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Abstract

We propose an empirical measure of the approximate accuracy of feature impor-
tance estimates in deep neural networks. Our results across several large-scale
image classification datasets show that many popular interpretability methods pro-
duce estimates of feature importance that are not better than a random designation
of feature importance. Only certain ensemble based approaches—VarGrad and
SmoothGrad-Squared—outperform such a random assignment of importance. The
manner of ensembling remains critical, we show that some approaches do no better
then the underlying method but carry a far higher computational burden.

1 Introduction

In a machine learning setting, a question of great interest is estimating the influence of a given input
feature to the prediction made by a model. Understanding what features are important helps improve
our models, builds trust in the model prediction and isolates undesirable behavior. Unfortunately,
it is challenging to evaluate whether an explanation of model behavior is reliable. First, there is no
ground truth. If we knew what was important to the model, we would not need to estimate feature
importance in the first place. Second, it is unclear which of the numerous proposed interpretability
methods that estimate feature importance one should select [6, 5, 43, 30, 37, 33, 39, 36, 19, 22, 11,
9, 40, 32, 41, 27, 34, 2]. Many feature importance estimators have interesting theoretical properties
e.g. preservation of relevance [5] or implementation invariance [37]. However even these methods
need to be configured correctly [22, 37] and it has been shown that using the wrong configuration
can easily render them ineffective [18]. For this reason, it is important that we build a framework to
empirically validate the relative merits and reliability of these methods.

A commonly used strategy is to remove the supposedly informative features from the input and
look at how the classifier degrades [29]. This method is cheap to evaluate but comes at a significant
drawback. Samples where a subset of the features are removed come from a different distribution
(as can be seen in Fig. 1). Therefore, this approach clearly violates one of the key assumptions
in machine learning: the training and evaluation data come from the same distribution. Without
re-training,it is unclear whether the degradation in model performance comes from the distribution
shift or because the features that were removed are truly informative [9, 11].

For this reason we decided to verify how much information can be removed in a typical dataset before
accuracy of a retrained model breaks down completely. In this experiment, we applied ResNet-50 [16],
one of the most commonly used models, to ImageNet. It turns out that removing information is
quite hard. With 90% of the inputs removed the network still achieves 63.53% accuracy compared to
76.68% on clean data. This implies that a strong performance degradation without re-training might
be caused by a shift in distribution instead of removal of information.

Instead, in this work we evaluate interpretability methods by verifying how the accuracy of a retrained
model degrades as features estimated to be important are removed. We term this approach ROAR,
RemOve And Retrain. For each feature importance estimator, ROAR replaces the fraction of the
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pixels estimated to be most important with a fixed uninformative value. This modification (shown in
Fig. 1) is repeated for each image in both the training and test set. To measure the change to model
behavior after the removal of these input features, we separately train new models on the modified
dataset such that train and test data comes from a similar distribution. More accurate estimators
will identify as important input pixels whose subsequent removal causes the sharpest degradation in
accuracy. We also compare each method performance to a random assignment of importance and a
sobel edge filter [35]. Both of these control variants produce rankings that are independent of the
properties of the model we aim to interpret. Given that these methods do not depend upon the model,
the performance of these variants respresent a lower bound of accuracy that a interpretability method
could be expected to achieve. In particular, a random baseline allows us to answer the question: is the
interpretability method more accurate than a random guess as to which features are important? In
Section 3 we will elaborate on the motivation and the limitations of ROAR.

We applied ROAR in a broad set of experiments across three large scale, open source image datasets:
ImageNet [10], Food 101 [8] and Birdsnap [7]. In our experiments we show the following.

• Training performance is quite robust to removing input features. For example, after randomly
replacing 90% of all ImageNet input features, we can still train a model that achieves
63.53 ± 0.13 (average across 5 independent runs). This implies that a small subset of
features are sufficient for the actual decision making. Our observation is consistent across
datasets.

• The base methods we evaluate are no better or on par with a random estimate at finding
the core set of informative features. However, we show that SmoothGrad-Squared (an
unpublished variant of Classic SmoothGrad [34]) and Vargrad [2], methods which ensemble
a set of estimates produced by basic methods, far outperform both the underlying method
and a random guess. These results are consistent across datasets and methods.

• Not all ensemble estimators improve performance. Classic SmoothGrad [34] is worse than
a single estimate despite being more computationally intensive.

2 Related Work

Interpretability research is diverse, and many different approaches are used to gain intuition about the
function implemented by a neural network. For example, one can distill or constrain a model into
a functional form that is considered more interpretable [4, 12, 38, 28]. Other methods explore the
role of neurons or activations in hidden layers of the network [24, 26, 23, 42], while others use high
level concepts to explain prediction results [17]. Finally there are also the input feature importance
estimators that we evaluate in this work. These methods estimate the importance of an input feature
for a specified output activation.

While there is no clear way to measure “correctness”, comparing the relative merit of different
estimators is often based upon human studies [30, 27, 21] which interrogate whether the ranking is
meaningful to a human. Recently, there have been efforts to evaluate whether interpretability methods
are both reliable and meaningful to human. For example, in [18] a unit test for interpretability
methods is proposed which detects whether the explanation can be manipulated by factors that are
not affecting the decision making process. Another approach considers a set of sanity checks that
measure the change to an estimate as parameters in a model or dataset labels are randomized [2].
Closely related to this manuscript are the modification-based evaluation measures proposed originally
by [29] with subsequent variations [19, 25]. In this line of work, one replaces the inputs estimated
to be most important with a value considered meaningless to the task. These methods measure the
subsequent degradation to the trained model at inference time. Recursive feature elimination methods
[15] are a greedy search where the algorithm is trained on an iteratively altered subset of features.
Recursive feature elimination does not scale to high dimensional datasets (one would have to retrain
removing one pixel at a time) and unlike our work is a method to estimate feature importance (rather
than evaluate different existing interpretability methods).

To the best of our knowledge, unlike prior modification based evaluation measures, our benchmark
requires retraining the model from random initialization on the modified dataset rather than re-scoring
the modified image at inference time. Without this step, we argue that one cannot decouple whether
the model’s degradation in performance is due to artifacts introduced by the value used to replace
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Figure 1: A single ImageNet image modified according to the ROAR framework. The fraction of
pixels estimated to be most important by each interpretability method is replaced with the mean.
Above each image, we include the average test-set accuracy for 5 ResNet-50 models independently
trained on the modified dataset. From left to right: base estimators (gradient heatmap (GRAD),
Integrated Gradients (IG), Guided Backprop (GB)), derivative approaches that ensemble a set of
estimates (SmoothGrad Integrated Gradients (SG-SQ-IG), SmoothGrad-Squared Integrated Gradients
(SG-SQ-IG), VarGrad Integrated Gradients (Var-IG)) and control variants (random modification
(Random) and a sobel edge filter (Sobel)). This image is best visualized in digital format.

the pixels that are removed or due to the approximate accuracy of the estimator. Our work considers
several large scale datasets, whereas all previous evaluations have involved a far smaller subset of
data [3, 29].

3 ROAR: Remove And Retrain

To evaluate a feature importance estimate using ROAR, we sort the input dimensions according to the
estimated importance. We compute an estimate e of feature importance for every input in the training
and test set. We rank each e into an ordered set {eo

i
}N
i=1

. For the top t fraction of this ordered set, we
replace the corresponding pixels in the raw image with the per channel mean. We generate new train
and test datasets at different degradation levels t = [0., 10, . . . , 100] (where t is a percentage of all
features modified). Afterwards the model is re-trained from random initialization on the new dataset
and evaluated on the new test data.

Of course, because re-training can result in slightly different models, it is essential to repeat the
training process multiple times to ensure that the variance in accuracy is low. To control for this, we
repeat training 5 times for each interpretabiity method e and level of degradation t. We introduce the
methodology and motivation for ROAR in the context of linear models and deep neural networks.
However, we note that the properties of ROAR differ given an algorithm that explicitly uses feature
selection (e.g. L1 regularization or any mechanism which limits the features available to the model at
inference time). In this case one should of course mask the inputs that are known to be ignored by
the model, before re-training. This will prevent them from being used after re-training, which could
otherwise corrupt the ROAR metric. For the remainder of this paper, we focus on the performance of
ROAR given deep neural networks and linear models which do not present this limitation.
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What would happen without re-training? The re-training is the most computationally expensive
aspect of ROAR. One should question whether it is actually needed. We argue that re-training is
needed because machine learning models typically assume that the train and the test data comes from
a similar distribution.

The replacement value c can only be considered uninformative if the model is trained to learn it as
such. Without retraining, it is unclear whether degradation in performance is due to the introduction of
artifacts outside of the original training distribution or because we actually removed information. This
is made explicit in our experiment in Section 4.3.1, we show that without retraining the degradation
is far higher than the modest decrease in performance observed with re-training. This suggests
retraining has better controlled for artefacts introduced by the modification.

Are we evaluating the right aspects? Re-training does have limitations. For one, while the
architecture is the same, the model used during evaluation is not the same as the model on which the
feature importance estimates were originally obtained. To understand why ROAR is still meaningful
we have to think about what happens when the accuracy degrades, especially when we compare it to
a random baseline. The possibilities are:

1. We remove input dimensions and the accuracy drops. In this case, it is very likely
that the removed inputs were informative to the original model. ROAR thus gives a good
indication that the importance estimate is of high quality.

2. We remove inputs and the accuracy does not drop. This can be explained as either:

(a) It could be caused by removal of an input that was uninformative to the model. This
includes the case where the input might have been informative but not in a way that is
useful to the model, for example, when a linear model is used and the relation between
the feature and the output is non-linear. Since in such a case the information was not
used by the model and it does not show in ROAR we can assume ROAR behaves as
intended.

(b) There might be redundancy in the inputs. The same information could represented in
another feature. This behavior can be detected with ROAR as we will show in our toy
data experiment.

Validating the behavior of ROAR on artificial data. To demonstrate the difference between
ROAR and an approach without re-training in a controlled environment we generate a 16 dimensional
dataset with 4 informative features. Each datapoint x and its label y was generated as follows:

x =
az

10
+ dη +

ǫ

10
, y = (z > 0).

All random variables were sampled from a standard normal distribution. The vectors a and d are 16
dimensional vectors that were sampled once to generate the dataset. In a only the first 4 values have
nonzero values to ensure that there are exactly 4 informative features. The values η, ǫ were sampled
independently for each example.

We use a least squares model as this problem can be solved linearly. We compare three rankings: the
ground truth importance ranking, random ranking and the inverted ground truth ranking (the worst
possible estimate of importance). In the left plot of Fig. 2 we can observe that without re-training the
worst case estimator is shown to degrade performance relatively quickly. In contrast, ROAR shows
no degradation until informative features begin to be removed at 75%. This correctly shows that this
estimator has ranked feature importance poorly (ranked uninformative features as most important).

Finally, we consider ROAR performance given a set of variables that are completely redundant. We
note that ROAR might not decrease until all of them are removed. To account for this we measure
ROAR at different levels of degradation, with the expectation that across this interval we would be
able to detect inflection points in performance that would indicate a set of redundant features. If this
happens, we believe that it could be detected easily by the sharp decrease as shown in Fig. 2. Now
that we have validated ROAR in a controlled setup, we can move on to our large scale experiments.
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Figure 2: A comparison between not retraining and ROAR on artificial data. In the case where the
model is not retrained, test-set accuracy quickly erodes despite the worst case ranking of redundant
features as most important. This incorrectly evaluates a completely incorrect feature ranking as being
informative. ROAR is far better at identifying this worst case estimator, showing no degradation until
the features which are informative are removed at 75%. This plot also shows the limitation of ROAR,
an accuracy decrease might not happen until a complete set of fully redundant features is removed.
To account for this we measure ROAR at different levels of degradation, with the expectation that
across this interval we would be able to control for performance given a set of redundant features.

4 Large scale experiments

4.1 Estimators under consideration

Our evaluation is constrained to a subset of estimators of feature importance. We selected these
based on the availability of open source code, consistent guidelines on how to apply them and the
ease of implementation given a ResNet-50 architecture [16]. Due to the breadth of the experimental
setup it was not possible to include additional methods. However, we welcome the opportunity to
consider additional estimators in the future, and in order to make it easy to apply ROAR to additional
estimators we have open sourced our code https://bit.ly/2ttLLZB. Below, we briefly introduce
each of the methods we evaluate.

Base estimators are estimators that compute a single estimate of importance (as opposed to ensemble
methods). While we note that guided backprop and integrated gradients are examples of signal
and attribution methods respectively, the performance of these estimators should not be considered
representative of other methods, which should be evaluated separately.

• Gradients or Sensitivity heatmaps [33, 6] (GRAD) are the gradient of the output activa-
tion of interest Al

n with respect to xi:

e =
∂Al

n

∂xi

• Guided Backprop [36] (GB) is an example of a signal method that aim to visualize the input
patterns that cause the neuron activation Al

n in higher layers [36, 39, 19]. GB computes this
by using a modified backpropagation step that stops the flow of gradients when less than
zero at a ReLu gate.

• Integrated Gradients [37] (IG)is an example of an attribution method which assign impor-
tance to input features by decomposing the output activation Al

n into contributions from
the individual input features [5, 37, 22, 31, 19]. Integrated gradients interpolate a set of
estimates for values between a non-informative reference point x0 to the actual input x.
This integral can be approximated by summing a set of k points at small intervals between
x
0 and x:

e = (xi − x
0

i )×

k∑

i=1

∂fw(x
0 + i

k
(x− x

0))

∂xi

×
1

k

The final estimate e will depend upon both the choice of k and the reference point x0. As
suggested by [37], we use a black image as the reference point and set k to be 25.
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Ensembling methods In addition to the base approaches we also evaluate three ensembling methods
for feature importance. For all the ensemble approaches that we describe below (SG, SG-SQ, Var),
we average over a set of 15 estimates as suggested by in the original SmoothGrad publication [34].

• Classic SmoothGrad (SG) [34] SG averages a set J noisy estimates of feature importance
(constructed by injecting a single input with Gaussian noise η independently J times):

e =

J∑

i=1

(gi(x+ η,Al

n))

• SmoothGrad2(SG-SQ) is an unpublished variant of classic SmoothGrad SG which squares
each estimate e before averaging the estimates:

e =

J∑

i=1

(gi(x+ η,Al

n)
2)

Although SG-SQ is not described in the original publication, it is the default open-source
implementation of the open source code for SG: https://bit.ly/2Hpx5ob.

• VarGrad (Var) [2] employs the same methodology as classic SmoothGrad (SG) to construct
a set of t J noisy estimates. However, VarGrad aggregates the estimates by computing the
variance of the noisy set rather than the mean.

e = Var(gi(x+ η,Al

n))

Control Variants As a control, we compare each estimator to two rankings (a random assignment
of importance and a sobel edge filter) that do not depend at all on the model parameters. These
controls represent a lower bound in performance that we would expect all interpretability methods to
outperform.

• Random A random estimator gR assigns a random binary importance probability e 7→ 0, 1.
This amounts to a binary vector e ∼ Bernoulli(1− t) where (1− t) is the probability of
ei = 1. The formulation of gR does not depend on either the model parameters or the input
image (beyond the number of pixels in the image).

• Sobel Edge Filter convolves a hard-coded, separable, integer filter over an image to produce
a mask of derivatives that emphasizes the edges in an image. A sobel mask treated as a
ranking e will assign a high score to areas of the image with a high gradient (likely edges).

4.2 Experimental setup

We use a ResNet-50 model for both generating the feature importance estimates and subsequent
training on the modified inputs. ResNet-50 was chosen because of the public code implementations
(in both PyTorch [14] and Tensorflow [1]) and because it can be trained to give near to state of art
performance in a reasonable amount of time [13].

For all train and validation images in the dataset we first apply test time pre-processing as used by
Goyal et al. [13]. We evaluate ROAR on three open source image datasets: ImageNet, Birdsnap and
Food 101. For each dataset and estimator, we generate new train and test sets that each correspond to
a different fraction of feature modification t = [0, 10, 30, 50, 70, 90]. We evaluate 18 estimators in
total (this includes the base estimators, a set of ensemble approaches wrapped around each base and
finally a set of squared estimates). In total, we generate 540 large-scale modified image datasets in
order to consider all experiment variants (180 new test/train for each original dataset).

We independently train 5 ResNet-50 models from random initialization on each of these modified
dataset and report test accuracy as the average of these 5 runs. In the base implementation, the
ResNet-50 trained on an unmodified ImageNet dataset achieves a mean accuracy of 76.68%. This
is comparable to the performance reported by [13]. On Birdsnap and Food 101, our unmodified
datasets achieve 66.65% and 84.54% respectively (average of 10 independent runs). This baseline
performance is comparable to that reported by Kornblith et al. [20].
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4.3 Experimental results

4.3.1 Evaluating the random ranking

Comparing estimators to the random ranking allows us to answer the question: is the estimate
of importance more accurate than a random guess? It is firstly worthwhile noting that model
performance is remarkably robust to random modification. After replacing a large portion of all
inputs with a constant value, the model not only trains but still retains most of the original predictive
power. For example, on ImageNet, when only 10% of all features are retained, the trained model
still attains 63.53% accuracy (relative to unmodified baseline of 76.68%). The ability of the model to
extract a meaningful representation from a small random fraction of inputs suggests a case where
many inputs are likely redundant. The nature of our input–an image where correlations between
pixels are expected – provides one possible readons for redundancy.

The results for our random baseline provides additional support for the need to re-train. We can
compare random ranking on ROAR vs. a traditional deletion metric [29], i.e. the setting where we
do not retain. These results are given in Fig. 3. Without retraining, a random modification of 90%
degrades accuracy to 0.5% for the model that was not retrained. Keep in mind that on clean data
we achieve 76.68% accuracy. This large discrepancy illustrates that without retraining the model,
it is not possible to decouple the performance of the ranking from the degradation caused by the
modification itself.

4.3.2 Evaluating Base Estimators

Now that we have established the baselines, we can start evaluating the base estimators: GB,
IG, GRAD. Surprisingly, the left inset of Fig. 4 shows that these estimators consistently perform
worse than the random assignment of feature importance across all datasets and for all thresholds
t = [0.1, 0.3, 0.5, 0.7, 0.9]. Furthermore, our estimators fall further behind the accuracy of random
guess as a larger fraction t of inputs is modified. The gap is widest when t = 0.9.

Our base estimators also do not compare favorably to the performance of a sobel edge filter SOBEL.
Both the sobel filter and the random ranking have formulations that are entirely independent of the
model parameters. All the base estimators that we consider have formulations that depend upon the
trained model weights, and thus we would expect them to have a clear advantage in outperforming
the control variants. However, across all datasets and thresholds t, the base estimators GB, IG, GRAD

perform on par or worse than SOBEL.

Base estimators perform within a very narrow range. Despite the very different formulations of base
estimators that we consider, the difference between the performance of the base estimators is in a
strikingly narrow range. For example, as can be seen in the left column of Fig. 4, for Birdsnap, the
difference in accuracy between the best and worst base estimator at t = 90% is only 4.22%. This
range remains narrow for both Food101 and ImageNet, with a gap of 5.17% and 3.62 respectively.
Our base estimator results are remarkably consistent results across datasets, methods and for all
fractions of t considered. The variance is very low across independent runs for all datasets and
estimators. The maximum variance observed for ImageNet was a variance of 1.32% using SG-SQ-
GRAD at 70% of inputs removed. On Birdsnap the highest variance was 0.12% using VAR-GRAD
at 90% removed. For food101 it was 1.52% using SG-SQ-GRAD at 70% removed.

Finally, we compare performance of the base estimators using ROAR re-training vs. a traditional
deletion metric [29], again the setting where we do not retain. In Fig. 3 we see a behavior for the
base estimators on all datasets that is similar to the behavior of the inverse (worst possible) ranking
on the toy data in Fig. 2. The base estimators appear to be working when we do not retrain, but they
are clearly not better than the random baseline when evaluated using ROAR. This provides additional
support for the need to re-train.

4.3.3 Evaluating Ensemble Approaches

Since the base estimators do not appear to perform well, we move on to ensemble estimators.
Ensemble approaches inevitably carry a higher computational approach, as the methodology requires
the aggregation of a set of individual estimates. However, these methods are often preferred by humans
because they appear to produce “less noisy” explanations. However, there is limited theoretical
understanding of what these methods are actually doing or how this is related to the accuracy of the
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Figure 3: On the left we evaluate three base estimators and the random baseline without retraining.
All of the methods appear to reduce accuracy at quite a high rate. On the right, we see, using ROAR,
that after re-training most of the information is actually still present. It is also striking that in this
case the base estimators perform worse than the random baseline.

Figure 4: Left: Grad (GRAD), Integrated Gradients (IG) and Guided Backprop (GB) perform worse
than a random assignment of feature importance. Middle: SmoothGrad (SG) is less accurate than
a random assignment of importance and often worse than a single estimate (in the case of raw
gradients SG-Grad and Integrated Gradients SG-IG). Right: SmoothGrad Squared (SG-SQ) and
VarGrad (VAR) produce a dramatic improvement in approximate accuracy and far outperform the
other methods in all datasets considered, regardless of the underlying estimator.

explanation. We evaluate ensemble estimators and produce results that are remarkably consistent
results across datasets, methods and for all fractions of t considered.

Classic Smoothgrad is less accurate or on par with a single estimate. In the middle column in Fig. 4
we evaluate Classic SmoothGrad (SG). It average 15 estimates computed according to an underlying
base method (GRAD, IG or GB). However, despite averaging SG degrades test-set accuracy still
less than a random guess. In addition, for GRAD and IG SmoothGrad performs worse than a single
estimate.
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SmoothGrad-Squared and VarGrad produce large gains in accuracy. In the right inset of Fig. 4,
we show that both VarGrad (VAR) and SmoothGrad-Squared (SG-SQ) far outperform the two control
variants. In addition, for all the interpretability methods we consider, VAR or SG-SQ far outperform
the approximate accuracy of a single estimate. However, while VAR and SG-SQ benefit the accuracy
of all base estimators, the overall ranking of estimator performance differs by dataset. For ImageNet
and Food101, the best performing estimators are VAR or SG-SQ when wrapped around GRAD.
However, for the Birdsnap dataset, the most approximately accurate estimates are these ensemble
approaches wrapped around GB. This suggests that while the VAR and SG-SQ consistently improve
performance, the choice of the best underlying estimator may vary by task.

Now, why do both of these methods work so well? First, these methods are highly similar. If the
average (squared) gradient over the noisy samples is zero then VAR and SG-SQ reduce to the same
method. For many images it appears that the mean gradient is much smaller than the mean squared
gradient. This implies that the final output should be similar. Qualitatively this seems to be the case
as well. In Fig. 1 we observe that both methods appear to remove whole objects. The other methods
removed inputs that are less concentrated but spread more widely over the image. It is important to
note that these methods were not forced to behave as such. It is emergent behavior. Understanding
why this happens and why this is beneficial should be the focus of future work.

Squaring estimates The final question we consider is why SmoothGrad-Squared SG-SQ dramatically
improves upon the performance of SmoothGrad SG despite little difference in formulation. The
only difference between the two estimates is that SG-SQ squares the estimates before averaging. We
consider the effect of only squaring estimates (no ensembling). We find that while squaring improves
the accuracy of all estimators, the transformation does not adequately explain the large gains that we
observe when applying VAR or SG-SQ. When base estimators are squared they slightly outperform
the random baseline (all results included in the supplementary materials).

5 Conclusion and Future Work

In this work, we propose ROAR to evaluate the quality of input feature importance estimators.
Surprisingly, we find that the commonly used base estimators, Gradients, Integrated Gradients and
Guided BackProp are worse or on par with a random assignment of importance. Furthermore,
certain ensemble approaches such as SmoothGrad are far more computationally intensive but do not
improve upon a single estimate (and in some cases are worse). However, we do find that VarGrad and
SmoothGrad-Squared strongly improve the quality of these methods and far outperform a random
guess. While the low effectiveness of many methods could be seen as a negative result, we view
the remarkable effectiveness of SmoothGrad-Squared and VarGrad as important progress within the
community. Our findings are particularly pertinent for sensitive domains where the accuracy of a
explanation of model behavior is paramount. While we venture some initial consideration of why
certain ensemble methods far outperform other estimator, the divergence in performance between the
ensemble estimators is an important direction of future research.
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