
Fully Dynamic Consistent Facility Location:
Supplementary material

Vincent Cohen-Addad
CNRS & Sorbonne Université

vcohen@di.ens.fr

Niklas Hjuler
University of Copenhagen

hjuler@di.ku.dk

Nikos Parotsidis
University of Copenhagen

nipa@di.ku.dk

David Saulpic
Ecole normale supérieure

Sorbonne Univeristé
david.saulpic@lip6.fr

Chris Schwiegelshohn
Sapienza University of Rome

schwiegelshohn@diag.uniroma1.it

1 On Meyerson Algorithm

The Meyerson algorithm, presented in [4], is as follows.

Algorithm 1 Meyerson(X, f)
Input: A set of point X , an opening cost f
Output: A set of centers S and an assignment φ of points to centers

1: Let S = ∅
2: for all point x in X , in a random order do
3: Let δ = d(x, S)
4: Add x to S with probability δ

f

5: Define φ(x) = arg min
c∈S

d(x, c)

6: end for

Some key properties of Algorithm 1 are summarized in the following lemma.

Lemma 1.1 (from [4]). An execution of Algorithm 1 has complexity O(kn), where k is the number
of centers opened at the end. Moreover, the assignment given by φ has a cost f ·|S|+

∑
x∈X

d(x, φ(x))

that is at least kf , and in expectation is a 8-approximation of the optimal cost.

2 Missing proofs from section 2

Lemma 2.0 Let (X, d), (Y, d′) be two metric spaces such that X ⊆ Y and, restricted to X , d = d′.
It holds that C(X,OPTY) ≤ 2C(X,OPTX).

Proof. Start from the optimal solution OPTY on Y , with k centers and where each point x is as-
signed to a center cx. Consider the solution on X with k centers, where the point closest to each

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

center of OPTY is opened. Call ψ(c) the center in X opened instead of c ∈ OPTY .

2C(X,OPTY) ≥ 2(kf +
∑
x∈X

d(x, cx))

≥ 2kf +
∑
x∈X

d(x, cx) + d(cx, ψ(cx))

≥ kf +
∑
x∈X

d(x, ψ(cx)) ≥ C(X,OPTX)

Where the last inequality holds because the set of centers ψ(c) is a valid solution for Facility Loca-
tion on the set X .

Lemma 2.2 Let OPTbefore be the optimal cost of an initial metric space X . After an arbitrary
sequence of ni insertions and nd deletions of points in X , resulting in a metric space Xafter,
the optimal solution OPTafter satisfies C(X,OPTbefore)/2 − nd · f ≤ C(Xafter,OPTafter) ≤
2(C(X,OPTbefore) + ni · f)

Proof. We remark that inserting a point can increase the optimal cost by at most f (since opening a
facility at the new point yields a solution of that cost).

Let OPT′ be the value of the optimal solution on X ∪ I where I is the set of ni inserted points.
By the previous observation, it holds that C(X ∪ I,OPT′) ≤ C(X,OPTbefore) + ni · f . Let
Xafter be the set of points after the sequence of ni insertions and nd deletions. Since deleting an
arbitrary number of points can increase the optimal cost by at most a factor 2 (see Lemma 2.0),
C(Xafter,OPTafter) ≤ 2 · C(X ∪ I,OPT′) ≤ 2(C(X,OPTbefore) + ni · f).

Reversing the roles of OPTbefore and OPTafter gives the other inequality: C(X,OPTbefore) ≤
2(C(Xafter,OPTafter) + nd · f), and concludes the lemma.

Proposition 2.4 Any algorithm maintaining a constant-factor approximation for Facility Location
requires Ω(n∗) update time and Ω(n) total recourse, where n is the total number of updates.

Proof. In the static case, Ω(n2) time is required to find a constant factor approximation of Facility
Location, even using randomization (see [5]). Hence, even in the incremental case, an amortized
time Ω(n∗) is necessary.

For the recourse, for all c we construct an instance that requires Ω(n) total recourse in order to
maintain a c-approximation. Set f = 1, and let u and v be two vertices at distance 2c. The stream
of updates simply consist in adding v, then adding and removing u n times. Any c-approximation
algorithm must add u as a center at every time t where u ∈ Xt: therefore the total recourse is
(n− 1)/2 = Ω(n).

Lemma 2.5 The algorithm from Section 2 can be adapted so that it maintains a O(1)-approximate
solution, and each update takes time O(n∗ · log n∗) in the worst-case, with probability 1− 1/n∗.

Proof. First condition on the event that every time we recompute from scratch we get a α-
approximation, with absolute value C(Xt0 , St0). By Lemma 2.3, the algorithm from Section 2
maintains a (8 ·α+ 4)-approximate solution for the subsequent C(Xt0 ,St0)

4·α·f updates with probability
1− 1

n∗ . If the last solution was computed at time t0, we begin to compute the next solution at time

t0 + C(Xt0 ,St0)
4·α·f − 1

8·α
C(Xt0 ,St0)

4·α·f = t1. This means that we have 1
8·α

C(Xt0 ,St0)
4·α·f = x updates, before

the new solution has to take over, at time t0 + C(Xt0 ,St0)
4·α·f . The algorithm starts to recompute a fresh

solution during those x updates, spending O(n∗ log n∗) per update. We need to show two things:
first, that this is indeed enough to recompute a solution, and second that two different recomputa-
tions do not overlap. In order to prove those two properties, it is necessary to ensure a deterministic
bound on the complexity of Algorithm 1, and not only an expected one. For this, we first show a
relation between C(Xt1 ,OPTt1) and C(Xt0 ,OPTt0).

2

C(Xt1 ,t1) ≤ 2 · (C(Xt0 ,OPTt0) + (t1 − t0) · f)

≤ 2 · (C(Xt0 ,OPTt0) +
C(Xt0 , St0)

4α
)

≤ 3 · C(Xt0 ,OPTt0)

This relation shows that any execution of Algorithm 1 that open more than 128·α3·x centers is worth-
less. Indeed, opening more centers would yield a cost of at least 128 ·α3 ·x · f = 4αC(Xt0 , St0) ≥
4αC(Xt0 ,OPTt0) – whereas the expected cost is at most 3α · C(Xt0 ,OPTt0).

Hence, among log 2n∗ executions of Algorithm 1, one uses less than 128 · α3 · x centers with
probability 1 − (1/n∗)2. The remark allows to stop the execution of all the ones that uses more
centers, and the complexity is deterministically Õ(xn∗) for all these executions. Spread among x
updates, this is Õ(n∗).

We now prove that two recomputation do not overlap, i.e., that

t0 +
C(Xt0 , St0)

4 · α · f
≤ t1 +

C(Xt1 , St1)

4 · α · f
− 1

8 · α
C(Xt1 , St1)

4 · α · f
.

This is equivalent to
1

8 · α
C(Xt0 , St0) ≤ (1− 1

8 · α
)C(Xt1 , St1).

Which is C(Xt0 , St0) ≤ (8 · α − 1)C(Xt1 , St1). However, it holds that C(Xt0 ,OPTt0) ≤
3C(Xt1 ,OPTt1), hence C(Xt0 , St0) ≤ 3αC(Xt1 , St1), which concludes.

Notice that the analysis holds, conditioned to the fact that the last time the recomputation happened,
the algorithms computed a α-approximate solution. This happens with probability 1 − 1/n∗ each
time we recompute. Hence the time bound holds for each individual update with probability 1 −
1/n∗.

3 Missing proofs from section 3

Invariant 3.3 The set Rti has size O(k log2 n) and, with high probability, there exists i such that
Cp(Xt,Rti) = O(1) · Cp(Xt,OPTt).

Proof. When t is a multiple of k, this stems directly from Lemma 3.2. For sake of simplicity, let’s
assume that time 1 is the last time MeyersonCapped was called and that t < k.

|Rt| increased by t: it increases by 1 both in the case of point insertion and deletion. Therefore the
size stays a O(k log2 n).

Let j = blog Cp(Xt,OPTt)c: we prove that Cp(Xt,Rtj) = O(Cp(Xt,OPTt)). Let f =
Lj

k(1+logn)

be the facility cost for this instance.

The cost does not increase because of points additions, since the algorithm adds every new point
directly toRt. We therefore ignore these newly added points in the following, and assume that only
deletions occurred. In the following, the proof follows the line of the one in [1], taking into account
the deleted points.

Let c∗1, ..., c
∗
k be the optimal solution on Xt and C∗i be the set of points assigned to c∗i . Let A∗i =∑

x∈C∗
i
d(x, c∗i)

p and a∗i = A∗i /|C∗i |. For j = 1, ..., log n let Sj be the set of points x in C∗i such
that 2j−1 ≤ d(x, c∗i) ≤ 2j together with the points x ∈ X1 \Xt such that c∗i is their closest center
(breaking ties arbitrarily). These points are exactly the one that have been deleted.

3

Consider the points in Sj , for j ≥ 1. By linearity of expectation, the expected service cost before
a point c is opened is f . Any point x arriving after a center is opened pays in expectation at most
3 · 2p−1d(x, c∗i)

p. However, it may happen that c ∈ X1 \ Xt: in that case, the algorithm replaces
it by c′, the closest point to c in Xt. Hence any point x arriving after c pays at most d(x, c′)p ≤
2pd(x, c)p ≤ 6 · 22p−1d(x, c∗i)

p, and the probability that a center is opened at x is at most 3 ·
22p−1d(x, c∗i)

p/f .

Now consider the points in S1. As before, the expected service cost paid before a point is opened is
f . After a center is opened, the distance from any point x to its nearest center is at most d(x, c∗i)+a∗i .
In the case where the center is inX1 but not inXt, this cost becomes 2p−1(d(x, c∗i)

p+2pa∗i). Hence
the service cost is bounded by 22p−1(d(x, c∗i)

p + a∗i), and the probability to open a center at x is at
most 22p−1(d(x, c∗i)

p + a∗i)/f .

The expected service cost for points ofC∗i is therefore f(1+log n)+22p−1
∑
x∈C∗

i
3d(x, c∗i)+a∗i ≤

L/k+22p+2Cp(C∗i ,OPTt). Summing over all clusters gives that the expected service cost is at most
L+22p+2Cp(Xt,OPTt) ≤ 22p+3Cp(Xt,OPTt). Moreover, the expected number of centers opened
by the algorithm is 1+log n+22p−1/f

∑
x∈C∗

i
3d(x, c∗i)+a∗i ≤ 1+log n+22p+2A∗i /f . Summing

again over all clusters gives that at most k(1 + log n)(1 + 22p+2 Cp(X
t,OPTt)
L) ≤ k(1 + log n)(1 +

22p+3) centers are opened.

Hence, with probability 1/2, the service cost is 22p+4Cp(Xt,OPTt) and the number of centers is at
most 22p+4k(1 + log n). Since the algorithm opens exactly 22p+4k(1 + log n) centers, this solution
is found by the algorithm and Cp(Xt,Rt) ≤ 22p+3Cp(Xt,OPTt). Since the algorithm maintains
O(log n) independent execution of the algorithm, this cost is ensured with high probability, which
concludes the lemma.

Lemma 3.4 Let OPTRt
i

be the optimal solution in the weighted set Rti. Then it holds that
Cp(Xt,OPTRt

i
) ≤ 23p−1(Cp(X,Rti) + Cp(Xt,OPTt))

This lemma is stated in [3], and generalize Theorem 2.3 in [2] to any value of p. For sake of
completeness, we provide here a proof.

Proof. The proof stems from the two following inequalities:

• Cp(X,OPTRt
i
) ≤ 2p−1(Cp(X,Rt) + Cp(Rt,OPTRt

i
)

• Cp(Rt,OPTRt
i
) ≤ 22p−1(Cp(X,Rt) + Cp(Xt,OPTt))

Combining those two inequalities yields directly the lemma.

In order to prove those, we use the generalized triangle inequality ∀x, y, z ∈ X, d(x, z)p ≤
2p−1(d(x, y)p + d(y, z)p). For any point x and set S, we denote S(x) the closest point in S to
x.

Let x ∈ X and y ∈ Rt be its closest point inRt, such that x contributes 1 in the weight of y.

We first prove the first inequality. It holds that d(x,OPTRt
i
)p ≤ d(x,OPTRt

i
(y))p ≤

2p−1(d(x, y)p + d(y,OPTRt
i
(y))p). Since the point y is weighted by the number of points assigned

to it, summing over all x, y gives exactly Cp(X,OPTRt
i
) ≤ 22p−1(Cp(X,Rt) + Cp(Rt,OPTRt

i
).

For the second inequality, we consider the solution S for the weighted set Rt consisting in the set
of centers {Rt(c), c ∈ OPTt}, and show that this solution has cost at most 22p−1(Cp(X,Rt) +

Cp(Xt,OPTt)). Indeed, it holds that d(y, S(y))p ≤ d(y, S(x))p ≤ 2p−1(d(x, y)p + d(x, S(x))p.
By definition of the set S, d(x, S(x)) ≤ 2d(x,OPT(x)); therefore

d(y, S(y))p ≤ 22p−1(d(x, y)p + d(x,OPT(x))p.

Summing over all x, y proves the desired inequality, and concludes the proof.

4

Theorem 3.1 There exists a randomized algorithm that, given a metric space undergoing insertions
and deletions of points, maintains a set of centers St with Õ((n∗ + k2)) update time such that, for
any time t, Cp(Xt, St) = O(1) · Cp(Xt,OPTt).

Proof. Combining Invariant 3.3 and Lemma 3.4 proves the approximation ratio. We therefore turn
on to the complexity bound.

Running the static algorithm on each coresetRti takes time Õ(k2), as the setRti has sizeO(k log2 n).
Since the algorithm maintains O(log n) coresets of that size, the total cost for computations of the
static algorithm is Õ(k2).

The cost of maintainingRt is similar to the one described in Section 2. The cost between two execu-
tions of MeyersonCapped is indeed Õ(nk): since Õ(k) centers are maintained, running Meyerson-
Capped takes time Õ(nk). Moreover, a single execution of DeletePoint takes time Õ(n+(tel −tbl) ·k
(where tbl and tel are the values of tl at that beginning and the end of the execution). Therefore,
subsequent executions of DeletePoint take a total of Õ(nk) time. Since a computation of Meyerson-
Capped occurs every k updates, the amortized cost to maintain the sets R1, ...,Rlogn is Õ(n) per
update, and the total amortized cost Õ(n+ k2).

4 Experiment: additional figures

Figure 1: Time for the whole Twitter dataset. MeyersonSingle is plotted in Orange, Our algorithm
in blue and MeyersonRec is too slow to run on this dataset.

References
[1] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and dynamic infor-

mation retrieval. SIAM J. Comput., 33(6):1417–1440, 2004.

[2] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams. In 41st Annual
Symposium on Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo
Beach, California, USA.

[3] S. Lattanzi and S. Vassilvitskii. Consistent k-clustering. In Proceedings of the 34th International
Conference on Machine Learning (ICML), pages 1975–1984, 2017.

[4] A. Meyerson. Online facility location. In 42nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 426–431, 2001.

5

[5] M. Thorup. Quick k-median, k-center, and facility location for sparse graphs. SIAM J. Comput.,
34(2):405–432, 2004.

6

	On Meyerson Algorithm
	Missing proofs from section 2
	Missing proofs from section 3
	Experiment: additional figures

