] connects a = (x, u(x)) and b = 0. In general, γ(t) is not a geodesic between a
and b. Thus, the length of γ(t) provides an upper bound to d(a, b). For the calculation of the length
we use that γ ′(t) = (x, ⟨∇u(tx), x⟩) and simply integrate ∥γ ′(t)∥2 along the curve in R3, since the
metric of the embedding is induced by the standard Euclidean inner product in R3:

d(a, b)

∥a− b∥2
≤ 1√

∥x∥22 + u2(x)

∫ 1

0

∥γ ′(t)∥2 dt

≤ 1

∥x∥2

∫ 1

0

√
∥x∥22 + |⟨∇u(tx), x⟩|2 dt

=

∫ 1

0

√
1 +

∣∣∣∣〈∇u(tx), x

∥x∥2

〉∣∣∣∣2 dt
≤ 1 +

1

2

∫ 1

0

∣∣∣∣〈∇u(tx), x

∥x∥2

〉∣∣∣∣2 dt
≤ 1 +

1

2

∫ 1

0

∥∇u(tx)∥22 dt .

For the last step we have used the Cauchy-Schwarz inequality. Furthermore, we have used that√
1 + x2 ≤ 1 + x2/2. The only thing left to show is that the remaining integral is O(r2), as
∥a− b∥ = (∥x∥22 + u2(x))1/2 ∈ O(r), since ∥x∥2 ≤ r and u(x) ∈ O(r2), cf. Eq. (25). For that, let
us consider the Taylor expansion of the i-th component of ∇u(tx) around 0. For i = 1, 2 one has

∂i u(tx) = ∂i u(0)︸ ︷︷ ︸
= 0

+∂j∂i u(0) txj +O(r2) ,

where the sum in j is implicit and runs over both indices j = 1, 2. And thus:

1

2

∫ 1

0

∥∇u(tx)∥22 dt =
1

6
∂j∂i u(0) xj ∂k∂i u(0) xk +O(r2) ,

where again the sum over all index pairs is implied. Since for all components xi we have xi ≤ r, this
completes the proof.
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Projection of a subproblem onto the tangent plane. Coming back to the 1-to-2 BOT problem on
the manifold, let us project the geodesics vi onto the x1-x2-plane using the orthogonal projection σ
from above, in order to transfer the BOT problem from the manifold onto the tangent plane. WLOG,
we choose the orientation of the x1 and x2 axis such that n̂0 points along the x1-axis. Then, one may
easily check that the implicit function theorem guarantees that for sufficiently small r the projected
geodesic σ(v0) can be represented by a graph (x1, w(x1)) with smooth w : (−ϵ, r + ϵ)→ R. Note,
that the projected geodesic σ(v0) may be considered on the open interval with ϵ > 0 such that
all derivatives with respect to x1 ∈ [0, r] are well-defined. Due to our special orientation of the
x1-x2-plane, we have w(0) = 0 and w′(0) = 0. Let us now define the following two points inside
the tangent plane:

1. Define â0 as the point which lies in the direction of n̂0 at a distance r away from the origin,
i.e. â0 = r · n̂0 = (r, 0). Similarly, define âi = r · n̂i. These will be the three terminals of
the BOT subproblem of interest in the Euclidean plane. For an illustration see Fig. 20.

2. Define a⊥,0 = (r, w(r)) as special point on the projected geodesic σ(v0). From an analo-
gous construction using the projected geodesics σ(v1) and σ(v2), we obtain the a⊥,i also
for i = 1, 2. No explicit representation of these will be necessary.

What is however important is that the two defined points agree up to linear order, in the sense that
∥âi − a⊥,i∥2 ∈ O(r2) for all i = 0, 1, 2. This is shown for i = 0, by Taylor expansion of w(x1)
around x1 = 0, but holds of course equally true for i = 1, 2:

∥â0 − a⊥,0∥2 = w(r) = w(0)︸︷︷︸
= 0

+w′(0)︸ ︷︷ ︸
= 0

r +O(r2) ∈ O(r2). (28)

Note that since the points a⊥,i lie on the projected geodesics, after an inverse projection, the σ−1(a⊥,i)
mark special points on the unprojected geodesics vi ∈ M. These will be the terminals of the
subproblem of interest on the manifold. Combining Eq. (26) and (28), we can relate σ−1(a⊥,i) ∈M
to the terminals âi of the BOT problem of interest in the plane by∥∥σ−1(a⊥,i)− âi

∥∥
2
∈ O(r2) , (29)

Note that all steps above can be repeated for radii smaller than the chosen r. In the following we will
decrease the scale r of the two problems and therefore indicate the r-dependence in σ−1(a⊥,i(r))
and âi(r) explicitly.

Improved subsolutions on the manifold by projection from the tangent space. Now, follows the
main line of arguments to show that b does not connect ai ∈M at minimal cost if the geodesic angles
in the tangent space TbM are different from the optimal angles in the Euclidean plane. We start by
considering the subproblem on the manifold with terminals σ−1(a⊥,i) ∈M. The generalized cost
function of this subproblem reads:

CM (b) =
∑
i

mα
i d(σ

−1(a⊥,i(r)), b) .

We can now use Eq. (29) to express the terminals on the manifold through the terminals âi in the
tangent plane and express the geodesic distance in terms of the Euclidean distance, based on Lem. F.1.
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Figure 20: The tangent vectors of the geodesics (dotted) in b define the position of the terminals âi of
the subproblem on the flat disk D(r) ⊂ TbM.
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All additional terms are at least of order O(r2) and we have

CM (b) =
∑
i

mα
i ∥âi(r)− b∥2︸ ︷︷ ︸
=: Cb(r)

+ O(r2) . (30)

Crucially, with Cb(r) we have arrived at the cost of the BOT problem which purely lives on the
tangent space. It is the cost of the solution in which b is connected via straight lines to the terminals
âi(r) = r · n̂i at a distance r away from b, as shown in Fig. 20. By assumption, this solution is not
relatively optimally since the angles (or equivalently the directions n̂i) are assumed to deviate from
the optimal angles in the Euclidean plane. This means that a branching point b∗ ∈ D(r) × {0}
exists which provides a better solution with cost denoted by Cb∗(r) < Cb(r). From the definition of
âi = r · n̂i, we see that two BOT problems within disks of different radii D(r) and D(ν · r) are
related simply by rescaling the coordinates. Under rescaling of coordinates the Euclidean distance
between points and consequently also the cost functions changes proportionally, i.e. C → νC. Thus,
there exist non-negative constants M1 and M2, so that Cb(r) =M1 · r and Cb∗(r) =M2 · r. Let us
distinguish the following two cases:

a) Cb∗(r) =
∑

im
α
i ∥âi(r)− b∗∥2 = 0. This special case looks unusual, but is in principle possible,

e.g. if all terminals ai and b lie on a common geodesic. In the case, where Cb∗(r) = 0, we project b∗
onto the manifold using σ−1 and go backwards in the above steps. We find that

0 =
∑
i

mα
i ∥âi(r)− b∗∥2 =

∑
i

mα
i d(σ

−1(a⊥,i(r)), σ
−1(b∗))︸ ︷︷ ︸

= CM (σ−1(b∗)))

+O(r2) .

Clearly, a sufficiently small r > 0 exists so that the terms contained in O(r2) are much smaller than
M1 · r, so that

CM (σ−1(b∗))) = 0 +O(r2) < M1 · r +O(r2) = CM (b) .

This proves that the projection of b∗ onto the manifold provides a cheaper cost solution on the
manifold than b.

b) Cb∗(r) > 0, and thus M2 > 0. In this case, let us write the ratio of the two costs as
Cb(r)/Cb∗(r) = M1/M2 =: 1 + κ for some κ > 0. Again, b∗ and its projection onto the manifold
agree to first order, that is

∥∥σ−1(b∗)− b∗
∥∥ ∈ O(r2). We now show that σ−1(b∗) provides a better

solution to the BOT problem on the manifold than b. We proceed from Eq. (30), using that Cb∗(r) is
linear in r:

CM (b) = Cb(r) +O(r2) = (1 + κ) Cb∗(r) +O(r2)

=
∑
i

mα
i ∥âi(r)− b∗∥2 + κM2 · r +O(r2)

=
∑
i

mα
i d(σ

−1(a⊥,i(r)), σ
−1(b∗))︸ ︷︷ ︸

= CM (σ−1(b∗))

+κM2 · r +O(r2) .

In the last step, we have projected inversely onto the manifold and replaced the Euclidean distance by
the geodesic distance (all with differences at least of O(r2)). We have therefore arrived at the cost of
the new solution on the manifold. Since the term κM2 · r is positive, we conclude that r may always
be chosen sufficiently small, so that the linear term dominates over higher-order terms and we have:

CM (σ−1(b∗)) < CM (b) .

Together with Lem. 2.1 on the necessarily optimal substructure of all subsolutions, this concludes
the proof that any optimally placed branching point on a two-dimensional embedded Riemannian
manifold must exhibit the same optimal branching angles as in the Euclidean plane.

F.2 Other local properties of optimal BOT solutions on manifolds

The logic of the proof outlined above can be easily extended to the conditions for optimal V- and
L-branching. For BOT problems in the Euclidean plane, Table 1 lists these conditions under which the
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optimal BP position in a 1-to-2 branching coincides with one of the terminals. Let us now consider a
1-to-2 BOT solution on a two-dimensional manifold in which b is located at the terminal a0 and is
connected to the terminals a1 and a2 via the geodesics v1 and v2 respectively. Imagine that in the
tangent plane TbM the angle enclosed by these geodesics does not fulfill the optimal V-branching
criterion. In this case, one may again consider a sufficiently small disk of radius r around b = a0
in the tangent space TbM and project the corresponding subproblem from the manifold onto this
disk. In the Euclidean plane, an improved BP location b∗ must exists, since b = a0 is the optimal
solution if and only if the V-branching condition is fulfilled. All arguments about the scaling of the
cost improvement apply as described above and the projection b∗ back to the manifold will provide
an improved solution to the subproblem on the manifold if r is chosen sufficiently small.

Even more so, the same reasoning can also be applied to generalize our results regarding the non-
optimality of higher-degree branchings. Given a coupled n-BP at position b not coincident with a
terminal, one may again consider a sufficiently small region around b on the manifold and project the
corresponding subsolution onto TbM. Exactly analogous to the previous arguments, improving the
topology locally in the plane and projecting back to the manifold eventually results in an improved
solution on the manifold.

F.3 The practical side of BOT on manifolds

Although much of the theory generalizes nicely to Riemannian manifolds, the generalization of the
practical algorithms is highly non-trivial. Unlike in Euclidean space, realizing the optimal branching
angles is a necessary but no longer sufficient condition for relatively optimal solutions. For instance,
on the sphere the meridians of three terminals located in the southern hemisphere at longitudes
0◦, 120◦, 240◦ will intersect at both poles at angles of 120◦, which is the optimal angle for α = 0.
Nonetheless, only the south pole is the optimal branching point. In essence, the geometry optimization
aims to assign simultaneously to each branching point the coordinates of the weighted geometric
median of its neighbors, a problem that is considered in [8]. The topology optimization presented in
Sect. 6.2 could be easily generalized to manifolds if the geodesic distance can be computed. Due
to these obstacles, previous works of the Steiner Tree problem (α = 1) have focused mostly on the
sphere as important special case [7].

G Algorithms

Hardware and code availability. Python code for all experiments can be found at https://
github.com/hci-unihd/BranchedOT. For the different experiments, a single machine with 56
CPUs (Intel(R) Xeon(R) CPU E5-2660 v4 @ 2.00GHz) and 256GB RAM was used. Execution times
for all described experiments lie (at most) in the order of hours. A more detailed estimate can be
obtained from the performance statistics reported in Fig. 23 and Fig. 26.

G.1 Geometric construction of relatively optimal solutions for BOT with multiple sources

In Sect. 3.2 we have presented the the exact geometric construction of relatively optimal solutions
based on [2, 9] and its generalization to the case of BOT with multiple sources. We have thereby
solved the open problem 15.11 in [2], for which an example is illustrated in Fig. 21.

Figure 21 shows a simple BOT problem with a chosen topology for which no root node can be
chosen such that all branchings are symmetric (see Sect. 3.2). Choosing for instance the left source
as a root node, the branching at b1 is symmetric whereas the one at b2 is asymmetric. However,
after having solved the asymmetric branching case analogously to the symmetric one, the relatively
optimal solution can now be constructed geometrically as shown in Fig. 22d. More examples of the
geometric construction for a given topology applied BOT problems with multiple sources are shown
in Fig. 22.

32

https://github.com/hci-unihd/BranchedOT
https://github.com/hci-unihd/BranchedOT


b
1

b
2

Figure 21: Simple setup with symmetric branching and asymmetric branching, see Sect. 3.2.
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Figure 22: Examples for geometric construction of relatively optimal solutions with fixed topology
for BOT problems with multiple sources. The construction is based on the optimal branching angles
and uses one pivot circle and pivot point (light blue) per branching point. Sources are shown in red,
sinks in blue.

Continuity of the optimal BP configuration. The limitations of the geometric construction above
are discussed in Sect. 3.2. Still, it forms the basis for our theoretical arguments in the paper. Moreover,
from the construction of a single branching point based on the branching angles (see Fig. 3b), it can
be seen that its optimal position changes continuously w.r.t. the neighbor positions, the edge flows or
α. Namely, the Y-, V- and L- branching change continuously as the source a0 is moved around. In
addition, the optimal branching angles are given by continuous functions of k and α (cf. Eq. (3)),
making the construction of the pivot point and pivot circle continuous. By transitivity and based on
the optimal substructure in Lem. 2.1, the continuity generalizes also to the construction of larger ROS
for a given topology.

G.2 Numerical algorithm for geometry optimization

In this section, we provide theoretical details and practical experiments for the numerical geometry
optimization presented in Sect. 6.1. We have generalized this approached from the context of the
ESTP [26] to BOT.
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For a given tree topology T , the BP configuration is optimized by minimizing the following cost
function:

C(X) =
∑

(i,j)∈T

mα
ij ∥xi − xj∥2 , (31)

where the xi for 1 ≤ i ≤ n are fixed terminals and the xi for n+ 1 ≤ i ≤ n+m denote the variable
branching point positions. All coordinates are collectively summarized by X .

Starting from a non-optimal, non-degenerate BP configuration denoted X(0), e.g. from a random
initialization of the branching points, the algorithm iteratively solves the following linear system of
equations

x
(k+1)
i =

∑
j : (i,j)∈T

mα
ij

x
(k+1)
j

|x(k)i − x(k)j |

/ ∑
j : (i,j)∈T

mα
ij

|x(k)i − x(k)j |
, for n+ 1 ≤ i ≤ n+m. (32)

In essence, this is an iteratively reweighted least squares (IRLS) approach [4]. To see this, let us
rewrite the cost function in Eq. (31) into pseudo-quadratic from:

C(X) =
∑

(i,j)∈T

mα
ij |xi − xj |(β−2)+2 =

∑
(i,j)∈T

mα
ij |xi − xj |β−2︸ ︷︷ ︸

=:wij(X)

|xi − xj |2 , (33)

with β = 1 for BOT. Clearly, the weights wij depend on the branching point positions. However, the
idea of IRLS is to insert the coordinates X(k) = {x(k)i } at k-th iteration into wij to obtain a truly
quadratic form:

Q(k)(X) = wij(X
(k))|xi − xj |2 =

∑
(i,j)∈T

mα
ij

|xi − xj |2

|x(k)i − x(k)j |
,

where we have plugged in wij(X
(k)) and β = 1. Indeed, minimizing this quadratic form yields

X(k+1) as in Eq. (32). The updated coordinates X(k+1) are then plugged into wij(X) during the
next iteration. This iterative updating of the weights wij gives IRLS its name.

Smith [26] proved in detail that this iterative solver converges to the minimum cost BP configuration.
The reasoning in [26] is based on the following key argument: As X(k+1) is the minimizer of
Q(k)(X), surely Q(k)(X(k)) ≥ Q(k)(X(k+1)). Together with the fact that C(X(k)) = Q(k)(X(k)),
we have

C(X(k)) = Q(k)(X(k)) ≥ Q(k)(X(k+1))

=
∑

(i,j)∈T :

mα
ij

(
|x(k)i − x(k)j |+ |x

(k+1)
i − x(k+1)

j | − |x(k)i − x(k)j |
)2

|x(k)i − x(k)j |

= C(X(k)) + 2[C(X(k+1))− C(X(k))]

+
∑

(i,j)∈T

mα
ij

(
|x(k+1)

i − x(k+1)
j | − |x(k)i − x(k)j |

)2
|x(k)i − x(k)j |

.

Since the sum in the last expression is clearly non-negative, the inequality above implies that
C(X(k)) ≥ C(X(k+1)). This means that the cost of the BP configuration decreases with each
iteration which, as shown in [26], implies that the iterations defined by Eq. (7) converge to an absolute
minimum of C(X).

As can be seen from the above derivation, the edge flows mα
ij are constant coefficients which do not

complicate the considerations in [26]. Consequently, all arguments presented there can be directly
transferred from ESTP to BOT. For a detailed discussion on the complexity of the algorithm and
suitable convergence criteria, we refer the reader to the work of Smith and only briefly state the results
here. Based on an analytically tractable example, Smith claims that the algorithm requires at most
O(N/ϵ) iterations to converge to a solution of the ESTP whose cost is within ϵ of the optimal cost. As
a convergence criterion, Smith suggests to stop the iteration when the angles at all branching points
are sufficiently close to the optimal angle conditions. In order to be able to apply the algorithm also
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to trees with higher-degree branching points where the optimal angle conditions are a necessary but
not sufficient condition for the cost minimum, the experiments in this paper use a different criterion.
The algorithm is considered to have converged if from one iteration to the next the relative cost
improvement

(
C(X(k))− C(X(k+1))

)
/C(X(k+1)) has dropped below a certain threshold. The BP

optimization routine for a given tree topology is summarized in Alg. 1. Note that, in practice, the
denominators |x(k)i − x(k)j | in Eq. (32) are clipped to 10−7 to avoid numerical instabilities.

Algorithm 1 BP optimization routine
Input: threshold η, tree topology T , BOT problem (terminal positions x1:n, supplies/demands µ, α)
Output: numerical minimal cost BP configuration

1: F ← get_all_edge_flows(T, µ) ▷ uniquely determined from flow constraints
2: xn+1:n+m ← randomly initialized.
3: Cold ←∞
4: C ← BOT_cost(T, x1:n+m, F, α)
5: while Cold−C

C > η do
6: Cold ← C
7: x1:n+m ← update_BPs(x1:n+m, F, α) ▷ solves linear system in Eq. (32)
8: C ← BOT_cost(T, x1:n+m, F, α)
9: end while

10: return x1:n+m

BOT with costs scaling non-linearly with the edge length. Let us briefly consider BOT with a
modified cost function of

C(X) =
∑

(i,j)∈T

mα
ij ∥xi − xj∥

β
2 (34)

including one additional parameter β, regulating the scaling of the cost function w.r.t. edge lengths.
For β ≥ 1 the cost function as a function of the branching points is still convex, as x 7→ xβ is convex
and increasing and the Euclidean norm is convex. Thus, it has a unique minimum. As can be seen
from Eq. (33), the IRLS scheme completely absorbs the β into the weights wij . Consequently, the
geometry optimization as presented here is readily applicable also to the modified cost in Eq. (34).
However, for β > 1 we are not aware of any theoretical convergence guarantee to the minimum,
therefore, further investigation is required. Though, in the special case of β = 2, it is clear that the
geometry optimization can be solved to global optimality in just a single iteration.

Performance test of numerical BP optimization. In order to evaluate how long the BP opti-
mization for a given topology takes, we have randomly generated 1000 BOT problems for different
number of terminals using Alg. 2. For each of these problems, we have applied the BP optimization
routine, given a uniformly sampled full tree topology. Regarding the generation of problem setups,
note that BOT solutions and problems are invariant under rescaling of the total demand and supply
as well as under global rescaling of the coordinates, see Eq. (1). WLOG, these scales are chosen
to be 1. Figure 23 shows the average runtime in seconds plotted against the number of terminals.
For BOT problems with 10 to 1000 terminals our efficient C++ implementation of the geometry
optimization takes just a fraction of a second. The relatively large error bars, indicating the standard
deviation, are not due to an insufficient sample size but due to the natural run time variability for
different problems that exists independent of the n-dependence. For instance, plotting the average
runtime of all problems with α ≤ 0.5 and α > 0.5 separately reveals that the optimization on average
requires more time for problems with higher α. The reason for this was not investigated further, but
we suspect that for larger α on average more V- and L-branchings occur which may require more
iterations than Y-branchings for convergence. For this and all following experiments we chose the
convergence threshold η to be 10−6.

Scaling of the geometry optimization A single iteration of the geometry optimization, i.e. solving
the linear system defined by Eq. (7) once, takes O(nd) operations for a problem with n terminals in
d spatial dimensions. The elimination scheme used in our efficient C++ implementation is based on
the “elimination on leaves of a tree” found in [26]. From Eq. (7), one can easily see that the geometry
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Figure 23: Average runtime of BP optimization routine applied to each 1000 random BOT problems
of different size. Average of all problems with α ≤ 0.5 in orange (dotted) and α > 0.5 in green
(dashed).
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Figure 24: Average number of iterations required by the BP optimization routine until convergence
for each 1000 random BOT problems of different sizes n and different dimensionality d. The x-axis
is in log-scale. The plot suggests that, for the investigated regime of n and d, the number of iterations
on average scales like log(n), though one cannot generalize this statement.

optimization parallelizes over the spatial dimensions, as the linear system of the form Ax = b shares
the same matrix A across the different dimensions and only the b is different. Although a single
iteration is of order O(nd), it is a priori not clear how many iterations are required until convergence
is reached. Paralleling the setup of Fig. 23, we have conducted an experiment where we report the
number of iterations, for a batch of BOT problems. We performed the same experiment in Euclidean
space of different dimensions (d ∈ {3, 4, 5, 10, 30, 100}). Figure 24 shows the number of iterations
until convergence plotted against the number of terminals. The plot suggests that, for the investigated
regime of n and d, the number of iterations on average scales like log(n). However, this is merely an
empirical observation and theoretical investigations are an interesting subject for future research.

Algorithm 2 Random BOT problem generation
Input: number of terminals n
Output: BOT problem with n terminals located in [0, 1]× [0, 1], total supply and demand equal to 1

1: α ∼ Uniform([0, 1]) ▷ sample uniformly from [0, 1]
2: n+ ∼ Uniform({1, 2, ..., n− 1}) ▷ number of sources
3: n− ← n− n+
4: µ+

1:n+ ∼ Uniform([0, 1], size=n+) ▷ array of supplies
5: µ−

1:n− ∼ Uniform([0, 1], size=n−) ▷ array of demands
6: a1:n ∼ Uniform([0, 1], size=(n,2)) ▷ terminal coordinates
7: return a1:n, µ+/sum(µ+), µ−/sum(µ−), α
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Figure 25: Our greedy BOT solver applied to a problem with 100 terminals (sources in red and sinks
in blue), α = 0.58.

G.3 Greedy randomized heuristic for topology optimization

In this section, we give the details of the greedy randomized heuristic presented in Section 6.2 and
show the results of some additional experiments conducted with it.

Starting from a tree topology T , a uniformly sampled edge ê is removed. The node in the smaller
connected component ℓ is connected via a new branching point to an edge in the other component.
This edge is sampled according to p(e) ∝ exp(−d(e, ℓ)2/d2min), where d(e, ℓ) is the distance
between an edge e = (i, j) and node ℓ, defined by

d(e, ℓ) = min
λ∈[0,1]

∥[xi + λ(xj − xi)]− ℓ∥2 (35)

and dmin is the distance to the closest considered edge. The resulting new tree topology Tnew is
accepted if it decreases the cost compared to the previous topology T and the above procedure is
iterated. This greedy optimization strategy is summarized in Alg. 3 below.

Figure 25 shows an example BOT problem with 100 terminals to which our greedy heuristic has been
applied. As starting point, the topology with the least possible structure was used, a star-like tree
centred around a single BP of degree 100, cf. Fig. 25b. It can be seen how the topology evolves over
less than 2000 iterations to the final solution. Figure 25a shows the decreasing transportation cost C
plotted against the number of iterations.

Performance test of heuristic topology optimization. Finally, in a large experiment, we have
investigated how many iterations the greedy heuristic requires on average to converge. For that, the
greedy heuristic was applied to a number of BOT problems with n terminals and the number of
iterations until convergence were counted. The mean and standard deviation of the required iterations
are plotted in Fig. 26. The reason for the relatively large standard deviations are due to intrinsic
variation of the sampled problems. To illustrate, for instance, the influence of the α-value, the average
number of iterations until convergence were plotted separately for all BOT problems with α ≤ 0.5
and α > 0.5. We find that the greedy heuristic systematically needs more iterations to converge for
α > 0.5.

Influence of the edge sampling kernel. Our heuristic topology optimization involves a number of
design choices which may affect its performance. A systematic investigation is beyond the scope of
this work and left for future research. However, one hyperparameter of particular interest is the kernel
(chosen to be Gaussian) and its width (chosen to be dmin ), which together define the replacement
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Algorithm 3 Greedy randomized heuristic (zero temperature limit)
Input: BOT problem P , tree T interconnecting terminals a1:n (with help of BPs)
Output: heuristic BOT solution

1: B ← optimize_BP_configuration(T, P ) ▷ returns coordinates of BPs and terminals, see Alg. 1
2: C ← BOT_cost(T,B, P )
3: E ← list(T.edges())
4: while E not empty do
5: S ← Store current state (T,B)
6: Cold ← C
7: ê ∼ Uniform(E) ▷ sample uniformly from E
8: E.remove(e)
9: T .remove_edge(ê)

10: Cb ← subgraph component of T with more nodes
11: Eb ← list(Cb.edges)
12: b← node of ê in Cb

13: ℓ← node of ê not in Cb

14: if degree(b) == 2 then
15: n1, n2 ← neighbors(T, b)
16: T .remove_node(b) ▷ remove unnecessary BPs with degree 2
17: T .add_edge(n1, n2)
18: Eb.remove((n1, b), (n2, b))
19: end if
20: d← Initalize array of size length(Eb)
21: for edge e ∈ Eb do
22: d[e]← get_distance(e, ℓ) ▷ calculate distance defined by Eq. (35)
23: end for
24: dmin ← min(d)
25: ec ∼ exp(−d2/d2min) ▷ sample edge according to distance kernel
26: T .add_node(bnew) ▷ Initialize a new BP
27: T .add_edges((ℓ, bnew), (bnew, ec[0]), (bnew, ec[1]))
28: B ← optimize_BP_configuration(T, P )
29: C ← BOT_cost(T,X, P )
30: if C < Cold then
31: E ← list(T.edges()) ▷ accept new state
32: else
33: T,B ← S ▷ Restore old state (T,B)
34: C ← Cold
35: end if
36: end while
37: return T,B

probability of the edges, see l. 25 in Alg. 3. To study its influence on the performance we varied the
width of the Gaussian kernel exp(−d2/(ωdmin)

2) by tuning the parameter ω. Based on 150 random
problems of various sizes n, we calculated the average cost ratio of the heuristic with different ω to
the default of ω = 1 (cf. Fig. 27a). Indeed, Fig. 27a shows that the default choice of ω = 1 is quite
strong and relatively robust given that ω = 0.5 or ω = 0.1 work similarly well. Clearly, wider kernels
lead to larger (i.e. less local) changes of the topology. At later stages of the algorithm most of these
topology changes will be unfavorable, explaining why the algorithm for wider kernels terminates
with comparatively less optimal solutions. Furthermore, we have investigated the influence of the
kernel width on the number of iterations required (cf. Fig. 27b). Qualitatively, Fig. 27b confirms
that for wider kernels, which encourage exploration, more iterations are required. Fitting a power
law of the form x 7→ axb to the curves in Fig. 27b, one finds that, depending on the kernel, the
greedy heuristic on average scales between O(n1.5) and O(n1.7). Again, this is a purely empirical
statement. A careful theoretical analysis to obtain guarantees, also for problem sizes not covered in
our experiments, is beyond the scope of this work.
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Figure 26: The greedy topology optimization applied to each 150 problems with n terminals: Mean
and standard deviation of required iterations plotted vs. n in blue. Average for problems with α ≤ 0.5
in green (dashed) and for problems with α > 0.5 in orange (dotted).
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Figure 27: Influence of kernel width in topology optimization based on 150 random problems of
various sizes n: (a) Ratio of the average cost of the heuristic solution with kernel width factor ω to
the default of ω = 1. (b) Average number of iterations until convergence for different kernel width
factors ω. Depending on the kernel width the number of iterations on average scales between O(n1.5)
and O(n1.7).
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Figure 28: Average cost ratios of our greedy heuristic and brute-force solutions (the closer to
1 the better) for different number of terminals n and dimensions d. For each n, we uniformly
sampled 100 different BOT problems. Though the average cost ratio increases slightly with n, our
approximate BOT solver compares very well against the ground truth solutions, independently of the
dimensionality d.

Greedy topology optimization vs. brute-force search for higher-dimensional BOT. Both the
numerical geometry optimization and the greedy algorithm for the topology optimization presented
in Sect. 6 are readily applicable to BOT problems in Rd. Paralleling the experiment presented in
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Fig. 8, we have compared our heuristic topology optimization against brute-forced solutions for each
100 problems of size n = 5 to n = 9 and spatial dimension d. Although Fig. 28 suggests that the
average cost ratio increases slightly with n, our approximate BOT solver again compares very well
against the ground truth solutions, independently of the dimensionality d.
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