
A Background
A.1 Partially Observable Mackov Decision Process
We follow previous works [25] to consider MARL as a partially observable Markov games [22]. We
define a set of states S describing the possible configurations of all n agents. For each agent i, we
define a set of actions Ai and a set of local observations Oi. A multi-agent task can then be described
as T = {S,A1:n,O1:n, n}.

At each step of the Markov game, each agent i uses a stochastic policy πi : Oi×Ai → [0, 1] to select
an action which leads to the next state according to the dynamics function D : S×A1×...×An → S.
Then, each agent i gets rewards as a function of the state and agent’s action ri : S × Ai → R,
and receives an observation correlated with the state oi : S → Oi . The initial states are defined
by a distribution σ : S → [0, 1]. Each agent i intends to maximize their own total expected return
Ri =

∑T
t=1 γtr

i
t where γ is a discount factor and T stands for the maximum of steps an agent can

take. In the following paragraph, we use superscript to indicate agent’s index and subscript to indicate
time step for states, observations, rewards and actions.

A.2 Decision Transformer
Decision Transformer [3] using Transformer [44] which is an architecture to efficiently model
sequential data shows its ability to cast the problem of RL as conditional sequence modeling.

The core component of transformer is attention mechanism [44]. Let Q ∈ Rmq×dk be the queries,
K ∈ Rmk×dk and V ∈ Rmk×dv where m∗ represents element numbers of different inputs and
d∗ represents the corresponding element dimensions. The output of the attention mechanism are
computed as

Atten(Q,K,V) = softmax(
QKT

√
dk

)V (5)

The attention mechanism can be extend to multi-head attention, which provides capability to jointly
attend to information from different representation subspaces. Its formulation is shown as follow

MultiHead(Q,K,V) = Concat(head1, ..., headh)W
O (6)

headi = Atten(QWQ
i ,KWK

i ,VWV
i ) (7)

Besides, the position-wise feed-forward network is another critical module in the transformer. It
consists of two linear transformations with a ReLU activation in between. dmodel is the dimensionality
of inputs and outputs, and dff is that of the feed forward layer, so the position-wise feed-forward
network becomes

FFN(x) = max(0, xW1 + b1)W2 + b2 (8)

Across different positions are the same linear transformations with shared weights. Note that the
position encoding for leveraging the order of the sequence as follows:

PE(pos, 2i) = sin pos/100002i/dmodel

PE(pos, 2i+ 1) = cos pos/100002i/dmodel
(9)

By conditioning an autoregressive model on the desired return (reward), past states, and actions that
implicitly constructs state-return associations via similarity of key and query vectors, the Decision
Transformer model can generate future actions that achieve the desired return.

B Implementation Details
Our method are describe in the main paper Sec. 3, and we present the hyperparamenter and detail
architecture. The source code will be public after the acceptance. The proposed framework is trained
on the servers with NVIDIA RTX 2080Ti GPUs and AMD 2990WX CPU. We also provide learning
curves for our offline learning setting in Fig. 8

13



Figure 8: Learning curves in our offline learning setting

B.1 Independent Decision Transformer (IDT)
The implementation of decision transformer [3] is adapted from the official released codebase2.
For each agent, we construct a separated decision transformer learned from trajectory modeling as
the policy to control the agent, and the backbone of the transformer is similar to GPT-2 [31]. We
summarize the hyperparameters used in our experiments in the table below.

Fill-In Equal Space Grid-World Highway SMAC [35]

2s3z 3s5z 8m9m 3s5z vs 3s6z

offline lr 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
weight decay 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
offline epochs 1000 500 1000 1500 1000 1000 1000 1000

training time (hr) 5.4 3.3 6.1 8.4 10.1 13.5 14.12 16.3

Table 4: Hyperparameters for IDT [3]

B.2 Behavior Cloning (BC)
The implementation of behavior cloning is pretty simple. We create a 3-layer MLP with hidden
dimensions 128 as the policy we would like to learn. The policy network takes a series of local
observations as input and predict action distribution, and it is trained in regressing manner. We
summarize the hyperparameters used in our experiments in the table below.

Fill-In Equal Space Grid-World Highway SMAC [35]

2s3z 3s5z 8m9m 3s5z vs 3s6z

offline lr 0.0005 0.0005 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
weight decay 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
offline epochs 1000 500 1000 1500 1000 1000 1000 1000

training time (hr) 2.8 1.9 3.3 4.1 7.3 12.8 13.1 13.1

Table 5: Hyperparameters for Behavior Cloning.

B.3 Multi-Agent Decision Transformer (MADT)
The implementation of MADT [26] is leveraged from their offical implementation 3. The backbone of
the transformer is also similar to GPT-2 [31]. To be more specific, it contains two-layer transformer
blocks. We summarize the hyperparameters used in our experiments in the table below.

2https://github.com/kzl/decision-transformer with MIT license
3https://openreview.net/attachment?id=W08IqLMlMer&name=supplementary_material

14

https://github.com/kzl/decision-transformer
https://openreview.net/attachment?id=W08IqLMlMer&name=supplementary_material


Fill-In Equal Space Grid-World Highway SMAC [35]

2s3z 3s5z 8m9m 3s5z vs 3s6z

offline lr 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
weight decay 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
offline epochs 1000 500 1000 1500 1000 1000 1000 1000

training time (hr) 5.2 3.2 6.2 8.6 10.1 13.0 14.2 15.9

Table 6: Hyperparameters for MADT [26]

B.4 Multi-Agent Conservative Q-Learning (MA-CQL)
The implementation is adapted from the official implementation of CQL [18]4 and MADT [26]. The
Q-network is formed 3-layer MLP with hidden dimensions 256. A mixing network [32] used to fuse
the q value estimation for the agents is applied. The architecture of mixing network is 2-layer MLP
with hidden dimension 64.

Fill-In Equal Space Grid-World Highway SMAC [35]

2s3z 3s5z 8m9m 3s5z vs 3s6z

offline lr 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
offline batch size 128 128 128 128 128 128 128 128
weight decay 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
offline epochs 1000 500 1000 1500 1000 1000 1000 1000

training time (hr) 5.9 3.5 6.4 9.1 10.4 13.1 15.1 15.9

Table 7: Hyperparameters for MA-CQL [18]

B.5 Multi-Agent Implicit Constraint Q-Learning (MA-ICQ)
The implementation is adapted from the official implementation of ICQ [45]5 and MADT [26].
The two Q-network are formed 3-layer MLP with hidden dimensions 256, respectively. A mixing
network [32] used to fuse the q value estimation for the agents is applied. The architecture of mixing
network is 2-layer MLP with hidden dimension 64.

Fill-In Equal Space Grid-World Highway SMAC [35]

2s3z 3s5z 8m9m 3s5z vs 3s6z

offline lr 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
offline batch size 128 128 128 128 128 128 128 128
weight decay 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
offline epochs 1000 500 1000 1500 1000 1000 1000 1000

training time (hr) 4.8 3.0 5.9 7.4 9.3 11.9 14.2 14.4

Table 8: Hyperparameters for MA-ICQ [45]

B.6 Multi-Agent Batch-Constrained Deep Q-Learning (MA-BCQ)
The implementation is adapted from the official implementation of BCQ [10]6 and MADT [26]. The
two Q-networks are formed 3-layer MLP with hidden dimensions 256. A mixing network [32] used
to fuse the q value estimation for the agents is applied. The architecture of mixing network is 2-layer
MLP with hidden dimension 64.

B.7 Ours
The implementation of our approach is adapted from from the official released codebase7 of deci-
sion transformer [3]. As for online finetuning, the finetuning procedure is as the same as that of
MADT [26]. The optimization algorithm used in finetuning phase is MAPPO [46]. We summarize
the hyperparameters for both offline and online learning in the table below.

4https://github.com/aviralkumar2907/CQL.git
5https://github.com/YiqinYang/ICQ.git
6https://github.com/sfujim/BCQ with MIT license
7https://github.com/kzl/decision-transformer

15

https://github.com/aviralkumar2907/CQL.git
https://github.com/YiqinYang/ICQ.git
https://github.com/sfujim/BCQ
https://github.com/kzl/decision-transformer


Fill-In Equal Space Grid-World Highway SMAC [35]

2s3z 3s5z 8m9m 3s5z vs 3s6z

offline lr 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
offline batch size 128 128 128 128 128 128 128 128
weight decay 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
offline epochs 1000 500 1000 1500 1000 1000 1000 1000

training time (hr) 5.1 3.1 6.1 7.8 9.3 10.9 12.4 15.2

Table 9: Hyperparameters for MA-BCQ [10]

Fill-In Equal Space Grid-World Highway SMAC [35]

2s3z 3s5z 8m9m 3s5z vs 3s6z

offline lr 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
online lr 0.0001 0.0001 0.0001 0.0001 - - - -
weight decay 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
offline epochs 1000 500 1000 1500 1000 1000 1000 1000
α 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
β 0.001 0.002 0.002 0.001 0.0001 0.0001 0.0001 0.0001
e 5 5 5 5 4 4 4 4
online epochs 10 10 10 50 - - - -

training time (hr) 5.5 3.3 6.7 9.0 10.9 14.2 15.2 17.1

Table 10: Hyperparameters for our approach.

C Environmental Setting
Fill-In. This environment is adapted from https://github.com/ArnaudFickinger/
gym-multigrid. The goal of this task to to make agents fill all the blocks in the map. There-
fore, a good strategy for agents to do so is that agents try to move around and avoid pass through
other agents’ path. The detailed environment definition is shown as follow.

The observation o of the agent in the environment the 3x5 visible region, which can be converted to a
small image. In the map, different agents are represented by different colors, and the passed blocks
are represented by the color as the same as the passing agent with transparency. The action a of the
agent in the environment is the discrete action which contains [move forward, turn left, turn right, no
move] to reach the adjacent partition. The reward r of the agent consider how many blocks the agent
already passes and how many blocks that aren’t passed yet. Therefore, the reward can formulated as
follow r = −# of not filled space + # of slots occupied by specific agent. Note that once a block is
passed by an agent, another agent passing the block won’t be rewarded.

Equal Space. The environment is adapted from https://github.com/openai/
multiagent-particle-envs. The goal of this task is that agents need to keep the same
distance between each other, and there are three agents in the environment. Ideally, the agents should
form a triangle in the end, so all the distances between the agents are the same. Here is the detailed
environment definition.

The observation o is the relative position of other agents. The action a of the agent in the environment
is the continuous action which contains [δx, δy] allowing agent move in the environment.

Grid-World. This environment is adapted from https://github.com/ArnaudFickinger/
gym-multigrid.

The observation o of the agent in the environment the 5x5 visible region. To be more specific, 4
10x10 maps identify the other agent, apples, obstacles and target position, respectively. The action a
of the agent in the environment is the discrete action which contains [move forward, turn left, turn
right, no move] to reach the adjacent partition. The reward r represents whether the agent collects the
object. To be more specific, r is 0.5 if the agent gets the object, otherwise, r is 0.

Highway. The environment is leveraged from https://github.com/eleurent/highway-env.
The objective of this task is to make cars move as fast as possible and prevent collision at the same
time. To be more specific, there are three cars to be control and other cars are controlled by build-in
controller. Therefore, a good strategy for agents to do so is that agents try to accelerate and switch
lane to pass through other cars if other cars move too slowly. Here is the detailed environment
definition.

16

https://github.com/ArnaudFickinger/gym-multigrid
https://github.com/ArnaudFickinger/gym-multigrid
https://github.com/openai/multiagent-particle-envs
https://github.com/openai/multiagent-particle-envs
https://github.com/ArnaudFickinger/gym-multigrid
https://github.com/ArnaudFickinger/gym-multigrid
https://github.com/eleurent/highway-env


The observation o of the agent in the environment consider the status of the controlled car and other
close cars. The status of a car can be represented as follow F = [L, xpos, ypos, vx, vy], where L
means whether a car is still alive, xpos and ypos indicate the position of the car, vx and vy represent
the velocity of the car. Therefore, the observation of the agent is o = [Fself , Fclose] The action a of
the agent in the environment is [no operation, slow down, accelerate, switch to left lane, switch to
right lane]. The reward r consider whether collision happens and how fast the car moves. Specifically,
the reward is defined as r = 25 · rcollision + 0.2 · rhigh_speed. rhigh_speed represents the speed of the
car. rcollision is -1 if the car collide with other car, otherwise, it is 0.

SMAC [35]. SMAC is leveraged from https://github.com/oxwhirl/smac which is WhiRL’s
environment for research in the field of collaborative multi-agent reinforcement learning (MARL)
based on Blizzard’s StarCraft II RTS game. SMAC makes use of Blizzard’s StarCraft II Machine
Learning API and DeepMind’s PySC2 to provide a convenient interface for autonomous agents to
interact with StarCraft II, getting observations and performing actions. Unlike the PySC2, SMAC
concentrates on decentralised micromanagement scenarios, where each unit of the game is controlled
by an individual RL agent.

Grid-World Highway

Dataset Quality good normal poor good normal poor

number of trajectories 4000 4000 4000 1000 1000 1000
return distribution 3.02 ± 0.29 2.50 ± 0.12 2.13 ± 0.09 26.89 ± 1.92 20.91 ± 1.39 18.71 ± 1.53

Table 11: Information of the offline dataset of Grid-World and Highway used in our experiments

Fill-In Equal Space SMAC
2s3z 3s5z 3s5z vs 3s6z

number of trajectories 1000 1000 4177846 1448424 1542571
return distribution 1.52± 0.27 −2.25± 0.12 19.93± 0.09 18.45± 2.03 18.35± 2.04

Table 12: Information of the offline dataset of Fill-In, Equal Space and SMAC used in our experi-
ments

D Properties of Offline Dataset
We summarize the quality and amount of offline dataset in Table C and Table C. As for how the
offline datasets are constructed, we illustrate them below.

Fill-In. The offline dataset is generated by agents randomly walking in the grid-world environment.
Therefore, the quality of the offline trajectories is limited.

Equal Space, Grid-World, Highway. The offline dataset is generated by an expert policy trained
with PPO [36]. The expert policy take observations from all the agents as input and predict actions of
all the agents. In other words, it is a centralized policy.

In Gird-World and Highway, the “good” trajectories are collected with expert policy that is trained
to achieve saturated performance. The expert policy takes observations from all the agents in the
environment as input and predicts the actions of all the agents. The “normal” trajectories are collected
with policy that reaches around 80%performance of the expert policy, and the “poor” trajectories are
collected with policy achieving around 65% performance of the expert policy.

SMAC The dataset is provided from MADT [26]. According to MADT, the offline trajectories are
collected by running a policy trained with MAPPO [46].

E Qualitative Results
First, we demonstrate the map after the agents conduct several action steps in Fill-In environment in
Fig. 9. Obviously, we can find that our approach can encourage agents fill more blocks than other
methods. In contrast, BC make agents randomly walk in the map since the quality of offline dataset
is limited. As for IDT, we can find that agents somehow understand how to fill the blocks. However,
the trajectories of the agents have some overlap, which is not a efficient strategy. MADT performs
better than IDT and BC by filling more blocks, but still can’t outperform our approach.

17

https://github.com/oxwhirl/smac


Figure 9: Qualitative results on Fill-In environment.

Figure 10: Qualitative results on equal space environment. By observing the behavior of the agents,
our approach encourage agents to behave more efficiently.

Then, we show more qualitative of Equal Space results in 10. It shows the behavior of the policies
trained by our approach and ours with conventional distillation, respectively. To make agents keep
the same distance from each other, policy obtained by our method tends to make agent move the the
closest corner and form an equilateral triangle structure. On the other hand, policy obtained by offline
learning and conventional distillation encourage specific agents to go to specific corners, which is a
sub-optimal solution.

F Additional Experiments
F.1 Why we use Huber loss
In Eq. 3, we use Huber loss the compare the angles between features in student policy and teacher
policy. A naive alternative is use mean-square error (MSE) to measure the difference of the angles.
Our motivation to use Huber loss is that the MSE has the disadvantage that it has the tendency to

18



Figure 11: MSE and Hube loss. Huber loss is more stable to outliers since it grow linearly for large
values.

be dominated by outliers. In contrast, Huber loss is quadratic for small values and linear for large
values, so it is more stable to outliers. (see F.1) In other words, using Huber loss instead of MSE can
improve the learning stablity of our approach. To further show the benefit of using Huber loss, we
show the variant of using MSE to estimate the difference of angles in Table 13.

Fill-In Equal Space Grid-World Highway

Ours (Huber loss) −3.41± 0.12 −2.43± 0.72 2.09± 0.22 23.35± 0.91
Ours (MSE) −8.21± 2.32 −4.43± 0.92 1.09± 0.49 19.35± 2.75

Table 13: Comparison of using Huber loss and MSE in our approach. The performance is merged
with experiments at 10 different random seeds.

19


