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A Proofs

The references cited in this document follows the numbering used in the main paper.

A.1 Proof of Proposition 1

The contradiction on any universum sample x∗ ∈ X ∗U is given as (following (4)),

sup
h∈H

EDU [1{
⋂
k

h(x∗) 6=k}] = 1− inf
h∈H

EDU [1{
⋃
k

h(x∗)=k}]

= 1− min
w1...wL

EDU [1{
⋃
k

(w>k x∗−max
l 6=k

w>l x∗>0)}]

= 1− min
w1...wL

EDU [1{
∑
k

(w>k x∗−max
l 6=k

w>l x∗>0)}] (21)

The first equality follows from De-Morgan’s law. The second equality follows from the M-SVM
formulation in eq. (2). The third equality follows from the mutual exclusiveness of the events.

Note that, for maximal contradiction following (21) we need EDU [1{
∑
k

(w>k x∗−max
l 6=k

w>l x∗>0)}] = 0.

This necessitates, ∀k,w>k x∗−max
l 6=k

w>l x
∗ ≯ 0. Next, for the case when, w>k x

∗−max
l 6=k

w>l x
∗ < 0⇒

∃p 6= k such that w>p x
∗ − max

l 6=p
w>l x

∗ > 0 resulting EDU [1{
∑
k

(w>k x∗−max
l 6=k

w>l x∗>0)}] > 0. Hence

the only possible solution is, ∀k,w>k x∗ − max
l 6=k

w>l x
∗ = 0 ⇒ ∀k;w>k x

∗ − max
l={1...L}

w>l x
∗ = 0 ⇒

|w>k x∗ − max
l=1...L

w>l x
∗| = 0;∀k (from symmetry of the transformation (16))

A.2 Proof of Proposition 2

A similar proof is provided for M-SVM in [15]. Here, we provide the proof for MU-SVM formulation.
Formulation (7) for binary classification becomes,

min
w1,w2,ξ,ζ

1

2
(‖w1‖22 + ‖w2‖22) + C

n∑
i=1

ξi + C∗
m∑
i′=1

(ζi′1 + ζi′2) (22)

s.t. (wyi −wl)
>xi ≥ eil − ξi; eil = 1− δil, l = 1, 2

|(w>k x∗i′ − max
l=1,2

w>l x
∗
i′)| ≤ ∆ + ζi′k; ζi′k ≥ 0, k = 1, 2

i = 1 . . . n, i′ = 1 . . .m, δil =

{
1; yi = l
0; yi 6= l

The constraints become,
Training samples (∀i = 1 . . . n)
For any xi ∈ class 1 labeled as yi = +1; we have

(w1 −w1)>xi ≥ −ξi ⇒ ξi ≥ 0

(w1 −w2)>xi ≥ 1− ξi ⇒ yi(w1 −w2)>xi ≥ 1− ξi

Similarly, for any xi ∈ class 2 labeled as yi = −1; we have,

(w2 −w1)>xi ≥ 1− ξi ⇒ yi(w1 −w2)>xi ≥ 1− ξi
(w2 −w2)>xi ≥ −ξi ⇒ ξi ≥ 0

Universum samples (∀i′ = 1 . . .m)
For any universum sample x∗i′ WLOG we assume w1x

∗
i′ ≥ w2x

∗
i′ . Then,

When k = 1 we have |w>1 x∗i′ − max
l=1,2

w>l x
∗
i′ | ≤ ∆ + ζi′k ⇒ ζi′k ≥ −∆ (true ∵ ζi′k ≥ 0).

When k = 2 we have |w>2 x∗i′−max
l=1,2

w>l x
∗
i′ | ≤ ∆+ζi′k ⇒ |w>2 x∗i′−w>1 x∗i′ | ≤ ∆+ζi′k , ζi′k ≥ 0.
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Hence, eq. (22) can be re-written as,

min
w1,w2,ξ,ζ

1

2
(‖w1‖22 + ‖w2‖22) + C

n∑
i=1

ξi + C∗
m∑
i′=1

ζ ′i (23)

s.t. yi(w1 −w2)>xi ≥ 1− ξi; ξi ≥ 0, i = 1 . . . n

|(w1 −w2)>x∗i′ | ≤ ∆ + ζi′ ; ζi′ ≥ 0, i′ = 1 . . .m

The solution to the KKT system of (23) satisfies w1 = −w2. Hence replacing w = w1 −w2 in (23)
still solves (22). This is the U-SVM formulation in [16] with b = 0.

A.3 Proof of Theorem 1

See [26, 32] for proofs.

A.4 Proof of Theorem 2

To prove this theorem we first prove the following Lemmas A.1 and A.2.

Lemma A.1. The VC dimension of the hypothesis class, B =
{
x → sign(wTx) : x ∈

<d; ywTx ≥ 1 ; ||w||2 ≤ Λ2
}

, assuming ||x||2 ≤ R2 follows,

V C(B) ≤ min(d+ 1, R2Λ2) (24)

Proof: For the first term i.e. V C(B) ≤ d+ 1 refer to Example 3.2 in [27]. For the second term i.e.
V C(B) ≤ R2Λ2 see [27] Theorem 4.2 .

Lemma A.2. The VC dimension of the hypothesis class, B =
{
x → sign(wTx) : x ∈

<d; ywTx ≥ 1 ; ||w||2 ≤ Λ2 ; |wTuj | ≤ ∆ ; uj ∈ <d ; ∀j = 1 . . .m
}

, assuming ||x||2 ≤ R2

follows,

V C(B) ≤ min(d+ 1, κ) (25)

where,

κ ≤
(Λ2 + γm∆2)R2 +

√
[(Λ2 + γm∆2)R2]2 − 4γ(Λ2 + γm∆2)tr[(I + γUUT )−1(UXTXUT )]

2
;

with ∀γ ∈ {γ ≥ 0; [(Λ2 + γm∆2)R2]2 − 4γ(Λ2 + γm∆2)tr[(I + γUUT )−1(UXTXUT )] ≥ 0}

and, U =

 (u1)T

...
(um)T


m×d

and, X =

 (x1)T

...
(xV C(B))

T


V C(B)×d

is the training set shattered by B.

Proof: For the first term i.e. V C(B) ≤ d+ 1 refer to Example 3.2 in [27]. The proof for the second
term V C(B) ≤ κ follows next,

B =
{
x→ sign(wTx) : x ∈ <d; ywTx ≥ 1 ; ||w||2 ≤ Λ2 ; |wTuj | ≤ ∆ ; uj ∈ <d ; ∀j = 1 . . .m

}
=
{
x→ sign(wTx) : x ∈ <d; ywTx ≥ 1 ; ||w||2 ≤ Λ2 ; ||

[
|(wTuj)|mj=1

]
||∞ ≤ ∆

}
⊆
{
x→ sign(wTx) : x ∈ <d; ywTx ≥ 1 ; ||w||2 ≤ Λ2 ; wT (

m∑
j=1

uju
T
j )w ≤ m∆2

}
:= G (norm equivalence)

Clearly dB = V C(B) ≤ V C(G) = dG . Obviously X is also shattered by G. This means ∀xi ∈
X and ∀yi ∈ {−1,+1}; ∃w ∈ G which satisfies yiwTxi ≥ 1. Summing over all the samples

in X gives, ∃w ∈ G which satisfies
dB∑
i=1

yiw
Txi ≥ dB. This also implies sup

w∈G

dB∑
i=1

yiw
Txi ≥ dB.
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Now, since the above relation holds for any random selection of y ∈ {−1,+1}dB . Hence for any y
following the radamacher distribution we have,

dB ≤ E
y

[ sup
w∈G

dB∑
i=1

yiw
Txi]

= E
y

[
sup

||w||2 ≤ Λ2

wTUTUw ≤ m∆2

yTXw

]

≤ E
y

[
sup

||w||2+γ(wTUTUw)≤Λ2+γm∆2

yTXw

]
; (∀γ ≥ 0 relaxes the constraint)

= E
y

[
sup

wT ( I+γUTU

Λ2+γm∆2 )w≤1

yTXw

]
(26)

= E
y

[( I + γUTU

Λ2 + γm∆2

)− 1
2

XTy

]
(the stationary point of the sup problem in (26))

≤

[
E
y

[( I + γUTU

Λ2 + γm∆2

)− 1
2

XTy
]2] 1

2

(Jensen’s inequality)

=

[
tr

[
X
( I + γUTU

Λ2 + γm∆2

)−1

XT

]] 1
2

(∵ y behaves as radamacher variables)

⇔ d2
B ≤

(
Λ2 + γm∆2

)
tr
[
X(I + γUTU)−1XT

]
(∵ dB > 0)

=
(

Λ2 + γm∆2
)
tr
[
XTX(I + γUTU)−1

]
=
(

Λ2 + γm∆2
)
tr
[
XTX

(
I− γUT (I + γUUT )−1U

)]
(Sherman-Morrison-Woodbury formula)

=
(

Λ2 + γm∆2
) [

tr
[
XTX]− γtr

[
XUT (I + γUUT )−1UXT

]]

≤
(

Λ2 + γm∆2
) [

dBR
2 − γtr

[
(I + γUUT )−1(UXTXUT )

]]
; (from assumption ||x||2 ≤ R2)

∴ d2
B ≤

(
Λ2 + γm∆2

)
dBR

2 − γ
(

Λ2 + γm∆2
)
tr
[
(I + γUUT )−1(UXTXUT )

]
; ∀γ ≥ 0

Solving the above quadratic inequality gives,
(
dB − s1

)(
dB − s2

)
≤ 0 where,

s1 =
(Λ2 + γm∆2)R2 +

√
[(Λ2 + γm∆2)R2]2 − 4γ(Λ2 + γm∆2)tr[(I + γUUT )−1(UXTXUT )]

2

s2 =
(Λ2 + γm∆2)R2 −

√
[(Λ2 + γm∆2)R2]2 − 4γ(Λ2 + γm∆2)tr[(I + γUUT )−1(UXTXUT )]

2

⇒ s2 ≤ dB ≤ s1

Hence, dB ≤
(Λ2+γm∆2)R2+

√
[(Λ2+γm∆2)R2]2−4γ(Λ2+γm∆2)tr[(I+γUUT )−1(UXTXUT )]

2 ; ∀γ ∈
{γ ≥ 0; [(Λ2 + γm∆2)R2]2 − 4γ(Λ2 + γm∆2)tr[(I + γUUT )−1(UXTXUT )] ≥ 0} (ensur-
ing real-solutions with discriminant under the square root ≥ 0).

Finally the proof for theorem 2 follows,
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Proof forHM−SVM
The proof follows the notion of binary reduction adopted in [32] Theorem 22. Here however, rather
than analyzing a generic class of hyper-planes we analyze theHM−SVM hypothesis class as shown
in (2). First, we flatten the vector-valued functions as w = [w1, . . . ,wL] ∈ <dL. Next, let dN be
the natarajan dimension of HM−SVM and S = {x1, . . . ,xdN } be a set that is shattered using the
functions f1(x), f2(x) following definition 4. That is, ∃hw(x) = argmax

l=1,...,L
wT
l x ∈ HM−SVM s.t

∀x ∈ T ⊆ S ;hw(x) = f1(x) and ∀x ∈ S − T ;hw(x) = f2(x) with f1(x) 6= f2(x).

With this in place, we define the transformation below following [32],

Define: a mapping φ : <d → <dL as ,

z = φ(x) =


(0d×1, . . . , x

f1(x)=l
, . . . −x

f2(x)=k
, . . . ,0d×1)dL×1; ∀x ∈ T ⊆ S

(0d×1, . . . , −x
f1(x)=l

, . . . x
f2(x)=k

, . . . ,0d×1)dL×1; ∀x ∈ S − T

Obtain: Z =

 (z1)T

...
(zdN )T

.

Basically, the transformation φ maps a sample x ∈ <d from the shattered set S to a dL - dimension
vector z; where for any x ∈ T with f1(x) = l and f2(x) = k; we copy the x vector onto l(d− 1) +
1 . . . ld-th position and −x vector onto k(d− 1) + 1 . . . kd-th position of z. The remaining elements
are set to 0. We reverse the sign of the mapping for x ∈ S − T . Under the above transformation we
have the following,

• ||z||2 = 2||x||2 ≤ 2R2; ∀x ∈ S (from assumption ||x|| ≤ R2).

• T =
{
x ∈ S : wT

f1(x) ≥ wT
f2(x) + 1; ||w||2 ≤ Λ2

}
=
{
x ∈ S : wT z ≥ 1; ||w||2 ≤

Λ2
}
⊆
{
z → sign(wT z) : ywT z ≥ 1 ; ||w||2 ≤ Λ2

}
:= B where y = +1 ; if x ∈ T

and y = −1 ; if x ∈ S − T

Hence, for any subset T ⊆ S we can map a binary labeling problem B. This gives, the number of
subsets of S = 2dN ≤ number of possible labeling of B i.e. O(d

V C(B)
N ) (where V C(B) := VC

dimension of B) from Sauer’s Lemma. In essence we have, dN ≤ O(V C(B)log(V C(B))) (see
[26]’s lemma A.1 ). Finally using Lemma A.1 we have the form in (11).

Proof forHMU−SVM
The proof follows the same argument as above. Here in addition to the transformation of the training
data x→ z as above we define the following transformation for the given universum set (x∗j )

m
j=1.

Given: universum set U =

 (x∗1)T

...
(x∗m)T


m×d

Define: G =


1(L−1)×1 −IL−1×L−1

0 1(L−2)×1 −IL−2×L−2

0 0 1(L−3)×1 −IL−3×L−3

· · ·
. . .


L(L−1)

2 ×L
Obtain: V = (G⊗U) and vTj = (V)jthrow; where ⊗ is the Kronecker product.
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Under the above transformation for any subset T ⊆ S as defined in definition 4 for the set S shattered
byHMU−SVM we can map an equivalent binary labeling problem,

T =
{
x ∈ S : wT

f1(x) ≥ wT
f2(x) + 1 ; ||w||2 ≤ Λ2 ; |wTvj | ≤ ∆ ; ∀j = 1 . . .

mL(L− 1)

2

}
=
{
x ∈ S : wT z ≥ 1; ||w||2 ≤ Λ2 ; |wTvj | ≤ ∆ ; ∀j = 1 . . .

mL(L− 1)

2

}
⊆
{
z→ sign(wT z) : ywT z ≥ 1 ; ||w||2 ≤ Λ2 ; |wTvj | ≤ ∆ ; ∀j = 1 . . .

mL(L− 1)

2

}
:= B

where y = +1 ; if x ∈ T and y = −1 ; if x ∈ S − T

Similarly as above, dN ≤ O(V C(B)log(V C(B))) (see [26]’s lemma A.1). Using Lemma A.2 we
have the final form in (12).

A.5 Proof of Proposition 3

To prove this proposition we first prove the following Lemmas A.3 and A.4.
Lemma A.3. Under transformation (16), the MU-SVM formulation in eq. (7) can be solved using,

min
w1...wL,ξ

1

2

L∑
l=1

‖wl‖22 +

n+mL∑
i=1

Ci ξi (27)

s.t. (wyi −wl)
>xi ≥ eil − ξi i = 1 . . . n+mL, l = 1 . . . L

Proof The contribution due to the universum samples are same for both (7) and (27). For any
universum sample (x∗i′) we identify the active constraints and its overall contribution to the objective
function through slack variables i.e.

Equation (7), the overall contribution of the universum sample x∗i′ is,

C∗
L∑
k=1

ζi′k s.t. |w>k x∗i′ − max
l=1...L

w>l x
∗
i′ | ≤ ∆ + ζi′k , ζi′k ≥ 0, k = 1 . . . L

Case 1: If k = argmax
l=1...L

w>l x
∗
i′ . The constraint is inactive and ζi′k = 0.

Case 2: Let k 6= argmax
l=1...L

w>l x
∗
i′ . Since, ζi′k ≥ 0 the constraint is active if, −(w>k x

∗
i′ −

max
l 6=k

w>l x
∗
i′) > ∆. Then, ζi′k = −[∆ + (w>k x

∗
i′ −max

l 6=k
w>l x

∗
i′)].

Hence, keeping only the active constraints the overall contribution of the sample x∗i′ is,

C∗
∑
k∈Ki′

−[∆ + w>k x
∗
i′ −max

l 6=k
w>l x

∗
i′ ] where, Ki′ = {k| − (w>k x

∗
i′ −max

l 6=k
w>l x

∗
i′) > ∆}

(28)

Equation (27), Following eq. (16) for the universum sample x∗i′ we have L artificial samples as
(x∗i′ , yi′ = 1), . . . , (x∗i′ , yi′ = L) stacked at indices i = n+ (i′ − 1)L+ 1 . . . n+ i′L. Hence for x∗i′
we have the overall contribution as,

C∗
n+i′L∑

i=n+(i′−1)L+1

ξi s.t. (wyi −wl) ≥ −∆(1− δil)− ξi

Now, for i = n+ (i′ − 1) + k, we have xi = x∗i′ , yi = k. The constraints are,

(wk −w1)>x∗i′ ≥ −∆− ξi (wk −w1)>x∗i′ ≥ −∆− ξi
...

...

(wk −wk)>x∗i′ ≥ −ξi (inactive but ensures) ⇒ ξi ≥ 0

...
...

(wk −wL)>x∗i′ ≥ −∆− ξi (wk −wL)>x∗i′ ≥ −∆− ξi

v



This is equivalent to, −(w>k x
∗
i′ − max

l 6=k
w>l x

∗
i′) ≤ ∆ + ξi. Since, ξi ≥ 0 the constraint is active

if,−(w>k x
∗
i′ −max

l 6=k
w>l x

∗
i′) > ∆, and the contribution becomes, ξi = −[∆ + w>k x

∗
i′ −max

l 6=k
w>l x

∗
i′ ].

Combining all contributions we get,

C∗
n+i′L∑

i=n+(i′−1)L+1

ξi s.t. (wyi −wl) ≥ −∆(1− δil)− ξi

= C∗
∑
k∈Ki′

−[∆ + w>k x
∗
i′ −max

l 6=k
w>l x

∗
i′ ] where, Ki′ = {k| − (w>k x

∗
i′ −max

l 6=k
w>l x

∗
i′) > ∆}

(29)

Comparing (28) and (29), the universum sample has similar contribution for both the objective
functions in (7) and (27). This is valid for all universum samples.
Lemma A.4. Eq. (27) in dual from can be solved using (17).

Proof This follows from standard KKT system analysis of (27). A similar proof is available in [15,
24]. We reproduce it for completeness and for better readability of the subsequent proofs. The
Lagrangian of the (27) is given as,

Lagrangian, L =
1

2

∑
l

‖wl‖22 +

n+mL∑
i=1

Ci ξi −
∑
il

ηil[(wyi −wl)
Txi − eil + ξi] (30)

KKT System

5wl L = 0 ⇒ wl =
∑
i

(Ciδil − ηil)xi (31)

5ξi L = 0 ⇒
∑
l

ηil = Ci

Complimentary Slackness

ηil[(wyi −wl)
Txi − eil + ξi] = 0 ∀(i, l)

Constraints,

(wyi −wl)
Txi ≥ eil + ξi ∀(i, l)

ηil ≥ 0

Finally the dual problem is,

max
η

− 1

2

∑
i,j

∑
l

(Ciδil − ηil)(Cjδjl − ηjl)K(xi,xj) +
∑
i,l

ηileil (32)

s.t.
∑
l

ηil = Ci

ηil ≥ 0

Setting αil = Ciδil − ηil we get (17).

Combining Lemmas A.3 and A.4 we have proposition 3.

A.6 Proof of Theorem 3

For this proof we derive the following Lemmas,

• Lemma A.5 provides some new properties of the solution for MU-SVM dual form in (17).
• Lemma A.6 : Using these new properties we can follow a similar technique as in [17] to

derive a specific condition on Span that holds only for type 1 support vectors contributing to
l.o.o error.
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Lemma A.5. ∀αi ∈ SV1 = {i|0 < αil < Ci; yi = l},

i.
∑
k

αik[
∑
j

αjkK(xi,xj) + eik] = 0 ; k = 1 . . . L

ii. ∀k 6= yi with αik < 0 (strict);
∑
j

αjkK(xi,xj) + eik =
∑
j

αjyiK(xi,xj) + eiyi i.e.

the projection values for the type 1 support vectors for such classes are equal.

iii. For any γi ∈ {γi|
∑
k

γik = 0; γik = 0 if αi ∈ SV1 and αik = 0} we have∑
k

γik[
∑
j

αjkK(xi,xj) + eik] = 0

Proof
For simplicity we provide the proof using linear kernel. The same proof applies for non-linear
transformations. The proof uses the KKT system for (27) (see Lemma A.4 eq. (31))

i.
∑
k

ηik(wyi −wk)Txi [From (31)]

=
∑
k

ηik(
∑
l

δilwl)
Txi −

∑
k

ηikw
T
k xi

=
∑
l

Ciδilw
T
l xi −

∑
k

ηikw
T
k xi =

∑
k

(Ciδik − ηik)wT
k xi

=
∑
k

αik
∑
j

αjkK(xi,xj)

From complimentary slackness, if αil < Ciwith yi = l ⇒ ηil = (Ciδil − αil) > 0. This
gives, (wyi=l −wk=l)

Txi − eik=l + ξi = 0 ⇒ ξi = 0 ( i.e. lies on margin). Now, from
complimentary slackness in (31),∑
k

ηik[(wyi −wk)Txi − eik] = 0

⇒
∑
k

αik[
∑
j

αjkK(xi,xj) + eik] = 0 [∵ ηikeik = (Ciδik − αik)eik = −αikeik]

ii. From complimentary slackness (31)
ηik[(wyi −wk)Txi − eik] = 0 (∀k 6= yi ; αik < 0,∵ ξi = 0)

⇒ (wyi −wk)Txi − eik = 0 (∵ ηik > 0)

⇒ wT
yixi = wT

k xi + eik

⇒
∑
j

αjyiK(xi,xj) + eiyi =
∑
j

αjk 6=yiK(xi,xj) + eik 6=yi

iii. For any such γi,∑
k

γik[
∑
j

αjkK(xi,xj) + eik]

=γiyi
∑
j

αjyiK(xi,xj) +
∑

k 6=yi,αik<0

γik[
∑
j

αjk 6=yiK(xi,xj) + eik 6=yi ]

=(γiyi +
∑
k 6=yi

γiyi)[
∑
j

αjyiK(xi,xj)] (from ii above and ∵ eiyi = 1− δiyi = 0)

=0 (∵
∑
k

γik = 0 by construction)

With the above properties for the MU-SVM solution from Lemma A.5, we can prove a similar
Lemma A.6 as in [17].
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Lemma A.6. If in leave-one-out procedure a Type 1 (training) support vector xt ∈ SV1 ∩ T is
recognized incorrectly, then we have,

St max(
√

2D,
1√
C

) > 1

where,

S2
t = min

β

∑
i,j

(
∑
l

βilβjl)K(xi,xj)

s.t. αil − βil ≤ Ci; ∀{(i 6= t, l)| αil < Ci; l = yi}
αil − βil ≤ 0; ∀ {(i 6= t, l)| αil > 0; l 6= yi}
βil = 0; ∀(i, l) /∈ SV1 − {t}
βtl = αtl; ∀l∑
l

βil = 0

D = Diameter of the smallest hypersphere containing all training samples, and T = Training set

Proof
The leave-one-out formulation for MU-SVM with the t ∈ T sample dropped is,

max
α

W (α) = −1

2

∑
i,j

∑
l

αilαjlK(xi,xj)−
∑
i,l

αileil

s.t.
∑
l

αil = 0 (33)

αil ≤ Ci if l = yi ; αil ≤ 0 if l 6= yi
αtl = 0; ∀l (additional constraint)

Then, the leave-one-out (l.o.o) error is given as: Rl.o.o = 1
n

n∑
t=1

1[yt 6= ŷt] where,

αt = [αt11, . . . , α
t
1L︸ ︷︷ ︸

αt1

, . . . , αtt1 = 0, . . . , αttL = 0︸ ︷︷ ︸
αtt=0

, . . .] is the solution for (33) and

ŷt = arg max
l

∑
i

αtilK(xi,xt) (estimated class label for the tth sample). The overall proof

for the bound on the l.o.o error follows three major steps.

First, we construct a feasible solution for (17) using the optimal leave-one-out solution αt. i.e.,
construct αt + γ as shown below,
αtil + γil ≤ Ci; ∀ (i, l) ∈ {(i, l)|0 < αtil < Ci; l = yi} := At1

αtil + γil ≤ 0; ∀ (i, l) ∈ {(i, l)| αtil < 0; l 6= yi} := At2

γil = 0; ∀(i, l) /∈ SV t1 [SV t1 = At1 ∪At2]∑
l

γil = 0; (34)

Now,
I1 = W (αt + γ)−W (αt)

= −1

2

∑
i,j

∑
l

(αtil + γil)(α
t
jl + γjl)K(xi,xj)−

∑
i

∑
l

(αtil + γil)eil +
1

2

∑
i,j

∑
l

αtilα
t
jlK(xi,xj) +

∑
i

∑
l

αtileil

= −1

2

∑
i,j

(
∑
l

γilγjl)K(xi,xj)−
∑
i,j

(
∑
l

γilα
t
jl)K(xi,xj)−

∑
i

∑
l

γileil

= −1

2

∑
i,j

(
∑
l

γilγjl)K(xi,xj)−
∑
i,l

γil[
∑
j

αtjlK(xi,xj) + eil]

= −1

2

∑
i,j

(
∑
l

γilγjl)K(xi,xj)−
∑
l

γtl[
∑
j

αtjlK(xj ,xt) + etl] (Lemma A.5 (iii)) (35)
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As a special case we set,

γt = [. . . a
yt
, . . . ,−a

kth
, . . .] = agytk; (k = argmax

q 6=yt

∑
j

αtjqK(xj ,xt) ; gytk = [. . . 1
yt
. . .−1

kth
])

Further, we select another p ∈ SV1 where γp 6=t = −agytk. Finally, we set, γi = 0 ∀i /∈ {t, p}. For
such a case,

I1 = −a2||xt − xp||2 + a[1− (
∑
j

αtjytK(xj ,xt)−
∑
j

αtjkK(xj ,xt))]

≥ −â2D2 + â[1− (
∑
j

αtjytK(xj ,xt)−
∑
j

αtjkK(xj ,xt))] (36)

with, â = 1
2D2 [1− (

∑
j

αtjytK(xj ,xt)−
∑
j

αtjkK(xj ,xt))] (the value that maximizes the R.H.S in

(36)) and D = Diameter of the smallest hypersphere containing all training samples.

Now, if; â ≤ C ⇒ I1 ≥
1

4D2
[1− (

∑
j

αtjytK(xj ,xt)−
∑
j

αtjkK(xj ,xt))] =
1

2
â

else, I1 ≥ −C2D2 + C[1− (
∑
j

αtjytK(xj ,xt)−
∑
j

αtjkK(xj ,xt))] = 2CD2[â− C

2
] ≥ 2CD2 â

2

If there is an error due to leave one out procedure, then max
q 6=yt

∑
j

αtjmK(xj ,xt) >
∑
j

αtjytK(xj ,xt).

This gives, I1 >
1

2
min(C,

1

2D2
) (for l.o.o error) (37)

Second, we construct a feasible solution for the leave-one-out formulation (33) using the optimal
solution for (17). i.e., construct α− β as shown below,

αil − βil ≤ Ci; ∀ (i, l) ∈ A1 − {t}; A1 = {(i, l)| 0 < αil < Ci; l = yi}
αil − βil ≤ 0; ∀ (i, l) ∈ A2 − {t}; A2 = {(i, l)| αil < 0; l 6= yi}∑
l

βil = 0;

βil = 0 ∀(i, l) /∈ SV1 − {t} (38)
βt = αt

with SV1 = A1 ∪A2 = {i |0 < αiyi < Ci} such that, it is a feasible solution for (33). As before,
define

I2 = W (α)−W (α− β)

= −1

2

∑
i,j

∑
k

αilαjlK(xi,xj)−
∑
i

∑
l

αileil +
1

2

∑
i,j

∑
l

(αil − βil)(αjl − βjl)K(xi,xj)

+
∑
i

∑
l

(αil − βil)eil

=
1

2

∑
i,j

(
∑
l

βilβjl)K(xi,xj)−
∑
il

βil[
∑
j

αjlK(xj ,xi) + eil]

=
1

2

∑
i,j

(
∑
l

βilβjl)K(xi,xj) (Lemma A.5 (iii)) (39)
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Third, as the final step define,

S2
t = min

β

∑
i,j

(
∑
l

βilβjl)K(xi,xj) (40)

s.t. αil − βil ≤ Ci; (i, l) ∈ A1 − {t}
αil − βil ≤ 0; (i, l) ∈ A2 − {t}
βil = 0; ∀(i, l) /∈ SV1 − {t}
βtl = αtl; ∀l∑
l

βil = 0

Now, let β′ be the minimizer for (40). For such a β′

I2(=
1

2
S2
t )

≥ I1 [∵W (α) ≥W (α + γ) ∀γ; −W (α− β) ≥ −W (α) ∀β]

>
1

2
min(C,

1

2D2
) (from(37))

Finally using Lemma A.6 we analyze the contribution of a sample to the leave-one-out error and
make the following arguments,

• First, for a sample (xt, yt) which is not a support vector, i.e. t /∈ SV and t ∈ T (Training
set); it lies outside margin borders. Dropping such a sample does not change the original
solution of (17). Hence, it does not contribute to an error.

• Secondly, for a sample (xt, yt) ∈ SV1 ∩ T contributing to leave-one-out error, Lemma A.6
holds i.e. St max(

√
2D, 1√

C
) > 1 .

• Finally, for a sample (xt, yt) with t ∈ SV2 ∩ T we add to the leave-one-out error.

This gives the final form in Theorem 3.

One observation that follows from Theorem 3 (not discussed in the main text) is,
Remark 1. If the Type 1 training support vectors i.e. {t|t ∈ SV1 ∩ T } for M-SVM and MU-SVM
solutions remain same, then we have SSVMt ≥ SMU−SVM

t .

Proof By definition from (19),

S2
t =min

β

∑
i,j

(
∑
l

βilβjl)K(xi,xj)

s.t.

βMU−SVM :=


αil − βil ≤ Ci; (i, l) ∈ A1 − {t}
αil − βil ≤ 0; (i, l) ∈ A2 − {t}
βil = 0; ∀(i, l) /∈ SV1 − {t}
βtl = αtl; ∀l∑
l

βil = 0

If the Type 1 (training) support vectors for M-SVM and MU-SVM solutions remain same, we get the
same relation as Lemma A.6 for M-SVM with,

βM−SVM = {βil ∈ βMU−SVM |βi = αi ;∀i ∈ SV1 ∩ U} ,where U = Universum samples.

i.e. βM−SVM ⊆ βMU−SVM ⇒ St(β
M−SVM ) ≥ St(βMU−SVM )

Loosely speaking, for cases where the type of training support vectors remain same, introducing
universum samples through the MU-SVM formulation could result in smaller span values and better
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generalization for future test data compared to the M-SVM solution. This observation is in line with
our Theorem 2 wherein we show that introducing universum samples through MU-SVM can result to
reduced sample complexity and hence improved generalization.

A.7 Proof of Theorem 4

In this proof we utilize the specific structure of the MU-SVM solution shown in Lemma A.5 and
follow a similar analysis as [17]. Here,

• Lemma A.7 shows that a the span definition can be represented using an equation which
solely depends on the MU-SVM solution (17) and its l.o.o solution following definition (5)
also shown in (34).

• Lemma A.8 shows how the compute the span definition in Lemma A.7 through a single
matrix inversion.

Finally, with the Lemmas A.7 and A.8 in place we prove Theorem 4.

Lemma A.7. Under Assumption 1 in Section 3.4 the following equality holds for both Type 1& 2
training support vectors, i.e. ∀xt ∈ SV ∩ T we have,

S2
t =[α>t

∑
i∈SV

∑
l

αilK(xi,xt)− αtytg>ytk
∑
i∈SV t

∑
l

αtilK(xi,xt)]

⇒ S2
t ≥

∑
l

αtl[
∑
j∈SV

αjlK(xj ,xt)] (during l.o.o procedure)

with, S2
t = {min

β

∑
i,j

(
∑
l

βilβjl)K(xi,xj)| βt = αt;
∑
l

βil = 0 ; (i, j) ∈ SV1} and gytk =

[0, . . . 1
yt
, . . . ,−1

kth
, . . . , 0]; k = argmax

q 6=yt

∑
j

αtjqK(xj ,xt)

Proof

Under the Assumption (A1) we set β = γ = (α−αt). Then I1 = W (α)−W (αt) = I2
A similar analysis as in (35) gives,

I1 =− 1

2

∑
(i,j)∈SV1

(
∑
l

γilγjl)K(xi,xj)−
∑
l

αtl[
∑
j∈SV

αtjlK(xj ,xt) + etl] (41)

Note the difference in form compared to (35). This is because now the analysis applies for both type
1& 2 support vectors. Similarly,

I2 =
1

2

∑
i,j

(
∑
l

βilβjl)K(xi,xj)−
∑
l

αtl[
∑
j∈SV

αjlK(xj ,xt) + etl] (42)

Combining, (41) and (42)∑
(i,j)∈SV1

∑
l

βilβjlK(xi,xj) =
∑
l

αtl[
∑
j∈SV

αjlK(xj ,xt) + etl]−
∑
l

αtl[
∑
j∈SV

αtjlK(xj ,xt) + etl]

(43)

Next, let β′ be the minimizer for (40). Then, (α− β′) is a feasible solution for (33). Hence,

W (αt) ≥W (α− β′)

⇒W (α)−W (αt) ≤W (α)−W (α− β′)

⇒
∑
i,j

(
∑
l

βilβjl)K(xi,xj) ≤ S2
t

xi



However, from Assumption (A1), β = (α−αt) is a feasible solution for (40). Hence for such a β
we have : S2

t ≤
∑
i,j

(
∑
l

βilβjl)K(xi,xj). Combining the above inequality,

S2
t =

∑
i,j

(
∑
l

βilβjl)K(xi,xj) (44)

Further, under Assumption (A1) the inequality constraints in (40) are not activated. Hence, S2
t =

{min
β

∑
i,j

(
∑
l

βilβjl)K(xi,xj)| βt = αt;
∑
l

βil = 0 ; (i, j) ∈ SV1}.

Finally combining (43) and (44) we get,

S2
t =

∑
l

αtl[
∑
j∈SV

αjlK(xj ,xt) +��etl]−
∑
l

αtl[
∑
j∈SV

αtjlK(xj ,xt) +��etl] (45)

For leave one out error (under Assumption (A2)),

−
∑
l

αtl[
∑
j∈SV

αtjlK(xj ,xt)] = αtyt [
∑
j∈SV

αtjkK(xj ,xt)−
∑
j∈SV

αtjytK(xj ,xt)]

≥ 0 (k = argmax
m 6=yt

∑
j∈SV

αtjmK(xj ,xt))

∴ S2
t ≥

∑
l

αtl[
∑
j∈SV

αjlK(xj ,xt)]

Lemma A.8. The span S2
t can be efficiently computed as

S2
t =

{
α>t [(H−1)tt]

−1αt t ∈ SV1 ∩ T
α>t [K(xt,xt)⊗ IL −KT

t H
−1Kt]αt t ∈ SV2 ∩ T

here, H :=

[
KSV1

⊗ IL A>

A 0

]
; A := I|SV1| ⊗ (1L)>; 1L = [ 1 1 . . . 1︸ ︷︷ ︸

L elements

]

(H−1)tt := sub-matrix of H−1for indices i = (t− 1)L+ 1 . . . tL

KSV1
:= Kernel matrix of Type 1 support vectors. and Kt = [(kTt ⊗ 1L) 0L×|SV1|]

T

where, kt = n|SV1|×1 dim vector where ith element isK(xi,xt),∀xi ∈ SV1 ; and⊗ is the Kronecker
product.

Proof

The span in Lemma A.7 is defined as:

S2
t = min

β

∑
i,j

(
∑
l

βilβjl)K(xi,xj) (46)

s.t. βtl = αtl ; ∀l = 1, . . . , L∑
l

βil = 0 ; ∀(i, j) ∈ SV1

Case(t ∈ SV1)

= min
β

∑
l

(αtlαtl)K(xt,xt) + 2
∑

i∈SV1−{t}

∑
l

αtlβilK(xt,xi) +
∑

(i,j)∈SV1−{t}

(
∑
l

βilβjl)K(xi,xj)

s.t. (I|SV1−{t}| ⊗ 1L)︸ ︷︷ ︸
A

β = 0

= min
β

max
µ

α>t [K(xt,xt)⊗ IL]αt + 2
∑

i∈SV1−{t}

∑
l

αtlβilK(xt,xi) +
∑

(i,j)∈SV1−{t}

(
∑
l

βilβjl)K(xi,xj)

+ 2µ>Aβ + 2αTAttµ (µ := Lagrange Multiplier, ∵
∑
l

αtl = 0⇒ αTAttµ = 0)

= α>t [K(xt,xt)⊗ IL]αt + min
β

max
µ

2α>t (H
(−t)
t )>λ + λH(−t)λ︸ ︷︷ ︸

L(λ)

(with λ = [β;µ])
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where, I|SV1−{t}| := Identity Matrix of size |SV1 − {t}|,
Att := submatrix of A for indices(t− 1)L+ 1, . . . , tL
H(−t) := (t− 1)L+ 1, . . . , tL rows/columns of matrix H removed; and
H

(−t)
t := (t− 1)L+ 1, . . . , tL columns of H.

Further, at saddle point : 5λL(λ) = 0 ⇒ λ∗ = −[H(−t)]−1H
(−t)
t αt.

Hence,

S2
t = α>t [(K(xt,xt)⊗ IL)− (H

(−t)
t )>(H(−t))−1H

(−t)
t ]αt

= α>t (H−1)ttαt (47)

where, (H−1)tt := sub-matrix of H−1 for index i = (t− 1)L+ 1, . . . , tL.

Case (t ∈ SV2) A similar analysis as above gives,

S2
t = α>t [K(xt,xt)⊗ IL −KT

t H
−1Kt]αt (48)

where, Kt = [(kTt ⊗ 1L) 0L×|SV1|]
T and kt = n|SV1|×1 dim vector where ith element is

K(xi,xt),∀xi ∈ SV1.

Finally, the proof for Theorem 4 has two steps.

– First, a sample (xt, yt) which is not a support vector does not contribute to an error.
– Secondly, for a sample (xt, yt) with t ∈ SV ∩ T Lemma A.7 holds. Combining the form of
S2
t in Lemma A.8 completes the proof.
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B Additional Results

B.1 M-SVM vs MU-SVM using all training classes

Table 4: Performance comparisons between M-SVM vs. MU-SVM using all training classes.

DATASETS
# TRAIN / TEST = 700 / 3500 (100 / 500 PER CLASS), # UNIVERSUM (M) = 500

GTSRB
MU-SVM

(PRIORITY-ROAD)
MU-SVM

(RA)
MU-SVM

(NON-SPEED) -

SVM = 11.75 ± 0.77 9.77 ± 0.43 11.29 ± 0.48 11.82 ± 0.93 -

# TRAIN / TEST = 1500 / 1000 (150 / 100 PER CLASS), # UNIVERSUM (M) = 300

ABCDETC UPPER LOWER SYMBOLS RA

SVM = 42.1 ± 1.9 41.1 ± 2.6 40.2 ± 3.2 39.3 ± 3.2 38.8 ± 2.1

Here we show the results using all the classes available in each datasets. We can derive similar
conclusions as seen from Table 2

B.2 Complete Table 2 results using all the universum types.

The complete set of results using all the universum types is reported below. The experiment settings
is discussed in Section 4 in the main text.

Table 5: Mean (± standard deviation) of the test errors (in %) over 10 runs of the experimental setting
in Table 1. No. of universum samples (m = 500).

DATASET SVMOVA SVMOVO M-SVM UNIVERSUM
TYPE

U-SVMOVA U-SVMOVO MU-SVM

GTSRB 7.17 ± 1.08 7.16 ± 1.92 7.24 ± 1.16
U1 7.18 ± 0.73 7.23 ± 1.17 6.98 ± 0.93
U2 6.65 ± 1.02 6.87 ± 0.78 7.03 ± 0.62
U3 6.05 ± 0.61 5.97 ± 0.63 5.53± 0.62

ABCDETC 28.1 ± 4.74 29.1 ± 4.16 27.5 ± 3.34

U1 26.4 ± 4.52 26.2 ± 3.82 26.1 ± 3.6
U2 25.8 ± 3.13 27.2 ± 3.55 24.2 ± 3.13
U3 25.7 ± 4.09 27.0 ± 5.59 23.1 ± 3.23
U4 23.7 ± 4.71 23.9 ± 4.60 22.1± 3.24

ISOLET 3.72 ± 0.6 3.88 ± 0.44 3.6 ± 0.31
U1 3.73 ± 0.7 3.98 ± 0.9 3.31 ± 0.27
U2 3.56 ± 0.55 3.88 ± 0.63 2.83± 0.32

For reproducibility of the results we also provide the typical parameters obtained through the 5-Fold
stratified CV. This is provided in Table 6. All codes shall be made available.

Table 6: Typical optimal parameters for the different methods.

DATASET
SVMOVA

(C, γ)
SVMOVO

(C, γ)
M-SVM
(C, γ)

UNIVERSUM
TYPE

U-SVMOVA

( C∗

C
,∆)

U-SVMOVO

( C∗

C
,∆)

MU-SVM
( C∗

C
,∆)

GTSRB 0.1 − 1,× 0.1 − 1,× 1,×
U1 0.2, 0 0.2, 0.01 0.2, 0
U2 0.2, 0.1 0.2, 0.1 0.2, 0
U3 0.2, 0.1 0.2, 0.01 0.2, 0.1

ABCDETC 10, 2−7 1 − 10, 2−7 1, 2−7

U1 0.3, 0.05 − 0.1 0.3, 0.01 0.3, 0
U2 0.3, 0 0.3, 0.01 0.3, 0
U3 0.3, 0.05 − 0.1 0.3, 0 0.3, 0
U4 0.3, 0 0.3, 0 − 0.05 0.3, 0

ISOLET 1 − 10, 2−7 1 − 10, 2−7 1, 2−7 U1 0.2, 0 0.2, 0 0.2, 0.05
U2 0.2, 0 0.2, 0 0.2, 0.01

xiv



B.3 M-SVM vs. MU-SVM using all Universum Types with varying Universum set size

Table 7: Mean (± standard deviation) of the test errors (in %) over 10 runs of the experimental setting
in Table 1.

DATA M-SVM MU-SVM NO. OF UNIVERSUM SAMPLES
200 500 1000

GTSRB 7.24± 1.16
U1 7.08± 0.71 6.98± 0.93 7.08± 0.43
U2 7.23± 0.64 7.03± 0.6 7.01± 0.93
U3 6.97± 1.06 5.53± 0.62 5.51± 0.78

ABCDETC 27.5± 3.3

U1 26.5± 3.9 26.1± 3.6 26.1± 4.0
U2 25± 3.2 24.2± 3.4 24.2± 3.1
U3 23.5± 4.3 23.1± 3.2 23.3± 3.2
U4 23.2± 4.8 22.1± 3.2 22.1± 3.0

ISOLET 3.6± 0.3
U1 3.50± 0.3 3.31± 0.27 3.31± 0.3
U2 3.05± 0.34 2.83± 0.32 2.82± 0.28

The table provides comparison between the performance between M-SVM vs. MU-SVM using
the different universum types with varying universum set size. As seen from the table, MU-SVM
provides better generalization than M-SVM. In fact, for certain universum types, like Priority-Road
(U3) for GTSRB, Random Averaging (U4) for ABCDETC and (U2) ISOLET; MU-SVM significantly
outperforms the M-SVM model. In such cases, the performance gains improve significantly upto
∼ 20 − 25% with the increase in number of universum samples, and stagnates for a significantly
large universum set size. This indicates that for sufficiently large universum set size the effectiveness
of MU-SVM depends mostly on the type (statistical characteristics) of the universum data.
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B.4 M-SVM vs. MU-SVM with varying training set size for several universum types using
GTSRB dataset

The experiments follow the same setting as in Table 2. However in this case we vary the number of
training samples. The universum set size is fixed to m = 500 following Table 2 i.e. Further, increase
in universum samples does not provide significant performance gains. Table 8 provides the mean and
std. deviation of the test errors for the M-SVM and MU-SVM models over 10 random training/test
partitioning of the dataset.

Table 8: Mean (± standard deviation) of the test errors (in %) over 10 runs for the GTSRB dataset.

NO. OF TRAINING SAMPLES (PER CLASS)

METHODS 300 (100) 750 (250) 1500 (500)

M-SVM 7.24± 1.16 4.23± 0.49 3.61± 0.38

(NO PASSING)
6.98± 0.93 4.64± 0.42 3.49± 0.42

(NO PASSING FOR TRUCKS)
6.07± 0.68 4.37± 0.9 3.56± 0.41
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(RIGHT OF WAY)
6.17± 0.67 4.03± 0.2 3.12± 0.42

(PRIORITY ROAD)
5.52± 0.68 3.52± 0.37 3.15± 0.44

(YIELD RIGHT OF WAY)
6.2± 0.7 3.83± 0.24 3.11± 0.4

(STOP)
6.5± 0.66 4.24± 0.45 3.21± 0.5

(NO VEHICLES)
6.24± 0.39 4.29± 0.33 3.16± 0.24

(NO ENTRY)
6.17± 0.86 3.95± 0.47 3.31± 0.65

(DANGER)
6.01± 0.74 3.92± 0.55 3.49± 0.62

(SLIPPERY ROAD)
6.03± 0.64 3.85± 0.28 3.45± 0.62

RA 6.98± 0.93 4.12± 0.5 3.44± 0.54
NON SPEED 7.03± 0.64 4.32± 0.47 3.65± 0.4
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Figure 9: Typical histogram of projection of training samples (n = 750) (shown in blue) and universum samples ‘priority-road’ (m = 500) (shown in red). M-SVM
decision functions (with C = 0.1) for (a) sign ‘30’. (b) sign ‘70’.(c) sign ‘80’. (d) frequency plot of predicted labels for universum samples using SVM model.
MU-SVM decision functions (with C∗/C = 0.5,∆ = 0.1) for (e) sign ‘30’. (f) sign ‘70’.(g) sign ‘80’. (h) frequency plot of predicted labels for universum samples
using MU-SVM model.

Figure 10: Typical histogram of projection of training samples (n = 1500) (shown in blue) and universum samples ‘priority-road’ (m = 500) (shown in red).
M-SVM decision functions (with C = 0.1) for (a) sign ‘30’. (b) sign ‘70’.(c) sign ‘80’. (d) frequency plot of predicted labels for universum samples using SVM
model. MU-SVM decision functions (with C∗/C = 1,∆ = 0.05) for (e) sign ‘30’. (f) sign ‘70’.(g) sign ‘80’. (h) frequency plot of predicted labels for universum
samples using MU-SVM model.

Table 8 shows that MU-SVM with priority-road universum provides the best performance. Further, the performance gains due to MU-SVM reduces with the increase
in the number of training samples. For further analysis of this result we use the HOP visualization. The histogram of projections for the priority-road universum with
increased training samples n = 750, 1500 are provided in Figs. 9 and 10 respectively. As seen from the figures when the number of training samples is large, the
estimation problem becomes well-posed using M-SVM. This is also indicated from the fact that different from Fig 3 now we do not see a huge data-piling effect about
the +1 margin borders for the training samples. Such data-piling affect generally happens for ill-posed high-dimensional low sample size settings and has also been
previously reported in [4,40] for binary classification problems. For the current setting with well-posed M-SVM solution, application of MU-SVM does not provide a
significant improvement over the M-SVM solution. This shows that MU-SVM (similar to binary U-SVM in [4-13,16]) is typically effective for (ill-conditioned) high
dimension low sample size settings.
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B.5 Model Selection using Leave-One-Out vs. 5-Fold CV vs. Theorem 4 using GTSRB
dataset

We provide additional performance comparisons for model selection using stratified 5-Fold CV and
Theorem 4 vs. the leave-one-out procedure. We adopt the same experiment setting as in Table 3.

Table 9: Model selection using leave-one-out (L.O.O) vs. 5 Fold CV vs. Theorem 4. No. of
universum samples (m = 500). Model parameters used C∗/C = n

mL , ∆ = [0, 0.01, 0.05, 0.1]. The
test error using M-SVM = 7.24± 1.16.

L.O.O 5-FOLD CV THEOREM 4

MU-SVM TEST ERROR
(IN %)

TIME
(×104sec)

TEST ERROR
(IN %)

TIME
(×104sec)

TEST ERROR
(IN %)

TIME
(×104sec)

U1(RANDOM AVERAGING) 6.8 ± 0.9 186.7 ± 28.4 6.9 ± 0.9 3.1 ± 0.5 6.9 ± 0.9 0.8 ± 0.2
U2 (OTHERS) 7.1 ± 0.9 202.1 ± 43.9 7.4 ± 0.9 3.2 ± 0.9 7.1 ± 0.8 0.9 ± 0.3

U3 (PRIORITY RD.) 5.2 ± 0.6 190.7 ± 58.7 5.5 ± 0.6 2.9 ± 0.3 5.2 ± 0.4 0.9 ± 0.1

As seen from Table 9 model selection using Theorem 4 ∼ 100× faster than the leave-one-out
procedure and providing similar test errors. Comparisons using the leave-one-out procedure is
prohibitively slow and hence could not be reported for the other datasets.
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B.6 Additional Histograms of Projections

This section provides the HOPs for the other universum types for all datasets.

B.6.1 GTSRB dataset
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Figure 11: Typical histogram of projection for training samples (n = 300) (shown in blue) and universum samples ‘Random Averaging’ (m = 500) (shown in red).
SVM decision functions (with C = 1) for (a) sign ‘30’. (b) sign ‘70’.(c) sign ‘80’. (d) frequency plot of predicted labels for universum samples using SVM model.
MU-SVM decision functions (with C∗/C = 0.2,∆ = 0) for (e) sign ‘30’. (f) sign ‘70’.(g) sign ‘80’. (h) frequency plot of predicted labels for universum samples
using MU-SVM model.
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Figure 12: Typical histogram of projection for training samples (n = 300) (shown in blue) and universum samples ‘Others’ (m = 500) (shown in red). M-SVM
decision functions (with C = 1) for (a) sign ‘30’. (b) sign ‘70’.(c) sign ‘80’. (d) frequency plot of predicted labels for universum samples using M-SVM model.
MU-SVM decision functions (with C∗/C = 0.2,∆ = 0.05) for (e) sign ‘30’. (f) sign ‘70’.(g) sign ‘80’. (h) frequency plot of predicted labels for universum samples
using MU-SVM model.

Fig 11 shows the histograms and the frequency plots for M-SVM and MU-SVM models for RA universum. As shown in Fig 11 (a), the M-SVM model already
results in a narrow distribution of the universum samples and in turn provides near random prediction on the universum samples (Fig. 11(d)). Applying MU-SVM for
this case provides no significant change to the M-SVM solution and hence no additional improvement in generalization (also see Table 7 in B.3 and Fig.11 (e)-(h)).

Finally, we provide the histograms and the frequency plots for M-SVM and MU-SVM models for the Others Universum samples. In this case, although the universum
samples are widely spread about the M-SVM margin-borders (Figs 12(a)-(c)), yet the uncertainity on the universum samples’ class membership is uniform across
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all the classes (Fig 12(d)). Applying MU-SVM reduces the spread of the universum samples (Figs. 12(e) - (g)). However, it does not significantly increase the
contradiction (uncertainity) on the universum samples (compare Figs. 12 (d) vs. (h)). Hence, applying MU-SVM does not provide any significant improvement over
the M-SVM model (see Table 7 in B.3).

B.6.2 ABCDETC Dataset

Figure 13: Typical histogram of projection of training samples (n = 600) (shown in blue) and universum samples ‘upper case’ letters (m = 1000) (shown in red).
SVM decision functions (with C = 1, γ = 2−7) for (a) digit ‘0’. (b) digit ‘1’.(c) digit ‘2’. (d) digit ‘3’. (e) frequency plot of predicted labels for universum samples
using SVM model. MU-SVM decision functions (with C∗/C = 0.15,∆ = 0) for (f) digit ‘0’. (g) digit ‘1’.(h) digit ‘2’. (i) digit ‘3’.(j) frequency plot of predicted
labels for universum samples using MU-SVM model.

Figure 14: Typical histogram of projection of training samples (n = 600) (shown in blue) and universum samples ‘lower case’ letters (m = 1000) (shown in red).
SVM decision functions (with C = 1, γ = 2−7) for (a) digit ‘0’. (b) digit ‘1’.(c) digit ‘2’. (d) digit ‘3’. (e) frequency plot of predicted labels for universum samples
using SVM model. MU-SVM decision functions (with C∗/C = 0.15,∆ = 0) for (f) digit ‘0’. (g) digit ‘1’.(h) digit ‘2’. (i) digit ‘3’.(j) frequency plot of predicted
labels for universum samples using MU-SVM model.

As seen from Figs 13 - 16,
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Figure 15: Typical histogram of projection of training samples (n = 600) (shown in blue) and universum samples ‘symbols’ (m = 1000) (shown in red). SVM
decision functions (with C = 1, γ = 2−7) for (a) digit ‘0’. (b) digit ‘1’.(c) digit ‘2’. (d) digit ‘3’. (e) frequency plot of predicted labels for universum samples using
SVM model. MU-SVM decision functions (with C∗/C = 0.15,∆ = 0) for (f) digit ‘0’. (g) digit ‘1’.(h) digit ‘2’. (i) digit ‘3’.(j) frequency plot of predicted labels
for universum samples using MU-SVM model.

Figure 16: Typical histogram of projection of training samples (n = 600) (shown in blue) and universum samples ‘random averaging’ (RA) (m = 1000) (shown in
red). SVM decision functions (with C = 1, γ = 2−7) for (a) digit ‘0’. (b) digit ‘1’.(c) digit ‘2’. (d) digit ‘3’. (e) frequency plot of predicted labels for universum
samples using SVM model. MU-SVM decision functions (with C∗/C = 0.15,∆ = 0) for (f) digit ‘0’. (g) digit ‘1’.(h) digit ‘2’. (i) digit ‘3’.(j) frequency plot of
predicted labels for universum samples using MU-SVM model.

• Upper : the M-SVM model results in a narrow distribution of the universum samples and in turn provides near random prediction on the universum samples.
Applying MU-SVM for this case provides no significant change to multiclass SVM solution and hence no additional improvement in generalization (see
Table 7).

• Lower : the M-SVM model results in a relatively wider distribution of the universum samples (compared to Upper). Applying MU-SVM for this case
provides some improvement to the M-SVM (see Table 7).

• Symbol and RA : the SVM model results in a wide distribution of the universum samples. Further, in both the cases the universum samples are mostly
predicted as digit ‘1’. Applying MU-SVM for this case results to a narrow distribution of the universum samples and increases the uncertainity on the
universum samples. This results to a significant improvement to the M-SVM solution (see Table 7 in B.3).
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B.6.3 ISOLET Dataset

Figure 17: Typical histogram of projection of training samples (n = 500) (shown in blue) and universum samples ‘Others’ (m = 1000) (shown in red). SVM
decision functions (with C = 1, γ = 2−7) for (a) letter ‘a’. (b) letter ‘b’.(c) letter ‘c’. (d) letter ‘d’. (e) letter ‘e’. (f) frequency plot of predicted labels for universum
samples using SVM model. MU-SVM decision functions (with C∗/C = 0.1,∆ = 0.05) for (g) letter ‘a’. (h) letter ‘b’.(i) letter ‘c’. (j) letter ‘d’. (k) letter ‘e’. (l)
frequency plot of predicted labels for universum samples using MU-SVM model.

Figure 18: Typical histogram of projection of training samples (n = 500) (shown in blue) and universum samples ‘RA’ (m = 1000) (shown in red). SVM decision
functions (with C = 1, γ = 2−7) for (a) letter ‘a’. (b) letter ‘b’.(c) letter ‘c’. (d) letter ‘d’. (e) letter ‘e’. (f) frequency plot of predicted labels for universum samples
using SVM model. MU-SVM decision functions (with C∗/C = 0.1,∆ = 0.1) for (g) letter ‘a’. (h) letter ‘b’.(i) letter ‘c’. (j) letter ‘d’. (k) letter ‘e’. (l) frequency
plot of predicted labels for universum samples using MU-SVM model.

As seen from Figs 17-18,

• Others : the M-SVM model results in a near random prediction on the universum samples. Applying MU-SVM for this case reduces the projection of the
universum samples but does not result to a significant increase in the uncertaininty of the universum samples, and hence no additional improvement in
generalization (see Table 7 in B.3).

• RA : the M-SVM model results in a wide distribution of the universum samples. Further, the universum samples are mostly predicted as letter ‘d’. Applying
MU-SVM for this case results to a narrow distribution of the universum samples and increases the uncertainity on the universum samples. This results to a
significant improvement to the multiclass SVM solution (see Table 7 in B.3).
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