
Supplementary Material for “Flow-based
Image-to-Image Translation with Feature

Disentanglement”

A Reformulation of the loss functions

A.1 FUNS

The loss function for flow can be reformulated as follows.

Lflow = Ex,c∼p(x,c)
[
− log eφ(fθ(x)|c)−

∑
p

log Jp(x)
]

= Ex,c∼p(x,c)
[
− log pθ,φ(x|c)

]
, (S.1)

where pθ,φ(x|c) := eφ(f
−1
θ (z)|c), x = f−1θ (z).

Our model assumes that p(z|c) := eφ(z|c) (= N (z|µφ(c), diag σ2
φ(c))). Then the following holds

for any conditional distribution dψ(c|z):

−I(c; z) = −
∫
p(c, z) log

p(c, z)

p(c)p(z)
dcdz

= −
∫
p(c, z) log

dψ(c|z)
p(c)

p(c|z)
dψ(c|z)

dcdz

= −
∫
p(c)eφ(z|c) log dψ(c|z) dcdz +

∫
eφ(z|c)p(c) log p(c) dcdz

−
∫
p(z)p(c|z) log p(c|z)

dψ(c|z)
dcdz

= Ec∼p(c), z∼eφ(z|c)
[
− log dψ(c|z)

]
−H

[
p(c)

]
− Ez∼p(z)

[
DKL

(
p(c|z)‖dψ(c|z)

)]
= Lrecons −H

[
p(c)

]
− Ez∼p(z)

[
DKL

(
p(c|z)‖dψ(c|z)

)]
≤ Lrecons −H

[
p(c)

]
, (S.2)

where Lrecons is given by

Lrecons = Ec∼p(c), z∼eφ(z|c)
[
− log dψ(c|z)

]
. (S.3)

From the fact thatH
[
p(c)

]
is constant, we can increase I(c; z) by decreasing Lrecons.

Consequently, a loss function of FUNS without regularization terms can be written as

Lflow + Lrecons = Ex,c∼p(x,c)
[
− log pθ,φ(x|c)

]
− I(c; z)

+ Ez∼eφ(z)
[
DKL

(
eφ(c|z)‖dψ(c|z)

)]
+H

[
p(c)

]
(S.4)
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In the above equation, it can be seen that Lflow + Lrecons is an upper bound of the objectives for
conditional generation, which can be expressed as follows:

Lflow + Lrecons −H
[
p(c)

]︸ ︷︷ ︸
constant

≥ Ex,c∼p(x,c)
[
− log pθ,φ(x|c)

]
− I(c; z) (S.5)

A.2 CVAE

Let qη be an approximation of pθ. The loss function of the conditional variational autoencoder
(CVAE) can be reformulated as follows.

LCVAE(c, x) = Ez∼qη(z|c,x)
[
− log pθ(x|c, z)− log pθ(c)− log pθ(z) + log qη(z|c, x)

]
= Ez∼qη(z|c,x)

[
− log pθ(x|c, z)− log pθ(c)− log pθ(z) + log qη(z|c, x)

+ log pθ(c, x)− log pθ(c, x)
]

= − log pθ(c, x) + Ez∼qη(z|c,x)

[
log qη(z|c, x)− log

pθ(c)pθ(z)pθ(x|c, z)
pθ(c, x)

]

= − log pθ(c, x) + Ez∼qη(z|c,x)

[
log qη(z|c, x)− log pθ(z|c, x)− log

pθ(c)pθ(z)

pθ(c, z)

]

= − log pθ(c, x) +DKL
(
qη(z|c, x)‖pθ(z|c, x)

)
+ Ez∼qη(z|c,x)

[
log

pθ(c, z)

pθ(c)pθ(z)

]

Here we assume that pθ(c) = p(c). The Expectation of LCVAE(c, x) can be written as

Ec,x∼p(c,x)
[
LCVAE(c, x)

]
= Ec,x∼p(c,x)

[
− log pθ(x|c) +DKL

(
qη(z|c, x)‖pθ(z|c, x)

)]
+ Ez∼qη(z|c,x)

[
log

pθ(c, z)

pθ(c)pθ(z)

]
+H

[
p(c)

]
(S.6)

The last term becomes I(c; z) when pθ = qη = p.

A.3 PUNet and VUNet

The loss function of the probabilistic U–Net (PUNet) can be reformulated as follows.

LPUNet(c, x) = Ez∼qη(z|c,x)
[
− log pθ(x|c, z)

]
+DKL

(
qη(z|c, x)‖pθ(z|c)

)]

= Ez∼qη(z|c,x)
[
− log pθ(x|c, z) + log qη(z|c, x)− log pθ(z|c)

+ log pθ(x|c)− log pθ(x|c)
]

= − log pθ(x|c) + Ez∼qη(z|c,x)

[
log qη(z|c, x)− log

pθ(x|c, z)pθ(z|c)
pθ(x|c)

]

= − log pθ(x|c) + Ez∼qη(z|c,x)
[
log qη(z|c, x)− log pθ(z|c, x)

]
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= − log pθ(x|c) +DKL
(
qη(z|c, x)‖pθ(z|c, x)

)
Here, we assume the coefficient of the Kullback–Leibler divergence, β, which appeared in an original
article [2], is equal to 1. The expectation of LPUNet(c, x) can be written as

Ec,x∼p(c,x)
[
LPUNet(c, x)

]
= Ec,x∼p(c,x)

[
− log pθ(x|c)+DKL

(
qη(z|c, x)‖pθ(z|c, x)

)]
(S.7)

Variational U–Net [1] takes a similar form of loss function except that it uses perceptual loss for the
reconstruction.

A.4 Comparison of the loss functions

Comparing Eq. (S.4)), (S.6)) and (S.7), we find that the first terms are common for all models. The
main difference is that FUNS does not include approximations of pθ (qη), whereas both CVAE and
PUNet include it. In addition, the mutual information terms that appear in FUNS and CVAE are
different. Our model tends to increase I(c; z) while CVAE tends to decrease I(c; z). In CVAE, the
condition–specific and condition–invariant parts are explicitly separated in the model architecture. To
completely disentangle these parts, which are written as c and z in the above equation, respectively,
CVAE needs to decrease I(c; z). On the contrary, in our model, the condition–specific and condition–
invariant parts of z are not explicitly separated in advance. Instead, our model includes squeeze
modules that act to decrease I(c; ziv). To preserve an important feature of c during encoding, an
additional term that increases I(c; zsp) is required. This is compensated for by Lrecons. In PUNet, z is
fully conditioned on c. Therefore, there is no cost for I(c; z).
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B FID and LPIPS

Table S.1: Comparison of FID, LPIPS and c–LPIPS for CelebA (means and standard deviations of
five trials)

CelebA

FID LPIPS c–LPIPS

VUNet T=1.0 66.000± 4.328 0.148± 0.010 0.146± 0.009
VUNet T=0.8 81.665± 3.700 0.105± 0.007 0.103± 0.006
PUNet T=1.0 114.760± 9.172 0.182± 0.021 0.180± 0.021
PUNet T=0.8 117.211± 5.474 0.149± 0.018 0.146± 0.018

FUNS T=1.0 39.561± 3.898 0.264± 0.002 0.262± 0.002
FUNS T=0.8 29.497± 3.467 0.259± 0.013 0.256± 0.013
Real data – 0.286 0.284

Table S.2: Comparison of FID, LPIPS and c–LPIPS for CHC (means and standard deviations of five
trials)

CHC

FID LPIPS c–LPIPS

VUNet T=1.0 96.523± 2.087 0.217± 0.007 0.118± 0.004
VUNet T=0.8 163.968± 5.678 0.249± 0.007 0.113± 0.003
PUNet T=1.0 225.687± 6.116 0.226± 0.007 0.108± 0.003
PUNet T=0.8 227.924± 6.027 0.214± 0.008 0.088± 0.005

FUNS T=1.0 10.480± 2.048 0.207± 0.010 0.157± 0.006
FUNS T=0.8 11.127± 2.496 0.210± 0.011 0.155± 0.007
Real data – 0.225 0.169

C Abblation study

Table S.3: Effects of each loss term on the prediction accuracy of the conditions and dimensionality
of zsp.

CelebA CHC

Acc. dim(zsp) Err. dim(zsp)

Lflow 0.956 5, 525 9.92 2, 062
+Lrecons 0.981 5, 228 9.62 1, 977
+Lsqueeze 0.978 86 9.72 270
+Lentropy 0.977 113 9.67 111

Table S.3 shows the results of the ablation study that was carried out to show the effect of each loss
term. First, FUNS was trained only with Lflow. Then, other loss terms were added sequentially. The
results show that the dimensionality of zsp, which is equivalent to the number of non-zero elements
in M , significantly decreases when Lsqueeze and Lentropy are added. In contrast, Lrecons has almost no
contribution to decreasing dim(zsp). Finally Lrecons slightly improve Acc. and Err., which is because
the Lrecons term helps increas I(c; z), which is the mutual information between c and z, as shown in
Eq. (S.5).
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D Samples

Figure S.1: Generated samples of CelebA. Non-Smiling images are shown in the first five rows and
Smiling images are shown in the last five rows (FUNS, T = 0.8).
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Figure S.2: Generated samples of CelebA. Non-Smiling images are shown in the first five rows and
Smiling images are shown in the last five rows (PUNet, T = 1.0).
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Figure S.3: Generated samples of CelebA. Non-Smiling images are shown in the first five rows and
Smiling images are shown in the last five rows (VUNet, T = 1.0).
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Figure S.4: Real samples from CHC for each condition. The images in the first column are the
conditions.
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Figure S.5: Generated samples for CHC for each condition (FUNS, T = 1.0). The images in the first
column are the conditions.
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Figure S.6: Generated samples for CHC for each condition (PUNet, T = 1.0). The images in the
first column are the conditions.
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Figure S.7: Generated samples for CHC for each condition (VUNet, T = 1.0). The images in the
first column are the conditions.
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(a) xiv

(b) xsp

Figure S.8: Additional xiv and xsp for CelebA with a Smiling given image (FUNS, T = 0.8).
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(a) xiv

(b) xsp

Figure S.9: Additional xiv and xsp for CelebA with a non-Smiling given image (FUNS, T = 0.8).
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(a) xiv

(b) xsp

Figure S.10: Additional xiv and xsp for CHC (FUNS, T = 1.0).
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Figure S.11: Additional interpolation result. The top-left and bottom-right are the given images (test
images).
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Figure S.12: Failure cases for interpolation. The top-left and bottom-right are the given images (test
images).
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