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Abstract

When training complex neural networks, memory usage can be an important
bottleneck. The question of when to rematerialize, i.e., to recompute intermediate
values rather than retaining them in memory, becomes critical to achieving the best
time and space efficiency. In this work we consider the rematerialization problem
and devise efficient algorithms that use structural characterizations of computation
graphs—treewidth and pathwidth—to obtain provably efficient rematerialization
schedules. Our experiments demonstrate the performance of these algorithms on
many common deep learning models.

1 Introduction

The world of deep learning is moving toward bigger model architectures. The recent successes in
speech, language understanding, vision, and others have repeatedly demonstrated that bigger and
deeper models yield the best results for a task, thereby advancing the state of the art. In addition to
the size, the models themselves and the methods to train them are becoming increasingly complex
and intricate in terms of data dependencies, gradient propagation, optimization steps, etc. Specialized
hardware such as GPUs and AI accelerators have been vastly influential in training these complex
models. They are particularly helpful from a computational point of view, but are limited by memory
capacity that falls short of the peak demands of training these large models. Since memory turns out
to be a bottleneck, it becomes an issue of feasibility—can a given model be trained at all?

A B C D E

Figure 1: The schedule 〈A,B,C,D,E〉 needs
four units of memory—while computing D, two
units are needed for inputs to D, one for output
from D, and one unit to keep the output of A as
an input to E. The schedule 〈A,B,C,D,A,E〉
needs three units of memory—at node D the output
of A need not be retained in memory since it will
be recomputed right after computing D.

While the growing model complexity is the root cause
of severe demands on memory, the actual schedule in
which the computation is carried out also plays a crit-
ical role in determining peak memory requirements.
To see why, it is helpful to view the computational
steps in training these models as a directed acyclic
graph (e.g., Figure 1) whose nodes represent opera-
tions and directed edges represent data dependencies.
(In TensorFlow parlance, this is a dataflow graph.)
Each node consumes a set of inputs from its incom-
ing edges, does some computation, and outputs the
result of this computation on its outgoing edges; it is
assumed that both inputs and outputs of this computa-
tion are to be held in memory. The order in which the
nodes are computed, i.e., the schedule, will determine
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the peak memory usage. Indeed, consider Figure 1, where the output of each node occupies one unit
of memory. Computing the nodes in the order 〈A,B,C,D,E〉 would need four units of memory,
whereas computing them in the order 〈A,B,C,D,A,E〉 would only need three units of memory
(see caption of Figure 1). This latter order involves rematerializing the output of node A instead
of keeping it in memory. As this example illustrates, there can be a time-memory trade-off in our
choice of schedule, where recalculating intermediate results can reduce what we store in memory.
Judiciously choosing an appropriate schedule may make larger models feasible. In this paper we
consider this rematerialization problem: given a computation graph as an input, construct a schedule,
possibly rematerializing some nodes, that uses as little peak memory as possible1.

When studied on computation graphs derived from training neural networks (i.e., graphs with
forward computation and backward computations), rematerialization is often referred to as gradient
checkpointing [10, 6, 8, 1, 15]. Of course, there are many other techniques to try to reduce memory
usage, such as reusing memory regions [19] and trying to use both GPU and CPU memory [17, 16].
Rematerialization is a particularly nice approach because it only changes how the computation is
done, but has no risk of changing the final result.

Compared to the gradient checkpointing line of work, we do not assume we have a forward/backward
computation, but rather show how certain structural properties of the graph can be used to obtain
a good solution. In particular, we identify treewidth of this graph as a key quantity that can be
algorithmically exploited to yield a schedule with provable bounds on its length and peak memory
usage. Informally, our main result is that there is a polynomial time algorithm that, given an n-node
computation graph with treewidth k and unit memory output at each node, constructs a schedule of
length O(knlog k) and peak memory usage of O(k log n). This algorithm uses a tree decomposition
of the computation graph, which yields balanced separators and offers a natural way to partition the
computations into independent sub-computations while allowing us to bound the memory use through
a charging argument. Note that while finding the optimal tree decomposition is computationally hard,
there are efficient approximation algorithms and heuristics, which makes our algorithm efficient,
practical, and easy to realize. We demonstrate its efficacy by applying it to training large networks
including feedforward, residual, and transformer networks. In all these cases, our schedule yields
significant savings in peak memory over baseline schedules, both with and without rematerialization.

We also design a different algorithm that produces schedules that are asymptotically more efficient.
This algorithm relies on the path decomposition of the computation graph and is more intricate, with an
involved analysis; but currently less practical. This result, however, hints at the intriguing possibility
of another structural property of the graph that better captures its rematerialization potential.

2 Preliminaries

2.1 Computation Graphs and Schedules

The input to our algorithms is a computation graph. Each node in this graph represents an operation
that takes as input zero or more tensors and produces a single tensor as an output (this assumption is
for simplicity). Let G = (V,E) be a directed acyclic computation graph. For u, v ∈ V , a directed
edge (u, v) ∈ E represents data dependency, meaning that the output of node u is an input to node
v. We are also given a final node f ∈ V whose output tensor is required to be held in memory at
the end of the computation. We assume, without loss of generality, that f has out-degree zero (i.e.
no other operations use the tensor produced by f ) and all nodes in G are needed to compute f . For
any node u ∈ V , let in(u) denote the immediate predecessors of u, i.e., in(u) = {u′ | (u′, u) ∈ E}.
Let n = |V |,m = |E|, and [n] = {1, . . . , n}. Throughout, log(·) means log2(·).
A schedule for a computational graph G = (V,E) is a sequence σ = σ(G) = 〈u1, . . . , ut〉 of nodes
in V with the following properties: (i) the final node f is represented in the schedule, and (ii) each
node in the schedule occurs only after all of its predecessors, i.e., for each j ∈ [t] and for each
u′ ∈ in(uj), there is some j′ < j such that uj′ = u′. Let prev(u, j) = max{j′ < j | uj′ = u} be
the most recent time u occurs in the schedule before step j. Note that a node in G can occur more
than once in σ(G) and this is precisely what enables the schedule length–memory usage trade-off.

1 Of course, the real goal is to keep peak memory under the memory available and while minimizing the time
to compute the schedule. Our results are easier to understand when viewed from a purely memory-minimization
standpoint, but it is possible to stop our recursion early to obtain other trade-off points.
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A schedule naturally implies time and memory bounds for computing G. Let L(u) be the length
of node u, representing the time required to execute the corresponding operation. The length of
a schedule is given by L(σ) =

∑t
i=1 L(ui). Let Tonepass =

∑
u∈V L(u) be the time required to

execute every operation of the graph once. It lower bounds the length of any valid schedule.

The peak memory usage of the schedule, M(σ), though intuitive, is a bit cumbersome to formalize.
For i ∈ [t], first define the set of tensors that need to be held in memory at step i as

Ui = {ui} ∪ in(ui) ∪
⋃
j>i

{u′ ∈ in(uj) | prev(u′, j) ≤ i} .

Let s(u) denote the size of the tensor output by node u. Now, the memory of the sched-
ule at step i is M(σ, i) =

∑
u′∈Ui

s(u′). Finally, M(σ) = maxti=1M(σ, i). The goal of
an algorithm alg is to produce a schedule alg(G) of G that minimizes the peak memory. Let
Min = maxu∈V {

∑
u′∈in(u) s(u

′)} be the maximum input size needed to compute any tensor.
Let Mmax = maxu∈V s(u) be the maximum size of any tensor. Clearly, for any schedule σ,
M(σ) ≥ max{Min,Mmax}.

2.2 Treewidth and Tree Decompositions

Treewidth is a well-studied graph parameter expressing how close an undirected graph G = (V,E) is
to a tree. Intuitively, if a problem is easy on trees, then one might hope that it remains easy on graphs
of small treewidth. Formally, the treewidth of a graph is defined via the notion of tree decompositions.
A tree decomposition of an undirected graph G = (V,E) is a pair (X , T ), where X ⊆ 2V is a set of
bags, with each bag a subset of the nodes, and T is a tree on the bags X . The bags and tree must
satisfy the following three properties: (i) each node in V is in some bag of X , (ii) for each edge
(u, v) ∈ E, both endpoints are together in some bag of X , and (iii) for each node v ∈ V , the bags
containing it (i.e., {X ∈ X | v ∈ X}) form a connected subgraph of T .

Naturally, there are many tree decompositions of a particular graph G, including the trivial one that
places all nodes into a single giant bag (X = {V }, T = {}). We measure a tree decomposition by
its width, which is the maximum bag size minus one: maxX∈X |X| − 1. The treewidth tw(G) of G
is the minimum width of any tree decomposition. We refer to |X | as the size of the decomposition.
Note that tw(G) can range from 1 (a tree) to n− 1 (a clique, and hence maximally far from a tree).

We will use treewidth and tree decompositions of our directed computation graphs. When doing
so, we are actually referring to the undirected graph obtained by forgetting the direction of every
edge. It is known that series-parallel graphs have a treewidth of two and control-flow graphs of all
programs written in C (without goto statements) have a treewidth of at most six [20]. We postulate
that computation graphs of neural networks in the inference mode also have similarly low treewidth
and that, given a computation graph G for a neural network in the inference mode, the computation
graph for training the network via backpropagation has treewidth at most twice as that of the original
graph. Experimentally, we observe that computation graphs for training many common deep network
architectures (ResNet, Transformer, and feedforward networks) have small treewidth (see Table 1).

Our results fall under the purview of fixed-parameter tractability, which studies the complexity
of problems under particular parameters. Typically, we would hope to find an exact algorithm
(computing the absolute memory-minimizing schedule) when treewidth is small. Unfortunately, this
seems unlikely; such results typically come from Courcelle’s theorem [7], which states that if a graph
property can be expressed in second-order monadic logic, then it can be checked for in fixed-parameter
tractable time relative to treewidth. Rematerialization is known to be PSPACE-complete [9]. If it
were expressible in second-order monadic logic, then it would lie in the polynomial hierarchy (PH)
and then PSPACE would collapse to PH. Hence, we must settle for approximation algorithms.

3 Efficient Rematerialization via Tree Decomposition

Our main algorithm uses a tree decomposition of the computation graph for a divide-and-conquer
approach. The tree decomposition of a graph allows us to find balanced separators of small size.
Additionally, the connectivity property of the tree decomposition guarantees that the nodes in the
different components can be computed independently of each other except for interactions via the
separator. Using these ideas, we recursively compute a memory-efficient schedule.
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First, we consider the size of a tree decomposition and argue that it can be bounded.
Lemma 1. Given an undirected graph G = (V,E) and its tree decomposition (X , T ) of width k, we
can find another tree decomposition (X ′, T ′) of width k and size at most n in O(|X | · (k + α(|X |)))
time, where α(·) is the inverse Ackermann function.

Proof. The idea is to post-process (X , T ) by repeatedly merging every adjacent pair of bags for
which one bag is a subset of the other. This can be done with a single pass over all edges in T , since
any adjacent pair of bags which cannot be merged at any time can never be merged in the future.
For the sake of contradiction, imagine that bags X1 and X2 could not be merged due to some node
v ∈ X1, v 6∈ X2. This problematic node will always be in X1 since merging two bags only results in
the addition of nodes to a bag. At the same time, it can never get added to X2 because all bags that
contain v are connected and hence X1 is the only bag in the neighborhood of X2 that contains v.

We can keep track of these merges using a standard Union-Find data structure on the |X | bags,
which costs O(α(|X |)) time per operation. We perform at most |X | merges, which cost a total of
O(|X | · α(|X |)) time. To check whether one bag is a subset of another, we can put the larger bag in a
hash set and perform k+1 membership checks. Hence we can perform all these checks in O(|X | · k)
time. Hence the overall time is the claimed O(|X | · (k + α(|X |))).
We can see why this post-processing procedure works by taking the resulting tree decomposition
(X ′, T ′) and rooting it at an arbitrary bag. Each non-root bag must contain a node not found in its
parent bag because otherwise the bag should have been merged with its parent bag. Since the set
of bags containing a node is connected, this assigns a unique node v ∈ V to every non-root bag.
Furthermore, the root cannot be empty since then it would have been merged, and its nodes cannot be
assigned to any other bag due to the same property. Hence we can assign it one of these nodes. Since
we have assigned each bag a unique node v ∈ V , there can be at most n bags.

A classic result shows that a tree always has a balanced node separator.
Theorem 2 (Jordan [14]). Any tree on n nodes has a node whose removal disconnects the tree into
components of size at most n/2.

Applying Jordan’s theorem on the tree decomposition (X , T ) directly yields the following lemma.
Lemma 3 (Balanced Separator). Given a tree decomposition (X , T ), we can find, in time O(|X |), a
bag X? ∈ X such that each connected component of (X , T ) \ {X?} contains at most |X |/2 bags.

Our divide-and-conquer approach chooses a balanced separator X? of the tree decomposition so
that removing it results in subtrees with at most |X |/2 bags each. Combining with Lemma 1, this
guarantees that there are at most log n levels of recursion. Finding such a bag is a standard technique.

With these two ideas, we present Algorithm 1, which is a recursive function that schedules a subset
V ′ of nodes with a requirement that the schedule contains all nodes in a specified subset S. It breaks
the graph using the balanced separator, and schedules the predecessors of a node v in each of the
resulting components before scheduling v itself. The produced schedule includes annotations about
which tensors to keep in memory or to remove, which is just for ease of analysis, as in practice
memory usage can be inferred from a schedule of operations. Initially, the function is called with
arguments (G,V, (X , T ), {f}), where f ∈ V is the final node.
Lemma 4. Algorithm 1 produces a valid rematerialization schedule.

Proof. The base case of the recursion is when there is a single bag in the tree decomposition, in
which case we make no recursive calls and simply compute the desired outputs in some topological
order. Inductively, we assume that the algorithm works correctly on tree decompositions with less
than b bags, and show that it also works when there are b bags.

The reasoning centers around what happens when we remove the balanced separator X? from the
tree decomposition. Since the bags containing any node v ∈ V form a connected component, if v is
in two or more components of C, it must also be in the separator X?. Hence this separator partitions
our graph: for each subgraph (X ′, T ′) ∈ C, we can define the nodes in it to be V ′ :=

(⋃
X∈X ′ X

)
and we know that these V ′ together with X? form a partition of V . Furthermore, by the definition of
tree decomposition, we know that each edge must be present in some bag, so the only edges involving
some V ′ go to other nodes in the same V ′ or to X?.
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Algorithm 1: Efficient Rematerialization via Tree Decomposition.
Function: TWRemat(G,V ′, (X , T ), S):

Data: G = (V,E) a computation graph, V ′ ⊆ V a subset of nodes to restrict to, (X , T ) a
tree decomposition of G restricted to V ′, S ⊆ V ′ a subset of nodes to compute.

Result: An annotated schedule consisting of nodes in V ′ that contains all nodes in S.

if this is the top level recursive call then
Shrink the size of the tree decomposition to at most n bags using Lemma 1;

Find a balanced separator (bag) X? ∈ X using Lemma 3;
Make a copy of (X , T ), removing bag X? and removing nodes of X? from every other bag.

Let C be the set of connected components that result (each a tree decomposition (X ′, T ′));
Initialize schedule = 〈〉;
for node v ∈ X? in any topological order (according to G) do

for connected component (X ′, T ′) ∈ C do
Let S′ = in(v) ∩

(⋃
X∈X ′ X

)
and V ′′ = V ′ ∩

(⋃
X∈X ′ X

)
;

Extend schedule with TWRemat (G,V ′′, (X ′, T ′), S′) to compute the inputs of v in
this component;

Add annotation to schedule to keep S′ in memory;
Add v to schedule, keeping it in memory, and freeing all of its inputs not in X?;

for connected component (X ′, T ′) ∈ C do
Let S′ = (S \X?) ∩

(⋃
X∈X ′ X

)
and V ′′ = V ′ ∩

(⋃
X∈X ′ X

)
;

Extend schedule with TWRemat (G,V ′′, (X ′, T ′), S′) to compute the remaining outputs
in this subgraph;

Add annotation to schedule to keep S′ in memory;
Add annotation to schedule to free the unneeded balanced separator nodes X? \ S;
return schedule;

We claim that whenever a recursive call to TWRemat is made (with arguments V ′′ and S′), all
predecessors of S′ which are not in V ′′ are already in memory of the caller’s schedule. Consider
some node u ∈ S′ and its predecessor u′ /∈ V ′′. It must be that u′ ∈ X? by the preceding discussion
that an edge involving u ∈ V ′′ can only go to V ′′ or to X?. Suppose that the recursive call is made
from the nested for loops in which the outer loop is processing a node v ∈ X?. Since u′ is a
predecessor of u and u is a predecessor of v (which we know from u ∈ S′), u′ must come before v
in a topological order of G. Thus, it has already been scheduled in a previous iteration of the outer
for loop. If the recursive call is made from the other for loop, then all nodes of X? are scheduled
and in memory by that time.

We conclude that the precedence constraints are respected by the schedule—with respect to nodes in
V ′′ by induction, and with respect to nodes in X? by the above discussion. Furthermore, all nodes of
S are scheduled in the later loop.

Theorem 5. Given a computation graph G = (V,E), its tree decomposition (X , T ) of width at most
k, and S ⊆ V a subset of nodes to compute, Algorithm 1 runs in timeO(|X |·(k+α(|X |))+kn log n+
kn1+log(k+2)) and computes a rematerialization schedule of length O(Tonepass · knlog(k+2)) that
requires O((Min + kMmax) log n) memory.

Proof. We begin with the running time. We pay an upfront cost of O(|X | · (k + α(|X |))) to invoke
Lemma 1. We pay a total time of O(n log n) to invoke Lemma 3, since (i) each invocation requires
linear time and (ii) we recurse into subcalls that partition the tree decomposition into pieces that
are at most half the current size. Note that we will need to memoize these balanced separators to
avoid recomputing them over and over. As a result we have O(log n) levels of recursion and over
all subcalls in a level we do O(n) work. The processing of tree decompositions (removing a bag,
removing the nodes of a bag from other bags) can be done in O(kn) time and follows the same
recursion as finding balanced separators (i.e. subcalls partition the tree decomposition and have at
most O(log n) depth), for a total of O(kn log n) work. Finally, the output is O(kn1+log(k+2)) in size
(see the schedule length analysis), and we spend linear time to compute it.
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Next, we check the schedule length. At each level, we make a recursive call to a particular subgraph
(|X ∗|+ 1) ≤ (k + 2) times, so we wind up amplifying the total work by a factor of at most k + 2 at
each recursive level (except for the final recursive level, where we make no recursive calls). Carefully
counting, we need at most dlog ne+ 1 levels of recursion so we have amplified the computation time
by O((k + 2)dlogne). Since alog b = blog a, this is an amplification of O(knlog(k+2)). In other words,
we make at most O(knlog(k+2)) copies of any operation, so this takes at most O(Tonepasskn

log(k+2))
time as claimed.

Finally, we check the memory needed by the schedule. Consider a particular segment of the schedule
and the TWRemat function call that added it. The content of memory at this place in the schedule can
be charged to the active function calls at that point of execution as follows: we charge to a recursive
level everything that it annotated to keep in memory except its outputs, which are charged to its caller.
The balanced separator requires O(kMmax) memory, one set of inputs to a balanced separator node
requires O(Min) memory (but since we free these we only need to hold one set of inputs). Since there
are O(log n) levels of recursion, this results in a total memory of O((Min + kMmax) log n).

What remains is to compute a tree decomposition efficiently. Our corollary utilizes an approximation
algorithm that runs in n ·2O(tw(G)) time and computes a decomposition of width at most (5tw(G)+4)
and size O(n) [2]. Our actual implementation uses a minimum fill-in heuristic [3], which yields good
tree decompositions.

Corollary 6. Given a computation graphG = (V,E), there is an algorithm that runs in 2O(tw(G))n+
O(n · (tw(G) + α(n)) + tw(G)n log n) time and computes a rematerialization that requires compu-
tation time O(Tonepasstw(G)n

log2(5tw(G)+6)) and memory O((Min + tw(G)Mmax) log n).

4 Experiments

We experimentally evaluate the performance of our rematerialization algorithm on computational
graphs for training commonly used deep neural networks. We remark that the memory optimizations
proposed in this paper ensure that the computational graph is faithfully executed; this ensures that the
gradients obtained at each train step are exactly equivalent to those obtained without any optimization,
and hence do not affect convergence. We measure the theoretical peak memory usage of a schedule
via an optimal static memory allocation plan. Since the primary purpose of these experiments is to
evaluate the effect of rematerialization on memory usage, we do not consider other heuristic memory
optimizations such as in-place operations, operation fusion, and buffer aliasing. Finally, we also
measure the length of the schedule obtained by the different algorithms. For simplicity, in these
experiments, we assume that each operation takes unit cost.

Algorithms. We compare the performance of the following three algorithms.

(i) NoRemat: Schedules all operations in a topological sort without any rematerialization.

(ii) GreedyRemat: This is an implementation of a greedy heuristic for rematerialization used by
XLA2 that works as follows. Starting with a topological sort of all operations, it processes each
operation sequentially. At each stage, if the current memory usage is over a specified memory limit,
the algorithm attempts to rematerialize an already scheduled operation. In particular, the operation
whose rematerialization maximizes the amount of reduction in memory usage is chosen greedily at
each step. If the memory usage cannot be reduced, the algorithm moves on to the next operation.

(iii) TWRemat: This is an implementation of Algorithm 1 that uses a tree decomposition; we use the
minimum fill-in heuristic [3] to find the tree decomposition.

Models and Setup. We evaluate all algorithms on different families of widely used deep networks.

(i) Deep Residual Networks (ResNet): We first consider deep residual networks (ResNet) [13] as an
example of convolutional networks for image classification. We use the official implementation of
the ResNet model for the ImageNet task in TensorFlow3. We use different configurations to measure
the effect of network depth (number of convolutional layers) on memory requirements of schedules
obtained by the algorithms.

2www.tensorflow.org/xla
3github.com/tensorflow/models/blob/master/official/resnet/imagenet_main.py
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Model n m tw

ResNet200 17,705 27,312 11
FFN (100 layers) 3,217 4,447 6

Transformer Base 15,842 21,771 18

Table 1: Computation graph statistics.

(ii) Feed forward networks (FFN): We consider a
simple feed-forward neural network to illustrate the
trends in peak memory usage of the schedules ob-
tained by the different algorithms as a function of
the network depth. For this experiment, we setup a
simple feed-forward network with ReLU activations
(number of hidden layers is varied) and randomly
generated inputs and outputs. We use mean squared
error loss and train using standard gradient descent.

(iii) Transformer: We also evaluate the memory savings obtained by our rematerialization algorithms
for training the transformer [21] network. Again, we use the official implementation of Transformer
in TensorFlow4 with all hyperparameters set to recommended defaults.

Table 1 gives summary statistics for representative models from each family. Crucially, we observe
that even the largest graphs have tree decompositions with small width.

4.1 Effect on Peak Memory Usage

We first demonstrate the effect of the depth of the network on the peak memory usage required for
training the network. Figure 2 compares the performance of the three algorithms on the ResNet and
Feed-forward models described above. As expected, we observe that the peak memory usage of
NoRemat that does not perform any rematerialization increases linearly with the number of layers on
both model families. The GreedyRemat algorithm yields modest improvements (≈ 2x) in memory
usage for the ResNet models but still shows a linear growth with number of layers. We observe that
GreedyRemat yields very little memory savings on the feed forward network. On the other hand, the
TWRemat algorithm consistently gives memory savings on both the model families (up to 10x) and
the growth in peak memory usage is distinctly sublinear.
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Figure 2: Peak memory usage vs. model depth.

Table 2 shows the memory usage and relative lengths of the schedules obtained by the three algorithms
on two configurations of the transformer network. The TWRemat algorithm yields a 3.48x and 4.59x
reduction in peak memory usage respectively, albeit at a cost of up to 10.6x in the schedule length.

NoRemat GreedyRemat TWRemat

Mem. (GiB) Mem. (GiB) Rel. Len. Mem. (GiB) Rel. Len.

Transformer Base 3.97 2.92 1.21 1.14 10.61
Transformer Big 13.25 10.12 1.27 2.89 10.64

Table 2: Transformer: Peak memory usage and relative schedule lengths.

4.2 Effect on Schedule Length

Our algorithms are specifically designed to minimize peak memory consumption at the expense of
additional computation. Figure 3 illustrates the increase in the schedule length relative to NoRemat.

4github.com/tensorflow/models/blob/master/official/transformer/transformer_main.py
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We observe that GreedyRemat consistently yields schedules that are only marginally longer than the
corresponding schedules of NoRemat. On the other hand, the schedules obtained via TWRemat are
around 3x-4x longer. Despite the longer schedules, we expect the schedules produced by TWRemat
to be beneficial in practice as the reduced memory usage allows the use of specialized hardware
accelerators.
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Figure 3: Schedule length vs. model depth.

4.3 Trading-off Memory Usage for Schedule Length
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Algorithm 1 (TWRemat) uses the tree decomposition to
find a balanced separator that breaks up the tree decompo-
sition into smaller subtrees, and then recursively computes
schedules to compute the required nodes in these subtrees.
We observe that we can obtain a trade-off between mem-
ory usage and schedule length by preemptively stopping
the recursion when the tree decomposition has few bags
remaining. For any integer k, let TWRemat (k) be a vari-
ant of Algorithm 1 that stops the recursion when the tree
decomposition has fewer than k bags. In the base case,
we schedule the required nodes in an arbitrary topological
order. In this notation, our TWRemat algorithm can be writ-
ten as TWRemat (1). Indeed, by varying the recursion limit
from k = 1 to k = n, we can interpolate between the TWRemat and NoRemat algorithms. Figure 4
shows the memory usage vs. schedule length trade-off obtained for the ResNet200 model.

5 Stronger Guarantees via Path Decomposition

Related to treewidth of a graph is the notion of pathwidth, which is defined as the minimum width
of any path decomposition, where a path decomposition is a tree decomposition (X , T ) under the
additional constraint that T must be a path. We can order the bags according to the path and instead
use the tuple X = (X1, X2, ..., X|X |) to represent the path decomposition, where each Xi ⊆ V is
a bag and (path decomposition) edges run between Xi and Xi+1. We denote the pathwidth of a
graph G by pw(G). Assuming that a computation graph has a small constant pathwidth allows us to
design an algorithm for rematerialization that leverages the path decompositions to yield stronger
theoretical guarantees than in Theorem 5. In this section, we sketch the primary ideas, deferring the
full algorithm and analysis to the Supplementary Material.

We first show one can add a directed Hamiltonian path (i.e., a spine) to any graph G so that the
pathwidth of G only increases by a factor of ∼ 2. This allows us to prove certain structural properties
of the path decomposition. Suppose the vertices of G are ordered according to the spine, let ui ∈ V
be the ith node, and let last(X) denote the index of the last node in bag X . We show that if Xc ∈ X
is a bag in the path decomposition that contains un, then for all ` < `′ < c, we have last(X`) ≤
last(X`′) ≤ last(Xc) and for all r > r′ > c, we have last(Xr) ≤ last(Xr′) ≤ last(Xc).

Such a structural characterization allows a divide-and-conquer strategy that recurses on the right and
left sides of the path decomposition. Unlike the tree decomposition algorithm where we argue that
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the size of the tree decomposition reduces at each recursive call, the additional properties of the path
decomposition allow us to argue that both the size and width of the decomposition decreases. The
resulting algorithm yields a schedule that incurs a polylogarithmic increase in length (vs. polynomial
blow up for the tree decomposition), but at the cost of polylogarithmic memory usage.

6 Related Work

Rematerialization has been considered in very limited settings for training deep networks. The work
most relevant to ours is that of Chen et al. [6] and Gruslys et al. [11]. The former shows how to trade
off memory and computation cost for simple chain-like networks. Their algorithm at a high level
works by dividing a computation of length n into

√
n many sub-computations, storing the internal

states for each sub-computation and at the
√
n check points; a second pass is needed to complete the

computations. By recursing on this idea, one can get an O(n log n)-pass algorithm using memory
O(log n) for chain-like computations. Gruslys et al. [11] consider backpropagation through time
and propose a dynamic-programming based approach for achieving the best time-memory trade off;
their algorithm is tailored to work on RNNs. It is unclear how to extend either of these algorithms
to work for general computation graphs, which is the focus of our work. There are some practical
heuristics for rematerialization used in open-source efforts such as XLA; in fact, we used it as one of
our baselines (GreedyRemat). Other heuristics including in-place operations and register sharing
memory optimizations have been used in practice [5]. We, on the other hand, offer a principled
approach to these problems.

Tree decomposition has been suggested as a tool to achieve time-memory trade off in register alloca-
tion problems in compilers [18, 4]. A recent blog post5 informally suggests using tree decomposition
for memory saving in deep networks in the context of gradient checkpointing,6 which implements [6].
As noted control flow graphs of structured programs have treewidth∼ 6 [20]. Here, we work with the
data flow graph to obtain a memory-efficient schedule, which may have larger treewidth in general.

View materialization in databases is also somewhat related to rematerialization [12]. The goal there
is to pre-compute materialized views in order to efficiently answer future queries. While this is also a
computation-memory trade-off, the end goals are clearly different from our setting.

7 Conclusions

We consider the rematerialization problem in the context of memory-efficient training of deep net-
works and obtain efficient algorithms based on tree decomposition for finding a provably good
schedule with rematerialization. Although our path decomposition based algorithm yields asymp-
totically better schedules, the schedule length and memory depend exponentially on the pathwidth.
It will be very interesting to make this algorithm more practical. Identifying the precise structural
parameter that characterizes rematerialization of a given graph is a tantalizing research question.
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A Stronger Guarantees via Path Decomposition

In this section, we describe an algorithm to find a schedule using polylogarithmic space and polyloga-
rithmic blowup in schedule length for graphs having a low pathwidth. The main goal is to prove the
following result.
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Theorem 7. Let G = (V,E) be a computation graph with pathwidth pw(G). Then we can compute
a schedule σ for G using memory M(σ) = O((Min +Mmax)4

pw(G)(log2pw(G)+1 n)) and length
L(σ) = 2O(pw(G) log pw(G))n(log2pw(G)+1 n).

In the special case that G also has a directed path of length n (i.e., a directed path touch-
ing every node), then we can compute a schedule σ′ for G using memory M(σ) = O((Min +

Mmax)2
pw(G)(logpw(G)−1 n)) and length L(σ) = 2O(pw(G) log pw(G))n(logpw(G)−1 n).

The proof is written across four subsections. In the first subsection, we explain how to do some
preprocessing to establish a useful property that we will need for future subsections. Specifically,
we show that for any graph G with pathwidth pw(G), we can add edges to G to create G′ such that
pw(G′) ≤ 2pw(G) + 3 and further, G′ contains a directed path of length n. In this case, we say G′
has a long spine. Note that this is why we do even better on graphs that already come with a long
spine; we can skip this preprocessing step.

The second subsection then leverages the long spine to prove useful structural properties of the
path decomposition that will help us appropriately recurse. In particular, we explore ideas that will
allow us to design an algorithm that reduces both the size (number of bags) and width (number of
nodes in each bag) of the path decomposition as we recurse. For tree decompositions, we were only
able to lower the number of bags; this is why we will be able to obtain improved bounds for path
decompositions.

The third subsection helps us with the all important step of combining the schedules that work for two
subproblems into a schedule for the current problem. To do so, we introduce the notion of “interleaved
schedules” and prove several key properties about them that we will need for the algorithm.

Finally, the fourth subsection presents the algorithm and analyzes its correctness. It also bounds the
length and memory usage for the resulting schedules.

A.1 Pathwidth-Preserving Spine-Addition

The goal of this subsection is to prove that a spine can be added to a computation graph while
controlling the width of its path decomposition. It is important that we choose the spine to add, since
it is not hard to construct counterexamples where the addition of a poorly-chosen spine increases
pathwidth by a poly(n) factor. As a reminder, we restate the theorem we wish to prove.
Theorem 8. Suppose we have a directed acyclic graph G on n nodes and a path decomposition of G
with bag size pw(G) + 1. Then there exists an algorithm that adds a spine to G while maintaining a
valid path decomposition. The resulting path decomposition has bag size at most 2pw(G) + 3.

Proof. We begin with some helpful notation. Given a path decomposition (X , T ) we can label its
bags X1, . . . , Xb in path order. Define INTERVAL(u) := {i ∈ [b] | u ∈ Xi}. By the definition of
path decomposition, this is always some contiguous interval [`u, ru] since these bags form a subpath.

We will prove that Algorithm 2 has the desired properties. First, we will show that a spine is added
to G. To do so, we first prove that all nodes are processed in some topological order. Clearly nodes
are only processed in topological order, since we refuse to process any node before its in-neighbors.
Hence it remains to show that all nodes are processed; which we do by contradiction. Fix an arbitrary
topological order of G, and for the sake of contradiction suppose that v is the first node in this order
which is not processed by our algorithm. All of its in-neighbors must be processed, or it wouldn’t
be the first such node. Furthermore, there must be at least one such in-neighbor, r. When its last
in-neighbor is processed, it had no unexplored in-neighbors and hence v should have been processed.
Hence, all nodes are processed.

We claim that when ProcessNode(. . . , u) is called, it adds a path to G starting from u and covering
all nodes that appear in recursive subcalls to ProcessNode. This is because for the first recursive
subcall, we already know there is a u→ v1 edge and before subsequent recursive subcalls, we add an
edge from the current end of the path to the next vi. Since we already know ProcessNode(. . . , r)
results in all nodes being processed, the path it adds must covers all nodes, i.e., must be a spine.

Now, we will show that we have properly updated the path decomposition and that no bag has more
than 2pw(G) + 3 nodes. The former is by construction; we never add an edge without first ensuring
that its endpoints share a bag. Regarding the latter, note that we begin with bags of size at most
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Algorithm 2: Pathwidth-Preserving Spine Addition.
Function: PathwidthPreservingSpineAddition(G, (X , T )):

Data: G = (V,E) a DAG and (X , T ) a path decomposition of G.
Result: Adds a spine to G and updates the path decomposition accordingly.

Add a node r to G, connect it to all other nodes, and add it to all bags Xi ∈ X ;
Run ProcessNode(G, (X , T ), {}, r);
Remove node r from G and from all bags Xi ∈ X ;

Function: ProcessNode(G, (X , T ), S, u):
Data: G = (V,E) a DAG, (X , T ) a path decomposition of G, S ⊆ V a subset of explored

nodes, and u a node of G.
Result: Adds a path starting from u and covering all recursively processed nodes; returns the

final node x of this path. Updates the path decomposition to handle this path and
guarantees INTERVAL(x) includes ru.

Add u to the explored set S;
Set the current final node x← u;
Let v1, v2, . . . , vk be the out-neighbors of u which have no unexplored in-neighbors of their own,

ordered by increasing right endpoint rvi ;
for i = 1, 2, . . . , k do

Update x← ProcessNode(G, (X , T ), S, vi);
if i < k then

Extend the interval of x to the right until it includes `vi+1
;

Add edge x→ vi+1 to G;
else

Extend the interval of x to the right until it includes ru;

return x;

pw(G)+1, we add r to all of them for bags of size at most pw(G)+2, we call ProcessNode(. . . , r)
which will double the bags to size at most 2pw(G) + 4, and finally removing r from all bags results
in bags of size at most 2pw(G) + 3 (our procedure only adds nodes to bags, so r is still in all bags).

The tricky part is proving that ProcessNode(. . . , r) at most doubles the size of all bags; this is
due to two observations. The first observation is that if we examine how nodes are added to bags
inside ProcessNode(. . . , u) ignoring all recursive subcalls, at most one node gets added to any bag
and only to bags already containing u. After x ← ProcessNode(..., vi) we know that the right
endpoint rx is at least the right endpoint rvi . Hence during any iteration i ∈ [k], at most one node
gets added to any bag strictly to the right of rvi . But before iteration i ∈ [k], nodes could only be
added to bags as far right as rvi , since the left endpoint of an interval precedes the right endpoint of an
interval and since rv1 < rv2 < · · · < rvk . Nodes cannot be added to bags to the left of INTERVAL(u)
because rv1 ∈ INTERVAL(u). Nodes cannot be added to bags to the right of INTERVAL(u) because
`vk ∈ INTERVAL(u).

The second observation is that the INTERVAL(u) is only altered after ProcessNode(. . . , u) com-
pletes. Hence ProcessNode(. . . , u) can only add a node to each bag that u was originally in. As
a result, each bag can only gain a node for each node that was originally in it, so each bag at most
doubles in size. This completes the proof.

A.2 Structural Properties for Long-Spined Graphs

Let G = (V,E) be a directed acyclic graph on n nodes that has a long spine, i.e., there is a directed
path of length n through G. Throughout, let X = X1, X2, . . . , Xb be a path decomposition for G,
and let p = pw(G) + 1 be the maximum bag size in X .

Since we have a path through the entire graph, there is a full topological ordering forced on us. Label
the path in order v1 ≺ v2 ≺ · · · ≺ vn, so v1 is the first node and vn is the last. It now makes sense to
talk about the last element in a bag—it is the node vi with the largest index i. Formally, for any bag
X , let last(X) be the last node in X .
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Path decompositions of DAGs with long spines have several useful properties which we will need.
The first property states, roughly, that any path passing between two bags must also pass between any
intermediate bag.

Lemma 9 (Intermediate Value Theorem for Bags). Define G as above, and suppose we have three
bags in our path decomposition, say Xk, Xk∗ , and Xk′ with k ≤ k∗ ≤ k′. Furthermore, suppose
that vi ∈ Xk and vi′ ∈ Xk′ for some i, i′. Then there is an i∗ ∈ [min(i, i′),max(i, i′)], such that
vi∗ ∈ Xk∗ .

Proof. We induct on the difference between the nodes, |i− i′|. Our base cases are |i− i′| = 0 and
|i − i′| = 1. The first base case i = i′ trivially follows from the definition of path decomposition
(in particular, the bags that contain i = i∗ = i′ form a contiguous interval). The second base case
|i − i′| = 1 is a bit trickier to argue about. Our long spine implies an edge from vi to vi′ (or vice
versa). No matter which way this edge runs, by the definition of path decomposition there is some
bag X` that contains both vi and vi′ . If this bag is to the right of our goal bag, i.e., k∗ ≤ `, then
from the definition of path decomposition we can deduce that i is in the goal bag (it is in k ≤ k∗

and ` ≥ k∗). If this bag is to the left of our goal bag, i.e., ` ≤ k∗, then from the definition of path
decomposition we can deduce that i′ is in the goal bag (it is in ` ≤ k∗ and k′ ≥ k∗). Hence in either
case the we can find an i∗ as desired.

The inductive case is similar to the second base case. We will focus on the situation where i < i′ (the
proof for the i > i′ case is analagous). The long spine implies an edge from vi to vi+1 and hence
there is some bag X` that contains both vi and vi+1. If this bag is to the right of our goal bag, i.e.,
k∗ ≤ `, then we can apply our inductive hypothesis to the simpler problem (k ← k, k∗ ← k∗, k′ ←
`, i← i, i′ ← i+ 1). If it is to the left of our goal bag, i.e., ` ≤ k∗, then we can apply our inductive
hypothesis to the simpler problem (k ← `, k∗ ← k∗, k′ ← k′, i← i+ 1, i′ ← i′). Hence in either
case we can find an i∗ as desired. This completes the proof.

Bag Xk

1 2 3 4 5

Node vi

1

2

3

4

5

INTERVAL(v1) = [1, 4]

v2, v3, v4 ∈ X5

last(X2) = v4

Figure 5: The last(·) function is single-peaked. Notice that the peak may stretch over multiple bags
(in this case, X3 and X4).

The next property is easier to understand with a picture; refer to Figure 5. Suppose we plot last(Xi)
on a graph with the x-axis representing bag indices and the y-axis representing node indices. Then
the curve traced out by last(·) will have a single peak; it is nondecreasing before the peak and
nonincreasing after. More formally, we have the following lemma.

Lemma 10. Suppose the final node vn is in some bag Xc. Then for any k, ` such that c ≤ k ≤ `,
last(Xk) ≥ last(X`). Additionally, for any k′, `′ such that `′ ≤ k′ ≤ c, last(X`′) ≤ last(Xk′)
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Proof. We prove just the c ≤ k ≤ ` case (the proof of the `′ ≤ k′ ≤ c case is analogous). Let
i = last(X`). By Lemma 9, there is a i∗ ∈ [i, t] such that vi∗ ∈ Xk. This node is a lower bound on
last(Xk); we deduce that last(Xk) ≥ i∗ ≥ i = last(X`). This completes the proof.

This final property will be our main tool to bound the complexity of recursing. The main idea it tries
to capture is that some particular ways to restrict our graph G into a subgraph G′ result in stripping
the last node from every bag and hence lower the width of the path decomposition by one.
Lemma 11. Suppose that the final node vn is in some bag Xc. Then for any k, ` such that c ≤ k ≤ `,
the following is true. Let G′ be G restricted to nodes with indices in the range [1, last(X`) − 1]
and that appear in bags from Xk to X`. Let G′′ be G′ with edges (u, v) added if both u and v are
topologically before last(X`) and either (1) u, v ∈ Xk or (2) u, v ∈ X`. Note that G′′ has a long
spine, i.e., a directed path through G′′ that touches every node of G′′.

Then G′′ has a path decomposition with bag size of p − 1. In fact, if we take the original path
decomposition for G from Xk to X` and we remove all nodes not in G′′, that is a valid path
decomposition for G′′ with bag size p− 1.

An analagous statement holds for bags on the “left side” (` ≤ k ≤ c).

Proof. In general, given graph H and subgraph H ′, if we have a path decomposition for H , then
when we remove all nodes not in H ′, that is a valid path decomposition for H ′: The edge property
still holds, and the between-ness property still holds. (We can also remove all empty bags while
maintaining the path decomposition properties.)

So let X be the path decomposition for G, and let X ′′ be the same decomposition when restricted to
nodes in G′′. Since every edge we added to G′′ must be in either Xk or X` (even after restricting to
nodes in G′′), X ′′ is a valid path decomposition for G′′.

So we only need to show that for all X ∈ X ′′, the size of X is at most p− 1. But X is to the left of
X`, so last(X) ≥ last(X`). Hence, X restricted to nodes in G′ does not contain last(X). That is, it
has size at most p− 1. This completes the proof.

Adding edges to G′′ may seem like a strange technical condition, but it is much more natural to think
about it in the following way. Given a path decomposition for G, it induces an interval for each node
in G, as described in Section A.1. This in turn induces an interval graph: we have an edge between
u and v iff the intervals for u and v overlap. This interval graph is necessarily a supergraph of G.
Throughout our algorithm, we actually operate on this supergraph. After all, in the worst case, the
induced interval graph and G are identical. (The one exception to this is that the actual memory used
by the schedule is based on the true indegree of nodes rather than the expanded indegree.)

Note that in an interval graph, these edges that we would add already exist; i.e., G′′ = G′.

A.3 Key Properties of Interleaved Schedules

Our recursive algorithm will need to take in a subgraph (along with a path decomposition) and return
a low-memory schedule. To properly use the schedules returned by our recursive subcalls, we need an
understanding of how to interleave them together. We will go over the properties here; the matching
proofs appear in Subsubsection A.3.2. Also, note that we will be assuming throughout this subsection
that there is a complete topological ordering on the vertices under consideration.
Definition 12. Suppose we have a set of nodes W ⊆ V . A schedule σ = u1u2 . . . ut is said to be
valid for known set W if for every ui ∈ σ, either (1) ui ∈W , or each predecessor of ui either (2a) is
in the known set W or (2b) appears earlier in the schedule.

We use ◦ to denote concatenation; for example σ ◦ u ◦ σ′ means schedule σ followed by u followed
by schedule σ′.

When σ is a valid schedule for known set W , we define MW (σ) to be the peak memory taken by the
schedule σ′ = w1 ◦ w2 ◦ · · · ◦ wk ◦ σ, where we don’t consider the memory for any wi. Formally,
suppose σ′ = u1u2 . . . ut′ . As earlier, for i ≤ t′, define

Ui = {ui} ∪ in(ui) ∪
⋃
j>i

{u′ ∈ in(uj) | prev(u′, j) ≤ i}.

14



Then MW (σ) = maxi:ui /∈W s(Ui), where s(Ui) =
∑
u∈Ui

s(u). (We let s(u) be the size of tensor
output for node u, as before.) Notice that if we need to hold some wi in memory, we still must pay
for it.

We define L as the length of the schedule σ, as before, without including the wi. Notice that L(σ)
makes sense even if σ is not valid—it is still just the sum of the lengths of the operations in the
schedule. So we can extend L(σ) even for invalid sequences. We note that when σ does not contain
any nodes from W that Lw(σ) = L(σ) (where σ may be valid for known set W but not valid in
general). Because of this, we will only consider L(σ), regardless of the known set or validity of σ.
Property 13. Let W be a set of nodes, x a node, and let σ1, · · · , σk be schedules, with each σi ◦ x
valid for known set W . Then σ1 ◦ · · · ◦ σk ◦ x is a valid schedule for known set W . Further,

MW (σ1 ◦ · · · ◦ σk ◦ x) ≤
∑
i

MW (σi ◦ x)

We also have
L(σ1 ◦ · · · ◦ σk ◦ x) ≤

∑
i

L(σi ◦ x)

Property 14. Let X be a set of nodes x1 ≺ x2 ≺ · · ·xk, W a set of nodes, and σ1, . . . , σk schedules
such that for all i, the schedule σi ◦ xi is valid for known set W ∪ X≺xi

, where X≺xi
= {x ∈

X | x ≺ xi}. Then σ1 ◦ x1 ◦ σ2 ◦ x2 · · · ◦ σk ◦ xk is valid for known set W and

MW (σ1 ◦ x1 ◦ σ2 ◦ x2 · · · ◦ σk ◦ xk) ≤ max
i

(MW∪X≺xi
(σi ◦ xi) + s(W ∪X≺xi))

We also have
L(σ1 ◦ x1 · · · ◦ σk ◦ xk) ≤

∑
i

L(σi ◦ xi).

Note that this bound is a little sloppy. For the kth term, we could have simply usedMW∪X≺xk
(σi, xk),

avoiding the s(W ∪X≺xk
). It won’t matter for our proofs.

We now introduce our key concept: interleaved schedules.
Definition 15. Let X be a set of nodes. An interleaved schedule on X is a set of tuples I =
{〈σ1, x1〉, 〈σ2, x2, 〉, . . . 〈σk, xk〉} such that each xi ∈ X and each σi is a schedule. We further
require that for every x ∈ X , there is some tuple 〈σ, x〉 ∈ I.

Let X≺x = {x′ ∈ X | x′ ≺ x}, and let W be a set of nodes. We say I is valid for known set W if
for each 〈σ, x〉 ∈ I, the schedule σ ◦ x is valid for known set W ∪X≺xi

. If W = ∅, we say simply
that I is valid.

Suppose I in an interleaved schedule on X with I =
⋃
i,j{〈σij , xi〉}, where each xi is distinct and

x1 ≺ · · · ≺ xk are the nodes in X . We define

MW (I) = max
i

(∑
j

MW∪X≺xi
(σij ◦ ui) + s(W ∪X≺xi})

)
.

We also define
L(I) =

∑
i,j

L(σij ◦ ui).

In addition, we need a few operations to combine interleaved schedules and convert them to [standard]
schedules. Define

Merge(I) =
⋃
i

{〈σi ◦ xi〉},

where σi = σi1 ◦ σi2 ◦ · · · for each i. Within each i, the σij may be ordered arbitrarily. For
concreteness, suppose they are ordered lexicographically.

Also define
Flatten(I) = σ1 ◦ x1 ◦ σ2 ◦ x2 ◦ · · · ◦ σk ◦ xk.

Let X ′ ⊆ X , and let i1 < i2 < · · · < ik′ be indices so that X ′ = {xij}, where k′ = |X ′|. Let
τj = σij−1+1 ◦ xij−1+1 ◦ σij−1+2 ◦ xij−1+2 ◦ · · ·σij , where i0 = 0 for convenience. Define

Condense(X ′, I) =
⋃
j

{〈τj , xij 〉}.
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Notice that Condense(X ′, I) is an interleaved schedule on X ′. We also have that
Condense(X ′, I) = Condense(X ′, Merge(I)) and Flatten(I) = Flatten(Merge(I)) =
Flatten(Condense(X ′, I)).
Property 16. Let W be a set of nodes. Let I be an interleaved schedule on X and let I ′ be an
interleaved schedule on X ′. Then

MW (I ∪ I ′) ≤MW (I) +MW (I ′)

and
L(I ∪ I ′) ≤ L(I) + L(I ′).

If I and I ′ are both valid for known set W , then I ∪ I ′ is valid for known set W .
Property 17. Let W be a set of nodes. Let I be an interleaved schedule on X and I ′ be an
interleaved schedule on X ′. Further, suppose x ≺ x′ for all x ∈ X,x′ ∈ X ′. Then we have

MW (I ∪ I ′) = max{MW (I),MW∪X(I ′)}.

If I is valid for known set W and I ′ is valid for known set W ∪X , then I ∪ I ′ is valid for known set
W .
Property 18. Let I be an interleaved schedule onX that is valid for known setW . Then Merge(I) is
an interleaved schedule on X that is valid on known set W . Also, if X ′ ⊆ X , then Condense(X ′, I)
is an interleaved schedule on X ′ that is valid on known set W .

Further, MW (Merge(I)) ≤ MW (I) and L(Merge(I)) ≤ L(I). Likewise,
MW (Condense(X ′, I)) ≤MW (I) and L(Condense(X ′, I)) ≤ L(I).
Property 19. Let W be a set of nodes. If I is an interleaved schedule on X that is valid for known
set W , then Flatten(I) is a valid schedule on known set W that computes every node in X . Further,

MW (Flatten(I)) ≤MW (Merge(I)) ≤MW (I),
L(Flatten(I)) ≤ L(Merge(I)) ≤ L(I).

A.3.1 Combining Interleaved Schedules with Path Decompositions

We need a few lemmas to better characterize interleaved schedules in the special cases we are
considering. Let ν(X ) be the set of nodes in X .
Lemma 20. Let X = (X1, . . . , Xb) be a path decomposition, and for some i ∈ [b], let X ′ =
(X1, . . . , Xi−1). Let I be an interleaved schedule on X , and suppose that I is valid on known set
W ∪ ν(X ′), where W ⊇ Xi. Further, suppose that every node appearing in I is also in ν(X ′). Then
I is valid on known set W ∪ ν(X ).

Proof. Let 〈σ, x〉 ∈ I. We wish to show σ ◦ x is valid on known set W ∪ ν(X ) ∪X≺x. Take some
u /∈ W ∪ ν(X ) ∪X≺x in σ ◦ x, and consider some v ∈ in(u). If v ∈ W ∪X≺x ∪ ν(X ), then we
are done. So suppose not. Then v must appear in X but not in X≺x. (Since v ≺ u ≺ x, we see that x
cannot appear in X either.)

If v ∈ ν(X ′), then we are done, since σ ◦ x is valid on known set W ∪X≺x ∪ ν(X ′). So suppose
v /∈ ν(X ′) (but still v ∈ ν(X )). There is an edge from v to u, so u and v must appear in a bag together.
Since u ∈ ν(X ′) but v /∈ ν(X ′), either u or v must appear in Xi ⊆W by the betweenness property
of path decompositions. That is a contradiction. So σ ◦ x is valid on known set W ∪ ν(X ) ∪X≺x.

The claim follows.

Lemma 21. Let X = (X1, . . . , Xb) be a path decomposition, and for some i ∈ [b], let X = Xi, let
X ` = (X1, . . . , Xi−1), and let X r = (Xi+1, . . . , Xb). Let I` be an interleaved schedule on X`,
and let Ir be an interleaved schedule on Xr, and suppose X` ∩Xr = X . Suppose that I` is valid
on known set W ∪ ν(X `) and Ir is valid on known set W ∪ ν(X r). Then Merge(I` ∪ Ir) is valid
on known set W ∪ ν(X ).

Proof. Choose x ∈ X , and let 〈σ`, x〉 ∈ Merge(I`) and 〈σr, x〉 ∈ Merge(Ir). We wish to show
σ` ◦ σr ◦ x is valid on known set W ∪ ν(X ) ∪X≺x.

16



Take some u in σ◦x. If u ∈ X , without loss of generality, we can assume u = x. Consider v ∈ in(x).
If v ∈W ∪X≺x ∪ ν(X ), we are done. So suppose not. Then v /∈ X≺x, which means v /∈ X since
v ≺ x. Further, v ∈ ν(X ), which means either v ∈ ν(X `) or v ∈ ν(X r). Without loss of generality,
suppose v ∈ ν(X `). Since σ` ◦ x is valid on known set W ∪X≺x ∪ ν(X ′), it must be the case that v
appears in σ`. Hence, all vertices of in(x) are either known or appear in the schedule before x.

Now, suppose u /∈ X . Without loss of generality, say u appears in σ`. Consider some v ∈ in(u). If v
appears in W ∪X≺x ∪ ν(X ), then we are done. So suppose not. Then v must appear in ν(X ), but
not in X≺x (hence, not in X since v ≺ x). If v ∈ ν(X `), then, since σ` ◦ x is valid for known set
W ∪X≺x ∪ ν(X `), we’re done. Otherwise, v ∈ ν(X r). But v ∈ in(u), meaning that most u and
v must appear in a bag together. By the betweenness property of path decompositions, that means
either u or v must be in X . But that’s a contradiction. Hence, all vertices of in(u) are either known
or appear in the schedule before u.

Hence, σ` ◦ σr ◦ x is valid on known set W ∪ ν(X ), and the claim follows.

A.3.2 Proofs for the Key Properties

Proof of Property 13. Let σ′ = σ1 ◦ · · · ◦ σk ◦ x. It is an immediate consequence of the definition
that σ′ is valid on known set W . Consider some ui /∈ W appearing in σ′ where the peak memory
occurs. Either ui appears in σ` for some `, or ui is the last element in σ′ (i.e., node x). First, take the
case that ui appears in σ` for some `. Recall the definition

Ui = {ui} ∪ in(ui) ∪
⋃
j>i

{u′ ∈ in(uj) | prev(u′, j) ≤ i},

and peak memory is s(Ui). Let U = {u′ ∈ in(uj) | prev(u′, j) ≤ i}, and let U ′ = {u′ ∈
in(uj) | prev(u′, j) ≤ i such that uj appears in a sequence after σ`}. Notice that MW (σ` ◦ x) ≥
s(Ui \ U ′), so we only need to bound s(U ′).

For each u ∈ U ′, there is some uj such that uj appears in σ`′ with `′ > ` and u′ ∈ in(uj) with
prev(u′, j) ≤ i. Let U `

′
be the set of all such u. Then s(U `

′
) ≤MW (σ`′ ◦ x). We have

s(Ui) = s(Ui \ U ′) +
∑
`′>`

s(U `
′
) ≤MW (σ` ◦ x) +

∑
`′>`

MW (σ`′ ◦ x).

The claim follows for this case.

In the special case that ui is the last element in σ′, i.e., node x, say x = ut′ . Since x appears last,
our definition simplifies somewhat. We have Ut′ = {x} ∪ in(x). Every node u ∈ Ut′ (for u /∈ x)
belongs to ν(σ`) for some `. Let U ` be the set of such u. We have

s(Ut′) = 1 +
∑
`

s(U `) ≤
∑
`

MW (σ` ◦ x).

Our bound on MW follows.

To bound time, we simply note that every element appearing on the left-hand side of the inequality
also appears on the right-hand side (with x appearing multiple times).

Proof of Property 14. We induct on k. The case for k = 1 is trivially true. Consider general k. Let
σ = σ1 ◦ x1 · · · ◦ σk−1 ◦ xk−1.

By induction, σ is valid for known set W ∪X≺xk−1
. Since σk ◦xk is valid for known set W ∪X≺xk

,
and all values of X≺xk

appear in the schedule earlier than σk, we see σ1 ◦ x1 · · · ◦ σk ◦ xk is valid
for known set W .

We now bound MW . To do so, consider some segment of σ, say from σ` ◦ x`. The set of nodes that
must be held in memory for some future segment is at most W ∪X≺x`

. So if peak memory occurs
during this segment, it is bounded by MW∪X≺x`

(σ` ◦ x`) + s(W ∪ X≺x`
). Since peak memory

occurs in one of these segments, we have

MW (σ1 ◦ x1 ◦ σ2 ◦ x2 · · · ◦ σk ◦ xk) ≤ max
i

(MW∪X≺xi
(σi ◦ xi) + s(W ∪X≺xi

))
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which is what we wanted.

Finally, the bound on time follows easily: every element on the left-hand side appears on the
right-hand side.

Proof of Property 16. Let Z = X ∪X ′. Note that I ∪ I ′ is an interleaved schedule on Z. Also note
that Z≺x ⊇ X≺x and Z≺x ⊇ X ′≺x for any x.

We first show I ∪ I ′ is valid on known set W . For any 〈σ, x〉 ∈ I , we know σ ◦ x is valid for known
set W ∪X≺x, hence it is also valid for known set W ∪ Z≺x. Similarly, for any 〈σ′, x′〉 ∈ I ′, we see
that σ′ ◦ x′ is a valid schedule for known set W ∪Z≺x. Hence, I ∪ I ′ is a valid interleaved schedule
on known set W .

To see the memory bound, we have

MW (I ∪ I ′) = max
x∈X∪X′

( ∑
σ:〈σ,x〉∈I∪I′

MW∪Z≺x
(σ ◦ x) + s(W ∪ Z≺x)

)
≤ max
x∈X∪X′

( ∑
σ:〈σ,x〉∈I

MW∪Z≺x(σ ◦ x) + s(W ∪X≺x)

+
∑

σ:〈σ,x〉∈I′
MW∪Z≺x

(σ ◦ x) + s(W ∪X ′≺x)
)

≤ max
x∈X

( ∑
σ:〈σ,x〉∈I

MW∪Z≺x
(σ ◦ x) + s(W ∪X≺x)

)
+ max
x∈X′

( ∑
σ:〈σ,x〉∈I′

MW∪Z≺x
(σ ◦ x) + s(W ∪X ′≺x)

)
≤ max

x∈X

( ∑
σ:〈σ,x〉∈I

MW∪X≺x(σ ◦ x) + s(W ∪X≺x)
)

+ max
x∈X′

( ∑
σ:〈σ,x〉∈I′

MW∪X′≺x
(σ ◦ x) + s(W ∪X ′≺x)

)
=MW (I) +MW (I ′).

To bound the time, we have

L(I ∪ I ′) =
∑

〈σ,x〉∈I∪I′
L(σ ◦ x)

≤
∑
〈σ,x〉∈I

L(σ ◦ x) +
∑

〈σ,x〉∈I′
L(σ ◦ x)

= L(I) + L(I ′).

This completes the proof.

Proof of Property 17. We first show I ∪ I ′ is valid for known set W . Let Z = X ∪X ′, and note
that I ∪ I ′ is an interleaved schedule on Z.

Let 〈σ, x〉 ∈ I ∪ I ′. If 〈σ, x〉 ∈ I, then (since I is valid), we have σ ◦ x is valid on known set
W ∪X≺x ⊆ W ∪ Z≺x, which is what we wanted. On the other hand, if 〈σ, x〉 ∈ I ′, then σ ◦ x is
valid on known set W ∪X ∪X ′≺x ⊆W ∪ Z≺x since x is topologically larger than all nodes in X .
Hence, I ∪ I ′ is valid for known set W .
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To bound the memory, first note that for x ∈ X , we have Z≺x = X≺x, and for x ∈ X ′, we have
Z≺x = X ∪X ′≺x. Thus, we have

Mw(I ∪ I ′) = max
x∈X∪X′

( ∑
σ:〈σ,x〉∈I∪I′

MW∪Z≺x(σ ◦ x) + s(W ∪ Z≺x)
)

= max
{
max
x∈X

( ∑
σ:〈σ,x〉∈I

MW∪X≺x
(σ ◦ x) + s(W ∪X≺x)

)
,

max
x∈X′

( ∑
σ:〈σ,x〉∈I′

MW∪X∪X′≺x
(σ ◦ x) + s(W ∪X ∪X ′≺x)

)}
= max{MW (I),MW∪X(I ′)}.

This completes the proof.

Proof of Property 18. If σ ◦ x is valid on known set W ′ and σ′ ◦ x is valid on known set W ′, then
clearly σ ◦ σ′ ◦ x is valid on known set W ′. The proof for Merge follows from this observation and
Property 13.

The reasoning for Condense is the same as in Property 14, and the proof follows from the definition
of MW and L.

Proof of Property 19. We first show Flatten(I) is a valid schedule. Let u be some element in this
schedule, and consider some v ∈ in(u). Notice that u corresponds to some element in I, say it
appears in σ` for some 〈σ`, x〉 ∈ I. We know σ` ◦ x is valid for known set W ∪X≺x. Hence, either
v ∈ W ∪ X≺x or it appears in σ` earlier than u. The only potential problem is when v does not
appear earlier in σ` and v /∈W . In this case, v ∈ X≺x. But we know all items in X≺u = X≺x have
been produced earlier in Flatten(I), so the schedule is valid.

To prove the memory bound, note that Flatten(I) = Flatten(Merge(I)), and by Property 13,
MW (Merge(I)) ≤ MW (I). So without loss of generality, we will assume that for each x ∈ X ,
there is exactly one σ such that 〈σ, x〉 ∈ I.

But in this case, Property 14 shows directly that MW (Flatten(I)) ≤MW (I).
The time bound also follows directly from Property 13 and Property 14.

A.4 Rematerialization Algorithm with Path Decomposition

In this section we present and analyze a rematerialization algorithm that works on path decomposi-
tions.

We present our main theorem.

Theorem 22. Let X = {X1, . . . , Xb} be a path decomposition for a graph G = (V,E), where G is
a directed acyclic graph with a directed path of length n = |V | and whose max indegree is bounded
by a constant. Let u be the last node topologically in G, and let σ = PWRemat(X , u, ∅), as described
in Algorithm 3. Then σ is a valid schedule to compute u.

Furthermore, if the maximum bag size in X , i.e., maxi{|Xi|}, is bounded by p, then L(σ) =
O(2p(p!)2b logp−2 b) and M(σ) = O((Min +Mmax)2

pp logp−2 b).

We break the proof into two parts. The first shows correctness. The second bounds the time and
space.

Proof of correctness. We prove two claims simultaneously using induction:

1. PWRemat(X , u,W ) produces a schedule σ that is valid schedule for known set W ∪ ν(X ).

2. InterleavedSchedule(X,X ,W ) produces an interleaved schedule I on X that is valid
for known set W ∪ ν(X ).
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Algorithm 3: More Efficient Rematerialization via Path Decomposition.
Function: PWRemat(X , u, W):

Data: X = (X1, X2, . . . , Xb) a path decomposition, u a node to compute, W ⊆ V a subset
of nodes whose value is known.

Result: Returns a rematerialization schedule.

if u ∈W ∪ ν(X ), or every input to u appearing in ν(X ) is in W then
return the schedule containing only u

Remove any nodes in X that are after u. Call this new decomposition X ′ = (X ′1, . . . , X
′
b);

if X ′ has pathwidth 1 then
return a valid schedule for u for known set W on nodes in ν(X ′) with no
rematerialization

Find i such that u ∈ Xi;
Compute I` ← InterleavedSchedule(X ′i,X `,W ) where X ` = (X ′i−1, X

′
i−2, . . . , X

′
1);

Compute Ir ← InterleavedSchedule(X ′i,X r,W ) where X r = (X ′i+1, X
′
i+2, . . . , X

′
b);

return Flatten(I` ∪ Ir);
Function: InterleavedSchedule(X, X , W):

Data: X = {x1, x2, . . . , xk} a set of nodes, X = (X1, X2, . . . , Xb) a path decomposition,
W ⊆ V a subset of nodes whose value is known.

Result: Returns an interleaved schedule for X , i.e., a set of tuples 〈σ, x〉, where x ∈ X and
σ is a schedule.

if X ⊆W then
return an empty interleaved schedule on X , i.e. {〈∅, x〉 | x ∈ X};

Let Xinner = (X1, X2, . . . , Xb/2−1) and Xouter = (Xb/2+1, Xb/2+2 . . . , Xb);
Initialize Iinner ← ∅ and W ′ ←W , and let X ′ = {x ∈ X | x ≺ last(Xb/2)};
Let u1 ≺ u2 ≺ · · · ≺ uj be the nodes in X ′ ∪Xb/2;
for i = 1 to k do

Assign σi ← PWRemat(Xinner, u, {u1, u2, . . . , ui−1}) where u is the node before ui in
the spine for G;

Add 〈σ1 ◦ u1 ◦ σ2 ◦ u2 ◦ · · ·σi, ui〉 to Iinner;
Compute Iouter ← InterleavedSchedule(Xb/2,Xouter,W );
Compute Ilower ← InterleavedSchedule(X \X ′,Xinner,W ∪X ′ ∪Xb/2);
return Condense(X, Iinner ∪ Iouter ∪ Ilower);

Function: Flatten(I):
Data: An interleaved schedule, I =

⋃
i,j〈σij , xi〉 with x1 ≺ x2 ≺ · · · .

Result: Returns a schedule.

return σ1 ◦ x1 ◦ σ2 ◦ x2 ◦ · · · , where each σi = σi1 ◦ σi2 ◦ σi3 ◦ · · · ;
Function: Condense (X, I):

Data: An interleaved schedule, I =
⋃
i,j〈σij , xi〉 with x1 ≺ x2 ≺ . . ..

Result: Returns an interleaved schedule.

return an interleaved schedule I ′ on X such that Flatten(I) = Flatten(I ′), as defined
in text.

For the base case in Claim 1, we produce the schedule containing only u. Either u ∈ W ∪ ν(X )
or all of its inputs are in W ∪ ν(X ). In either case, u (viewed as a schedule) is valid for known
set W ∪ ν(X ). In the case the X ′ has pathwidth 1, we again return a valid schedule for known set
W ∪ ν(X ).
For the base case in Claim 2, we produce an empty interleaved schedule on X ⊆W , which is valid
on known set W .

More generally, PWRemat(X , u,W ) finds schedules I` = InterleavedSchedule(X,X `,W ) and
Ir = InterleavedSchedule(X,X r,W ) and returns Flatten(I` ∪ Ir). By induction, I` is
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valid on known set W ∪ ν(X `) and Ir is valid on known set W ∪ ν(X r). Hence, by Lemma 21,
Merge(I` ∪ Ir) is valid on known set W ∪ ν(X ). Hence, by Property 19, Flatten(I` ∪ Ir) =
Flatten(Merge(I` ∪ Ir)) is valid on known set W ∪ ν(X ), as we wanted.

Continuing, InterleavedSchedule(X,X ,W ) produces an interleaved schedule on X consisting
of the union of Iinner, Iouter, and Ilower. We wish to show this union is an interleaved schedule
that is valid on known set W ∪ ν(X ).
We first consider Iinner. We claim that after each iteration of the for loop, Iinner is valid on known
set ν(Xinner). To see this, consider tuple 〈σ1 ◦ u1 ◦ σ2 ◦ u2 ◦ · · · ◦ σi ◦ ui〉 added to Iinner on the ith
iteration of the loop. In the base case, i = 1, we see that σ1 is valid for known set ν(Xinner) since
it came from a call to PWRemat(Xinner, u, ∅). To see that adding u1 does not change the validity,
let v ∈ in(u1). If v /∈ ν(Xinner), then consider the spine from v to u. That is, there are nodes
v = vk, vk+1, . . . , v` = u for which each (vj , vj+1) is an edge along the long spine in G. All of
these nodes (other than u itself) are ancestors of u, hence either all must appear in the valid schedule,
or at least one must be known. (We assumed v /∈ ν(Xinner), so it cannot be known.) But say some
ancestor of u, say u′, is known. Then u′ ∈ ν(Xinner), meaning it appears in a bag outside of Xinner.
By Lemma 9, this means there is some v′ on the path from v to u′ such that v is in X ′ or Xb/2. But
that is a contradiction, since v′ ≺ u and u is the first node in X ∪Xb/2. Hence, every v ∈ in(u1)
appears in σ1, meaning that σ1 ◦ u1 is valid.

Continuing, again we wish to show the schedule σ1 ◦ u1 ◦ σ2 ◦ u2 ◦ · · · ◦ σi ◦ ui is valid, for general
i. By induction, it is not hard to see σ1 ◦ u1 ◦ σ2 ◦ u2 ◦ · · · ◦ σi is valid. So we just need to argue that
concatenating ui does not change validity. The proof is analogous to the base case. Let v ∈ in(ui)

but v /∈ ν(Xinner) ∪ {u1, u2, . . . , ui−1}, and let j be as small as possible so that v ≺ uj . We claim
the part of the spine from v to uj is contained in σj . To see this, all these nodes (other than uj itself)
are ancestors of uj , hence either must all appear in σj , or at least one must be known. Again, we
assumed v is not known. But suppose there is some other ancestor of u, say u′, on the spine is known.
The u′ ∈ ν(Xinner) ∪ {u1, . . . , ui−1}, meaning it appears in a bag outside of Xinner; else, we did
not choose the first uj . By Lemma 9, this means there is some v′ on the path from v to u′ such that v
is in X ′ or Xb/2. But that is a contradiction, since v′ ≺ uj and uj is the first node in X ∪Xb/2 such
that v precedes it. Hence, every v ∈ in(ui) appears in σj , meaning that σ1 ◦u1 ◦σ2 ◦u2 ◦ · · · ◦σi ◦ui
is valid.

Putting this together, we see that the ith tuple added to Iinner is valid on known set ν(Xinner) ∪
{x1, . . . , xi−1}. By Property 17, adding this tuple to Iinner produces a new interleaved schedule
that is also valid on ν(Xinner), hence valid on W ∪ ν(Xinner), as we wanted.

Next, Iouter is valid on known set W ∪ ν(Xouter) by induction. So we apply Lemma 21 to see that
Merge(Iinner ∪ Iouter) is valid on set W ∪ ν(X ), as we wanted.

Finally, Ilower is valid on known set W ∪X ′ ∪Xb/2 ∪ ν(Xinner) by induction. By Lemma 20, we
have Ilower is valid on known set W ∪X ′ ∪Xb/2 ∪ ν(X ). Further, Ilower is an interleaved schedule
on X \X ′, while Merge(Iinner, Iouter) is an interleaved schedule on X ′ ∪Xb/2. So by Property 17,
Merge(Iinner, Iouter) ∪ Ilower is valid on W ∪ ν(Xinner). The call to Condense ensures that
we return an interleaved schedule on X; notice that Condense(Merge(Iinner, Iouter) ∪ Ilower) =
Condense(Iinner ∪ Iouter ∪ Ilower), so we may omit the Merge.

This shows by induction that our two claims are true.

Given that (and in particular, the fact that the first claim is true), we see that when X is the path
decomposition for G, PWRemat(X , u, ∅) produces a schedule σ that is valid for known set ∅ ∪ ν(X ).
But ν(X ) = ∅, so σ is a valid schedule to compute u.

Before finishing the proof, we will need the following lemma.

Lemma 23. Consider Algorithm 3. Whenever InterleavedSchedule() is called with a path
decomposition of pathwidth k, the call to PWRemat() operates on a path decomposition of pathwidth
at most k − 1.
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Proof. This is a corollary of Lemma 11. Notice that it is clearer to think of operating on the induced
interval graphs rather than a subgraph of G.

Proof of time and space for Theorem 22. Let’s now bound the time and memory taken by the sched-
ule.

We first bound the maximum size of W , the known set, on any call. Notice that W grows by at most
2p on any call, and the total recursive depth is log b. Since we call PWRemat with W = ∅ initially, we
see that it grows to size at most 2p log b. So s(W ) ≤ 2pMmax log b over all calls.

Next, a bit of notation. Let Tp(b) be the time for a schedule σ ◦ u produced by a call to
PWRemat(X , u,W ) with path decomposition of length b and maximum bag size p, and let Sp(b)
be its memory, for any W such that s(W ) ≤ 2pMmax log b. In particular, if PWRemat is called
with known set W (bounded as above) and X with maximum bag size of p and it returns σ, then
Sp(b) =MW (σ). Likewise, Tp(b) = L(σ).

Similarly, let T Ip (b) be the time for an interleaved schedule produced by InterleavedSchedule
with path decomposition of length b and maximum bag size p, and let SIp (b) be its memory, for
any W such that s(W ) ≤ 2pMmax log b. Note that if I is an interleaved schedule returned by
InterleavedSchedule with bounded known set W and maximum bag size p, we have SIp (b) =
MW (I).
Throughout, we will assume that Tp(b) is superlinear (otherwise, our schedule is linear in length).
Hence, Tp(b1) + Tp(b2) ≤ Tp(b1 + b2).

Looking at the call to PWRemat, we have

Sp(b) = mW (I` ∪ Ir)
≤ mW (I`) +mW (Ir)
≤ 2SIp (b).

Similarly,
Tp(b) ≤ T Ip (b`) + T Ip (br) ≤ T Ip (b) by superlinearity.

Here, b` and br are the sizes of the left and right path decompositions.

Looking at the call to InterleavedSchedule, we first bound MW (Iinner). On the ith iteration of
the loop creating Iinner, we added the tuple 〈σ1 ◦ u1 ◦ σ2 ◦ u2 ◦ · · · ◦ σi ◦ ui〉. We have that each σj
is valid for known set {u1, . . . , uj−1}, hence σj ◦ uj is valid for known set {u1, . . . , uj−1} ∪ in(uj).
Let W =

⋃
j in(uj), and let U = {u1, . . . , uk}. By Property 14, we can thus bound

MW (σ1 ◦ u1 ◦ σ2 ◦ u2 ◦ · · · ◦ σi ◦ ui) ≤ max
j
{MW∪U≺uj

(σj ◦ uj) + s(W ∪ U≺uj )}

≤ max
j
{MU≺uj

(σj) + s(in(uj)) + s(W ∪ U≺uj
)}

≤ Sp−1(b/2) + 2pMmax + (2p+ 1)Min,

where the relation MU≺uj
(σj) ≤ Sp−1(b/2) follows from Lemma 11.

As we grew Iinner from ∅ to its final value, we repeatedly invoked Property 17. Each time we added
some 〈σ, u〉 to the schedule; from above, MW (σ ◦ u) ≤ Sp−1(b/2) + 2pMmax + (2p+ 1)Min. So
we can bound the value of MW (Iinner) by Sp−1(b/2) + 2pMmax + (2p + 1)Min ≤ Sp−1(b) +
3p(Mmax +Min).

Letting W ′ =W ∪X ′ ∪Xb/2, we have

SIp (b) = mW (Iinner ∪ Iouter ∪ Ilower)
≤ max{MW (Iinner) +MW (Iouter),MW ′(Ilower)}
≤ max{Sp−1(b) + 3p(Mmax +Min) + SIp (b/2), S

I
p (b/2)}

= SIp (b/2) + Sp−1(b) + 3p(Mmax +Min).

Time is simpler. Note that Iinner consists of at most 2p tuples created from calls to PWRemat, where
each tuple consists of at most 2p copies of schedules returned from PWRemat. So L(Iinner) ≤
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(2p)2Lp−1(b/2). We have

T Ip (b) = L(Iinner ∪ Iouter ∪ Ilower)
≤ L(Iinner) + L(Iouter) + L(Ilower)
≤ (2p)2Tp−1(b/2) + T Ip (b/2) + T Ip (b/2)

≤ 2T Ip (b/2) + 2p2Tp−1(b).

Combining these inequalities, we have

SIp (b) ≤ SIp (b/2) + 2SIp−1(b) + 3p(Mmax +Min)

T Ip (b) ≤ 2T Ip (b/2) + 2p2T Ip−1(b).

Repeatedly replacing the first term on the right-hand side for each, we see

SIp (b) ≤ SIp (b/2k) + 2kSIp−1(b) + 3pk(Mmax +Min)

T Ip (b) ≤ 2kT Ip (b/2
k) + 2p2(T Ip−1(b) + 2T Ip−1(b/2) + . . . 2kT Ip−1(b/2

k))

≤ 2kT Ip (b/2
k) + 2kp2T Ip−1(b).

Hence,

SIp (b) ≤ SIp (1) + 2(log b)SIp−1(b) + 3p(log b)(Mmax +Min)

≤ 2(log b)SIp−1(b) + 4p(log b)(Mmax +Min)

T Ip (b) ≤ bT Ip (1) + 2(log b)p2T Ip−1(b)

≤ 2(log b)p2T Ip−1(b) + b.

Unrolling each, we see

SIp (b) ≤ 2p−2(logp−2 b)SI2 (b) + 4p(log b)(Mmax +Min)(1 + 2 log b+ . . . 2p−3 logp−3 b)

≤ 2p−2(logp−2 b)SI2 (b) + 2pp(logp−2 b)(Mmax +Min)

T Ip (b) ≤ 2p−2(logp−2 b)(p!)2T Ip−1(b) + b(1 + 2 log b+ . . . 2p−3 logp−3 b)

≤ 2p−2(logp−2 b)(p!)2T Ip−1(b) + 2p−2b logp−3 b.

In the case when p = 2, we have a path, so T I2 (b) = b and S2(b) =Mmax +Min. So we have

SIp (b) ≤ 2p+1p(logp−2 b)(Mmax +Min)

T Ip (b) ≤ 2p−1(p!)2b(logp−2 b).

To complete the proof, note that L(σ) = Tp(b) ≤ T Ip (b) and M(σ) = Sp(b) ≤ 2SIp (b).

To complete the argument for Theorem 7, we note that any path decomposition on n nodes can be
reduced to one of length O(n) without increasing the pathwidth. The bounds follow.
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