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A  Proofs

The references cited in this document follows the numbering used in the main paper.

A.1 Proof of Proposition 1]
The contradiction on any universum sample x* € A} is given as (following (),

sup Evu[ﬂ{mhw)#k}] =1~ inf E’Du[ﬂ{Uh(x*) k}]

=1- w?lln EDM[]]‘{U(W X**n;fxwl x* >0)}]

Wi.Wr w x*fr&l])éwl x*>0)}]

The first equality follows from De-Morgan’s law. The second equality follows from the M-SVM

formulation in eq. (2). The third equality follows from the mutual exclusiveness of the events.

Note that, for maximal contradiction following (2I) we need Ep,, [1 {Z(sz_maxw;x*w)}] =0.
; ¢ 1#£k

This necessitates, Vk, Wka* - rln;]g(wlTx* # 0. Next, for the case when, w,jx* — r}l;‘é(WlTX* <0=

Jp # k such that w) x* — I}l;lx w/ x* > 0 resulting IEDM[IL{Z( y3] > 0. Hence

W, x* —maxw, x*>0
1k

the only possible solution is, Yk, w, x* — maxw, x* = 0 = Vk, w,x* — max w/x*=0=
k £k ! k I={1..L}
lwx* —  max, w, x*| = 0; Vk (from symmetry of the transformation (TG)) O

A.2  Proof of Proposition 2]

A similar proof is provided for M-SVM in [15]. Here, we provide the proof for MU-SVM formulation.
Formulation (7)) for binary classification becomes,

m

] 1 n .
min_ (w3 + [w2l3) + €Y & +C* Y (G + i) (22)

wi,w2,§,¢ | byt
st (wy, —w) x; >eq—&; eq=1-04, 1=1,2
|(w,;rx,—lmaxwlx,)|<A+Qk, Gk >0, k=1,2

i=1...n, i=1...m, 511—{ 0: yi Al
The constraints become,

Training samples (Vi = 1...n)

For any x; € class 1 labeled as y; = +1; we have

(wi—wi)'x;>~& = &>0

(wi—w2) % >1-& = y(wi—w)x;>1-¢
Similarly, for any x; € class 2 labeled as y; = —1; we have,
(wo—wi) 3, >1-& = yi(wi—wo)x; >1-§
(Wo—w2)'x;>-¢& = &>0

Universum samples (Vi' = 1...m)

For any universum sample x;, WLOG we assume w1x}, > wyX},. Then,
When k = 1 we have |w] x}, — lmaxwl—rx;‘,\ <A+ = (i > —A(true . G > 0).
=1,2

When k = 2 we have [w) x} —maxw, x| < A+ = |wa x5 —w{ x5| < A+Cirk, Gk > 0.
1=1,2



Hence, eq. (22)) can be re-written as,

1 - o
SUWill3 + [wall3) +C D& +C" (] (23)

1
wi1,w2,§,6 P =1

s.t. yi(W1—W2)TXi21—€i; >0, i=1...n
(w1 —wa) x| <A+ Grs (>0, @=1...m

The solution to the KKT system of satisfies wi; = —wsy. Hence replacing w = w1 — wy in
still solves (22)). This is the U-SVM formulation in [16] with b = 0. O

A.3 Proof of Theorem [l
See [26, 32] for proofs.

A.4 Proof of Theorem 2|

To prove this theorem we first prove the following Lemmas[A.T|and[A.2]

Lemma A.1. The VC dimension of the hypothesis class, B = {X — sign(wl'x) : x €
R ywTx > 1 ||w|]? < AQ}, assuming ||x||? < R? follows,

VC(B) < min(d + 1, R*A?) (24)
Proof: For the first term i.e. VC(B) < d + 1 refer to Example 3.2 in [27]. For the second term i.e.
VC(B) < R?A? see [27] Theorem 4.2 . O
Lemma A.2. The VC dimension of the hypothesis class, B = {X — sign(wix) : x €

R ywTx > 15 [|w]2 < A?; [wlu| <A u; e R V)= 1...m}, assuming ||x||* < R?
follows,
VC(B) <min(d+1,k) (25)

where,

(A% + ymA?)R? + \/ [(A2 + ymA2)R2]2 — 4y(A2 + ymA2)tr[(I ++UUT)-1(UXTXUT)] .

Kk <
— 2 )
with¥y € {y > 0;[(A? + ymA?)R?? — 4~ (A% + ymA?)tr[(I 4+ 4UUT) L (UXTXUT)] > 0}
(w)” (x1)"
and, U = : and, X = : is the training set shattered by B.
()" mxd (XVC(B))T VC(B)xd

Proof: For the first term i.e. VC(B) < d + 1 refer to Example 3.2 in [27]. The proof for the second
term VC'(B) < & follows next,

B:{x—>5ign(wa) cx e R ywTx > 15 [[w|2 < A% (wluy| <A uy e RY ijl.‘.m}

= {x = sign(wTx) + x e RE ywTx > 15 [Jwlf? < A% || [ w) [yl < A

m
- {x — sign(wix) : x € R4 ywlx > 1; [|w]]? < A% WT(Z uju?)w < mA2} := G (norm equivalence)
j=1

Clearly dg = VC(B) < VC(G) = dg. Obviously X is also shattered by G. This means Vx; €
X and Vy; € {—1,+1}; 3w € G which satisfies y;wTx; > 1. Summing over all the samples

dn dp
in X gives, 3w € G which satisfies > y;w’x; > dg. This also implies sup > y;w’x; > dg.
i=1 weg i=1
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Now, since the above relation holds for any random selection of y € {—1, +1}9%. Hence for any y
following the radamacher distribution we have,

dp
dg <E[sup > yiw’ x]
Y weg ;
=E sup yTXw]
Y [lw|[? < A?
wlUTUw < mAZ2

IN
<=

sup yTXW] ; (Vy >0 relaxes the constraint)
LWl +y(wTUTUwW) SAZ+ymAZ

Il
<=

sup yTXW] (26)

7 1+7UTU
Lw (A2+'ymA2 Jw<1

[ ( I++UTU
AZ 4+ ymA?

I
<=

) o XTy] (the stationary point of the sup problem in (26))

N

<=

AZ + ymAZ2

I+-7UTU\ -3 2
KL) QXTy}] (Jensen’s inequality)

I++UTU \-! :
X (ﬁ) XT] ] (" y behaves as radamacher variables)
ym

tr [XTX] —tr [XUT(I + WUUT)lUXTH

dgR* — Atr [(I + 'yUUT)l(UXTXUT)” ; (from assumption ||x||* < R?)
SdE < <A2 + fymAQ)dBRQ — ’y(AQ + WmAQ)tr {(I + 'yUUT)_l(UXTXUT)}; Yy >0

Solving the above quadratic inequality gives, (dB — 51) (dlg - 52) < 0 where,

(A% + ymA?)R? + \/ [(A2 + ymA2)R2]2 — 4y(A2 + ymA2)tr[(I +yUUT)-1(UXTXUT)]

S1 = 5
(A% 4 ymA?)R? — \/ [(A2 + ymA2)R2]2 — 4y(A2 + ymA2)tr[(1+~UUT)-1(UXTXUT)]
S9 =
2

= 52 <dp < 81

Hence, dg < (A2+’YWA2)R2+\/[(A2+’YmA2)RZ]2*472A2+7mA2)tr[(I+7UUT)*1(UXTXUT)]; vy €

{y > 0;[(A? + ymA?)R?]? — 4y(A% + ymA?)tr[(I + AUUT)"1(UXTXUT)] > 0} (ensur-
ing real-solutions with discriminant under the square root > 0). O

Finally the proof for theorem [2] follows,
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Proof for Hyr—sv s
The proof follows the notion of binary reduction adopted in [32] Theorem 22. Here however, rather
than analyzing a generic class of hyper-planes we analyze the H 5, sy s hypothesis class as shown

in (). First, we flatten the vector-valued functions as w = [wy,...,wg] € RIL . Next, let dy be

the natarajan dimension of Ha;—syar and S = {x1,...,xq, } be a set that is shattered using the

functions fi(x), fo(x) following definition 4| That is, Jh (x) = argmax WlTX € Hy—sv st
I1=1,...,.L

VX €T C S thw(x) = fi(x) and Vx € § =T ; hoy (x) = fo(x) with 1 (x) # fo(x).

With this in place, we define the transformation below following [32],

Define: a mapping ¢ : R — R~ as ,

(0d><17---7 X ,... —X ;---,del)de1§ VxeT CS
7 = QZS(X) _ fl(x):l f2(x):k
(del""7 _X 2 X )"'70d><1)dL><1; VXGS_T
f1(x)=l fa(x)=k
(z1)"
Obtain: Z = :
(sz)T

Basically, the transformation ¢ maps a sample x € R? from the shattered set S to a dL - dimension
vector z; where for any x € T with f1(x) = [ and f2(x) = k; we copy the x vector onto [(d — 1) +
1...ld-th position and —x vector onto k(d — 1) 4 1. .. kd-th position of z. The remaining elements
are set to 0. We reverse the sign of the mapping for x € S — 7. Under the above transformation we
have the following,

e ||z]|> = 2||x||> < 2R?%; Vx € S (from assumption ||x|| < R?).

e T = {X es ZW};(X) > W};(x) +1; |jw|? < AQ} = {x €S :wlz > 1;||w|? <

A2} C {z—> sign(wlz) tywlz >1; ||w|? < A2} :=Bwherey = +1; ifxeT
andy=—-1;ifxeS-T

Hence, for any subset 7" C S we can map a binary labeling problem 5. This gives, the number of
subsets of S = 29~ < number of possible labeling of B i.e. O(dX[C(B)) (where VC(B) := VC
dimension of B) from Sauer’s Lemma. In essence we have, dyr < O(VC(B)log(VC(B))) (see
[26]’s lemma A.1 ). Finally using Lemma[A.T| we have the form in (IT.

Proof for Hyrv—svmr
The proof follows the same argument as above. Here in addition to the transformation of the training
data x — z as above we define the following transformation for the given universum set (x)"

j=1-
(xp)”
Given: universumset U =
)"
11«1 I 1xr-1
0 11 2)x1 —Ip 2xr—2

Define: G = 0 0 1p-3x1 —Io-sxr-3

L(L—1)
—5—XxL

Obtain: V=(G®U) and va = (V) jthrows Where ® is the Kronecker product.
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Under the above transformation for any subset 7" C S as defined in deﬁnitionE]for the set S shattered
by H v —sv s we can map an equivalent binary labeling problem,

. mL(L —1)
T:{XES W) = Wi L3 [[WIP S A% fwlv <A VJ=1...f}
= {xes w2z 1wl <A jwlv, <A wa...W}

L(L—-1
C {z—>sign(sz) cywlz > 15 ||wl]? < A% [wlivy| <A Vj:l...u} =B
wherey =+1; ifxeTandy=—-1;ifxeS-T

Similarly as above, dys < O(VC(B)log(VC(B))) (see [26]’s lemma A.1). Using Lemma|A.2]we
have the final form in (12). [

A.5 Proof of Proposition 3]

To prove this proposition we first prove the following Lemmas[A.3]and[A.4]
Lemma A.3. Under transformation (16), the MU-SVM formulation in eq. (1) can be solved using,

1 L n+mL
min §ZHW1H§ + ) Gé& 27)
Wi WL =1 i—1

s.t. (Wyi—wl)TxiZeil—fi i=1...n+mL, l=1...L

Proof The contribution due to the universum samples are same for both (7)) and (27). For any
universum sample (x},) we identify the active constraints and its overall contribution to the objective
function through slack variables i.e.

Equation , the overall contribution of the universum sample x7; is,

L
c* E G st |wix) —  max w xi| <A+C , >0, k=1...L
k=1 o

Case 1: If k = argmax w; x},. The constraint is inactive and ;7 = 0.

I=1...L
Case 2: Let k # argmax wlTx;‘,. Since, (;1x > 0 the constraint is active if, —(w,sz‘, —
1=1...L
rlr;zllz( w'x%) > A. Then, (ip = —[A + (W] x5 — rln;?]? w] x5
Hence, keeping only the active constraints the overall contribution of the sample xJ, is,
c* Z —[A+wilx— max w, x5 where, i = {k| — (W x} — max w, x5) > A}
ke, # a
(28)

Equation Z7), Following eq. (I6) for the universum sample x}, we have L artificial samples as
(x5, ys =1),...,(x},ys = L) stacked at indices i = n+ (¢ — 1)L+ 1...n +4'L. Hence for xJ,
we have the overall contribution as,
n+i'L
C* Z & S.t. (Wyl — Wl) > —A(l - 5“) —¢&;
i=n+ (i’ —1)L+1
Now, for ¢ =n + (¢ — 1) + k, we have x; = xJ,, y; = k. The constraints are,

(We —w1) x> —A—§ (Wi —wi) ' x} > —A =
(W — wk)Tx;‘, > —¢&; (inactive but ensures) = §& >0
(W —WL)TX;»*, >-A-¢ (W —WL)Txf, >—-A-¢



This is equivalent to, —(w] x}, — I&alzcw?x;‘,) < A+ &. Since, & > 0 the constraint is active

if,—(wj x} — rln;l]z(wlij,) > A, and the contribution becomes, §; = —[A + w x}, — Ilr;g?wlTxf,].
Combining all contributions we get,
n+i'L
c* Z 6, S.t. (WIIL — Wl) > —A(l — 6il) — El
i=n+ (i —1)L+1
=C Z —[A 4w, x; —max w; x}] where, i = {k| — (W] x} —max w, x}) > A}
1k 1k
kelC;
(29)
Comparing (28) and (29), the universum sample has similar contribution for both the objective
functions in (7)) and (27). This is valid for all universum samples. O

Lemma A4. Eq. (Z7) in dual from can be solved using (I7).

Proof This follows from standard KKT system analysis of (27). A similar proof is available in [15,
24]. We reproduce it for completeness and for better readability of the subsequent proofs. The
Lagrangian of the (27) is given as,

‘ 1 n+mL
Lagrangian, £ = 3 zl: lwil|3 + Z Ci & — Zl:ml[(wyi —w)T'x; — ey + & (30)
KKT System
Vw; £L=0 =w = Z(Q@z — Mi1)X; (31

V&EZO ézml:C
l

Complimentary Slackness

nil(wy, —wi)'x; —eq + &1 =0 V(i,1)
Constraints,

(Wy, —wW)Tx; > eq+& V(1)

Ny =0

Finally the dual problem is,

1
max - D> (Cidi = na)(Ci65 — n) K (xi,%5) + > _ misein (32)
i\ il
> i =C
1

nit > 0
Setting av;; = C;d;, — ni we get (T7). O
Combining Lemmas[A-3]and [A.4] we have proposition [3] O

A.6 Proof of Theorem
For this proof we derive the following Lemmas,

* Lemma|[A.5|provides some new properties of the solution for MU-SVM dual form in (I7).

* Lemma[A.6] : Using these new properties we can follow a similar technique as in [17] to
derive a specific condition on Span that holds only for type 1 support vectors contributing to
L.o.o error.
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Lemma A.5. Vo; € SV; = {ZlO <oy < Cwyz = l},
I Zaik[Zaij(xi,xj)+eik] :O; k=1...L
k J

ii. Yk # y; with o, < 0 (strict); Y K (X4,X5) + €k = Y, 0y, K(X4,X5) + €4y, Le.
J J

the projection values for the type 1 support vectors for such classes are equal.

iii. For any v; € {vilY v = 0; vir = 0 if oy € SVi and oy = 0} we have

k
> Yik[2o e K (xi, %) + €qx] = 0
k J
Proof

For simplicity we provide the proof using linear kernel. The same proof applies for non-linear
transformations. The proof uses the KKT system for (27) (see Lemma[A.4|eq. (31))

i Z Nike(Wy, — Wk)Txi [From (31)]
k
= Z ﬂik(z Sawy)Tx; — Z NikWi X;
k l k
= Z Ci(gilWlTXi — Z nikngi Z (Cibike — Mik) szl
l k k

= Zaik Z K (%, %)
- -

From complimentary slackness, if a;; < Cywith y; = 1 = 1y = (C;0;4 — ) > 0. This
gives, (Wy,=; — Wi—1)Tx; — eip=t1 + & = 0 = & = 0 (i.e. lies on margin). Now, from
complimentary slackness in (31,

ka[(qu, —wi) % —eir] =0
k

=Y D> K (xi,%;) +ein] =0 [omineir = (Cibik — cur)ei = —aipein]
k J

ii. From complimentary slackness (31))
nvk[(wyz — Wk)TXi — eik] =0 (Vk 7& Yi 5 Qi < 0, 51 = 0)
= (Wyi - Wk)TXi —eir =0 (. ik > 0)

T T
= W, Xi = Wi X; + ek

= E :ajyi (x5, %) + €y, = E :O‘ﬂ#yz (Xi, Xj) + €ikzty,

iii. For any such ~;,

Z %k[z ;K (x4,%;5) + €]

%ylz%yl (X X5) > Yk Wk K (%0, X5) + Ciny,]

k#yi, 0 <0
=(Viy; + Z Viy;) ZO‘J% (x4,%;)] (fromiiabove and " ey, = 1 — d;y, = 0)
k#y;
=0 (- Z ~ir. = 0 by construction)
k

O

With the above properties for the MU-SVM solution from Lemma [A.5] we can prove a similar
Lemmal[Az6|as in [17].
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Lemma A.6. If in leave-one-out procedure a Type 1 (training) support vector x; € SVi N'T is
recognized incorrectly, then we have,

S, max(vV2D, —=) > 1

where,
Stz mm Z Zﬁzlﬁjl X’ij)

st g — ﬁil < C’i, V{(G@ #t,0)| aq < Ci; 1 =y}
i — Bu <0, V{(i#tD)]ag>0; 1 #y}
Bu=0; V(il)¢SVi—{t}
Bu = ay; Vi

> Bu=0
1
D = Diameter of the smallest hypersphere containing all training samples, and T = Training set

Proof
The leave-one-out formulation for MU-SVM with the ¢ € T sample dropped is,

max W(a)=— E g a0 K (%5, %5) E Q1€

(a7
j 1

st Y ag=0 (33)
l

ag <C; if I=y; ;3 ag<0 if l#y
ay = 0; VI (additional constraint)

n
Then, the leave-one-out (l.0.0) error is given as: Ry, %t; 1y: # 9:] where,
ot = a0k, 0l =0,...,al;, =0,...] is the solution for (@3) and
—— ——
al al=0
§; = argmax Y o K(x;,%;) (estimated class label for the t'* sample). The overall proof

l %
for the bound on the 1.0.0 error follows three major steps.

First, we construct a feasible solution for (I7) using the optimal leave-one-out solution a'. i.e.,
construct af + ~ as shown below,

ol +va < Ci V(i 1) € {(,1) b O l=y} = Al
b+ <0y V(i,0) € {(6,0)] aly <05 1 #y;} = Al
v =0; V(1) ¢ SV} [SV}= A} u Al

> v =0; (34)
l

Now,
L =W(a' +v) - W(ah)

_% Z zl:(agl + %l)(o‘;l + K (%, %) — Z zl:(aﬁz + vir)ea + % Z zz: aﬁzaé‘lK(Xi, x;) + Z zl: ageir
] 7 1,7 [
_% Z(; %‘l’m) XuXJ Z Z%lo‘al xl,xj Z Z%le”
1,7
— —% Z(El: Yaryjn) K (%, %) — Zl:%z[z oy K (xi,%;) + eq]
2,7 2, J
= *% Z(; Yy K (i, x5) — ;%z Yol K (x;, %) +eq]  (Lemma[A3|Gii) (35
i.j ;
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As a special case we set,

“lear—a,.. ] = agy; (k= JK (x5, A
Ve=loas e = agur argggw;a (e, %2) 5 @yek = [+ 1.+ ~1])

Further, we select another p € SV; where v,,.; = —agy, - Finally, we set, v; = 0 Vi ¢ {t, p}. For
such a case,

L= —a?|fxe — 3|17 + all = (3 aly, K(x,x0) = 3 ol K (x;,%1))]
J J

> —a’D? +a[l — (O ol K(x;,x) — Y ol K(x;,%))] (36)
J J
with, & = 5551 — (Z of, K(xj,%) — Z ol K (x;,%;))] (the value that maximizes the R.H.S in

(36)) and D = Dlameter of the smallest hypersphere containing all training samples.

e 1 : 1,
Now.if; 4 <C=1> —5[1- (zj: ah, K(xj,%;) — zj:ag»kK(xj,Xt))] = 5a
. C a
else, I; > —C?D? + C[1 Za]ytK (x5, %¢) Za?kK(xj7xt))] =2CD?a — 5] > 2CD2§

J J

If there is an error due to leave one out procedure, then ma Yok, K(xj, %) > Z of, K (x5, %;).
a7Yt 5

(for Lo.o error) (37)

1 1
This gi I > =min(C, ——
is gives, I} > —min(C, 2D2)

2

Second, we construct a feasible solution for the leave-one-out formulation (33) using the optimal
solution for (T7). i.e., construct & — 3 as shown below,

ayg — B < Cy; V(i,1) € Ay —{t}; A1 ={(0,1)|0<ay<Cy =y}
ag — B <0; V(i,l) € Ay —{t}; A ={(4,)] au <0; 1 # y;}

> Bil =0;
l

B =0 V(i,1) ¢ SVi — {t} (38)
Bt = Oy

with SV; = A1 U Ay = {i |0 < a4y, < C;} such that, it is a feasible solution for (33). As before,
define

Iy = W(a) = W(a—p)
= —% 3D anonK(xix;) = > > anen + % DD (e = Ba) (g — B) K (x4, %;)
ik i iy 1
+ Z Z(ail — Bu)eu
Z Zﬁzzﬁgl (xi,x5) = > B> anK(x;, %) + i

il j

=3 Z(Z BuBi) K (xi,%;)  (Lemmal[A3|(iii)) (39)
1,7 l

X



Third, as the final step define,

St= min (3 Bub)K(xiix;) 0
ij 1

st ay—Ba<Cy (4,1) € A —{t}
ag — P <0; (4,1) € Ay — {t}
Bu=0; V(i) ¢ SVi—{t}
Bu = an; Vi

Z Biu=0
1
Now, let 3’ be the minimizer for (#0). For such a 8’
1
I(= 557)
L [ W(a)2W(a+y) Vv —W(a=-8) 2 -W(a) V0]
1 1
> imm(C, ﬁ) (from@7))

O

Finally using Lemma we analyze the contribution of a sample to the leave-one-out error and
make the following arguments,

* First, for a sample (x¢, y;) which is not a support vector, i.e. t ¢ SV and ¢t € T (Training
set); it lies outside margin borders. Dropping such a sample does not change the original
solution of (T7). Hence, it does not contribute to an error.

* Secondly, for a sample (x;,y:) € SV4 NT contributing to leave-one-out error, Lemma
holds i.e. S; maz(v/2D, %) >1.
* Finally, for a sample (x;,y;) with t € SV N'T we add to the leave-one-out error.

This gives the final form in Theorem 3] O

One observation that follows from Theorem 3] (not discussed in the main text) is,

Remark 1. If the Type I training support vectors i.e. {t|t € SV NT} for M-SVM and MU-SVM
solutions remain same, then we have Sts VM > S,fw U=SVM

Proof By definition from (T9),

S? =mﬁin > O BuBi) K (xi,%;)
I

4,7
s.t.
ag — Pu < Cy; o (i,1) € Ay — {t}
i — B <0;  (i,1) € Ay — {t}
BMU-SVM . Bu = 0; v(i,l) ¢ SVi — {t}
Bu = au; vl
Xl:ﬁu =0

If the Type 1 (training) support vectors for M-SVM and MU-SVM solutions remain same, we get the
same relation as Lemma[A.6]for M-SVM with,

BM—SVM — (g, e gMU=SVM g — o, ;i e SV, NU} , where U = Universum samples.

ie. I6M7$VM C ﬂMUfASV]W = St(,@MﬁSVM) > St(I@MUf.S’VM)

Loosely speaking, for cases where the type of training support vectors remain same, introducing
universum samples through the MU-SVM formulation could result in smaller span values and better



generalization for future test data compared to the M-SVM solution. This observation is in line with
our Theorem [2] wherein we show that introducing universum samples through MU-SVM can result to
reduced sample complexity and hence improved generalization.

A.7 Proof of Theorem [

In this proof we utilize the specific structure of the MU-SVM solution shown in Lemma [A.5]and
follow a similar analysis as [17]. Here,

+ Lemma [A.7|shows that a the span definition can be represented using an equation which
solely depends on the MU-SVM solution (I7) and its 1.0.0 solution following definition ()
also shown in (34).

* Lemma [A.8|shows how the compute the span definition in Lemma [A7] through a single
matrix inversion.

Finally, with the Lemmas [A.7]and [A.8]in place we prove Theorem 4]

Lemma A.7. Under Assumption[I|in Section [3.4|the following equality holds for both Type 1& 2
training support vectors, i.e. Vx; € SV 0T we have,

E § ale Xzaxt atytgy,,k § § ale szxt

€SV €SVt
= 52 > Zatl Z a1 K (x5,%¢)] (during l.o.o procedure)
jesv
with, S? = {mﬁ_l}n Z(Z BulBi) K (xi,%;)| By = o; > Pu=05(i,7) € SVi} and gy, =
i, 1
[O,...l,...,—l,...,O],k—argmaxZoz A (x5, %¢)
e kth aFye j

Proof

Under the Assumption (Al) weset 3 =~ = (a — a'). Then I; = W (a) — W(at) = I,
A similar analysis as in (33) gives,

1
hi=—5 > QK (xx) Zaﬂ D alK(xj,x1) + ey (41)
(i,5)esvy 1 JESV

Note the difference in form compared to (33). This is because now the analysis applies for both type
1& 2 support vectors. Similarly,

1
L=5> (3 BuBi)K(xi,x;) Zatl D K (xj,x1) + eu (42)
I

jeSv

Combining, @T)) and @2)
S BaBuK (xi,x;) Zatl > anK(x;,%) + eu] — Zan > i K(x5,%1) + ex]

(1,7)eSVL 1 JESV JESV
(43)

Next, let 3’ be the minimizer for #@0). Then, (av — 3') is a feasible solution for (33). Hence,
W(a') > W(a-g)
=>W(a) - W) <W(a)-W(a-p3)

=30 Bubi)K (xi,x;) < S}
1,7 l

Xi



However, from Assumption (A1), 3 = (a — &) is a feasible solution for {#0). Hence for such a 3
we have : S < Z(Z BiBj1) K (x;,x;). Combining the above inequality,

Z Zmﬂ (xi,%;) (44)

Further under Assumption (A1) the inequality constraints in (#0) are not activated. Hence, S? =

{mﬂin Z(Z /B’Ll/le) (X’HX])‘ ﬂt = g, Zﬂzl =0; (ij) € SVI}
Flnally combrnrng (43) and @4) we get,
Za” Z o K (x5,%x:) + e] — Za” Z aﬂK X, Xt) + el (45)

jesv jeESV
For leave one out error (under Assumption (A2)),

¢
—g ayl E ale Xj,X¢)| = oy, [ E aij Xj,X¢) E ajy, K (x5, %¢)]

JESV jesv jesv
>0 (k = argmax Z ol K(x5,%¢))
mEYe JESV
LSE = o] Y K (x5, %) O
l JjeESV

Lemma A.8. The span S? can be efficiently computed as

g2 _ [ o [(H )] ey teSvinT
! o) [K(x4,x) @1, —KITH 'KiJay t€SVonNT

Ksv, @Iy, AT

here, H:[ A Nk

AZ:I‘SV1|®(1L)T; ]_L:[].]....l]
L elements
(H™Y)¢4 := sub-matrix of H™ *for indices i = (t — 1)L +1...tL
Ksv, := Kernel matrix of Type 1 support vectors. and K; = [(k? ®1p) OLX|SV1|]T

where, Ky = n sy, |x1 dim vector where ith element is K (x;,%;),Vx; € SVi ; and ® is the Kronecker
product.

Proof
The span in Lemma[A.7)is defined as:
S7 = mﬁin Z(Z BuBj1) K (x;,%;) (46)
i1
s.t. Btl:atl 5 VI:].,,L
D Ba=0 ; V(i) €SN
1

Case(t € SV7)
= ngn Z(atlau)K(xt,xt) +2 Z ZatlﬁilK(Xtaxi) + Z (Z BuBj) K (xi,%;)
l i€eSvi—{t} 1 (i,5)esSvi—{t} I
s.t. (I\SV1f{t}| 2 1L)/6 =0
—
A

= rrgn mﬁlX atT[K(xt,xt) R Ip]ay + 2 Z ZatlﬁuK(Xt,Xi) + Z (Z BB K (x4, %;)

iesvi—{t} I (i,j)esvi—{t} !

+2u"AB+2aTAup (p := Lagrange Multiplier, -.- Z ay=0=alAup= 0)

= o/ [K(x, %) @ Ip)ay + rrgn max 20, (H )T)\ + AHYX (with X =[B;u])

L(\)

Xii



where, Ijgy, gy := Identity Matrix of size |SVy — {t}|,
A, ;= submatrix of A for indices(t — 1)L+ 1,...,tL
H(Y .= (t — 1)L+ 1,...,tL rows/columns of matrix H removed; and
HE_t) :=(t—-1)L+1,...,tL columns of H.
Further, at saddle point : YaL(A) =0 = A* = —[HY]'H{ Y.
Hence,
8t = o [(K(xe,x) @ Tn) = () THED)TH oy
= o (H gy (47)

where, (H™ ')y := sub-matrix of H~! forindex i = (¢t — 1)L +1,...,tL.

Case (t € SV5) A similar analysis as above gives,

5% = of [K(x4,x) @I, — KIH'K{]oy (48)
where, K; = [(k{ ® 1) Op4sv,))? and k; = nsv,|x1 dim vector where ith element is
K(x;,xt),Vx; € SV. O

Finally, the proof for Theorem [ has two steps.

— First, a sample (X, y:) which is not a support vector does not contribute to an error.

— Secondly, for a sample (x¢,y;) with ¢ € SV NT LemmalA.7/holds. Combining the form of
S? in Lemma|A.8|completes the proof.

O
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B Additional Results

B.1 M-SVM vs MU-SVM using all training classes

Table 4: Performance comparisons between M-SVM vs. MU-SVM using all training classes.

DATASETS # TRAIN / TEST = 700 / 3500 (100 / 500 PER CLASS), # UNIVERSUM (M) = 500
MU-SVM MU-SVM MU-SVM
GTSRB (PRIORITY-ROAD) (RA) (NON-SPEED) )
SVM =11.75 £ 0.77 9.77 £ 0.43 11.294+0.48 11.824+0.93 -
# TRAIN / TEST = 1500/ 1000 (150 / 100 PER CLASS), # UNIVERSUM (M) = 300
ABCDETC UPPER LOWER SYMBOLS RA
SVM =42.14+1.9 41.1 £ 2.6 40.2 £ 3.2 39.3+3.2 38.8+2.1

Here we show the results using all the classes available in each datasets. We can derive similar
conclusions as seen from Table 2]

B.2 Complete Table 2] results using all the universum types.

The complete set of results using all the universum types is reported below. The experiment settings
is discussed in Section @ in the main text.

Table 5: Mean (= standard deviation) of the test errors (in %) over 10 runs of the experimental setting
in Tablem No. of universum samples (m = 500).

UNIVERSUM

DATASET SVMova SVMovo M-SVM TYPE U-SVMova U-SVMopyvo MU-SVM

U1 7.18+£0.73 7.23+£1.17 6.98£0.93
GTSRB |7.17£1.08 7.16£1.92 7.24+1.16 U2 6.65 £1.02 6.87+0.78 7.03+0.62
U3 6.05 £0.61 5.97+0.63 5.53 £0.62

U1l 26.4+4.52 26.2+3.82 26.1+3.6
U2 25.8+3.13 27.2+3.55 24.2+£3.13
ABCDETC|28.1 £4.74 29.1 +4.16 27.51+3.34 U3 257+ 409 27.04+559 23.14+3.23
U4 23.7+4.71 23.9+4.60 22.1+3.24
U1 3.73+£0.7 3.98+09 3.31+0.27

ISOLET | 3.72+0.6 3.88+0.44 3.6+0.31 U2 356+ 055 3.88 + 0.63 2.83 + 0.32

For reproducibility of the results we also provide the typical parameters obtained through the 5-Fold
stratified CV. This is provided in Table[6] All codes shall be made available.

Table 6: Typical optimal parameters for the different methods.

Doy | SVMow  SVMovo  M-SVM|UNIVERsUM| U-SVMovs  U-SVMovo MU-SVM
(C.y) Cy)  (Cr) TYPE (&0 (&N (&
U1 02,0 02,000 02,0
GTSRB | 0.1—1,x 01-1,x 1,x U2 0.2,0.1 0.2,0.1 0.2,0
U3 0.2,0.1 02,001  0.2,0.1
Ul [03,005-01 03,000 03,0
. e U2 0.3,0 03,001 03,0
ABCDETC| 10,2 1-10,27" 1,2 U3 03,005—0.1  0.3,0 0.3.0
U4 03,0 0.3,0—005 03,0
— S E— U1 02,0 02,0 02,005
ISOLET |1-10,27" 1-10,27" 1,2 U2 0.2,0 02,0  0.2,0.01

Xiv



B.3 M-SVM vs. MU-SVM using all Universum Types with varying Universum set size

Table 7: Mean (= standard deviation) of the test errors (in %) over 10 runs of the experimental setting
in Table

NoO. OF UNIVERSUM SAMPLES
DATA M-SVM MU-SVM 500 500 1000

Ul 708071 698£093 7.08%£0.43

GTSRB 7.24+£1.16 U2 723+£0.64 7.03+0.6 7.01 £0.93
U3 6.97+1.06 5.53+0.62 5.51+0.78

Ul 26.0£3.9 26.1£3.6 26.1£4.0

U2 25+3.2 242+34 242+3.1

ABCDETC  27.5+3.3 U3 23.5£4.3 23.1+£3.2 23.3£3.2
U4 23.2+£48 221+3.2 22.1+3.0

Ul 3.50+£03 3.31+0.27 3.31+£03
ISOLET 3.6+0.3 U2 3.00£034 283+032 282+0.28

The table provides comparison between the performance between M-SVM vs. MU-SVM using
the different universum types with varying universum set size. As seen from the table, MU-SVM
provides better generalization than M-SVM. In fact, for certain universum types, like Priority-Road
(U3) for GTSRB, Random Averaging (U4) for ABCDETC and (U2) ISOLET; MU-SVM significantly
outperforms the M-SVM model. In such cases, the performance gains improve significantly upto
~ 20 — 25% with the increase in number of universum samples, and stagnates for a significantly
large universum set size. This indicates that for sufficiently large universum set size the effectiveness
of MU-SVM depends mostly on the type (statistical characteristics) of the universum data.
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B.4 M-SVM vs. MU-SVM with varying training set size for several universum types using
GTSRB dataset

The experiments follow the same setting as in Table[2] However in this case we vary the number of
training samples. The universum set size is fixed to m = 500 following Table2]i.e. Further, increase
in universum samples does not provide significant performance gains. Table[§] provides the mean and
std. deviation of the test errors for the M-SVM and MU-SVM models over 10 random training/test
partitioning of the dataset.

Table 8: Mean (4 standard deviation) of the test errors (in %) over 10 runs for the GTSRB dataset.

NoO. OF TRAINING SAMPLES (PER CLASS)

METHODS 300 (100) 750 (250) 1500 (500)
M-SVM 724+1.16 4.23+0.49 3.61+0.38

6.98+0.93 4.64+042 3.49+042
(NO PASSING)

®

6.07£0.68 4.37+£0.9 3.56 +0.41
(NO PASSING FOR TRUCKS)

B>

6.17£0.67 4.03£0.2 3.12+£0.42
(RIGHT OF WAY)

e}
=)
w
I
A
= @ 5.52+0.68 3.52+0.37 3.15+0.44
< (PRIORITY ROAD)
> <
> 0]
v E 6.2+0.7 3.83 +0.24 3.114+0.4
= Z (YIELD RIGHT OF WAY)
= & N
>
%' @ 6.5+0.66 4.24+0.45 3.214+0.5
- (Stop)
o
S O 6.244+0.39 4.294+0.33 3.16+£0.24

g 6.17+0.86 3.95+0.47 3.31+0.65
6.01+0.74 3.92+£0.55 3.49+0.62

6.03+0.64 3.85+£0.28 3.45+0.62
(SLIPPERY ROAD)

RA 6.98+0.93 4.12+0.5 3.44 +0.54

NON SPEED 7.03+0.64 4.32+0.47 3.65+0.4

Xvi
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Figure 9: Typical histogram of projection of training samples (n = 750) (shown in blue) and universum samples ‘priority-road’ (m = 500) (shown in red). M-SVM
decision functions (with C' = 0.1) for (a) sign ‘30’. (b) sign ‘70’.(c) sign ‘80’. (d) frequency plot of predicted labels for universum samples using SVM model.
MU-SVM decision functions (with C*/C = 0.5, A = 0.1) for (e) sign ‘30’. (f) sign ‘70’.(g) sign ‘80°. (h) frequency plot of predicted labels for universum samples
using MU-SVM model.
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Figure 10: Typical histogram of projection of training samples (n = 1500) (shown in blue) and universum samples ‘priority-road’ (m = 500) (shown in red).
M-SVM decision functions (with C' = 0.1) for (a) sign ‘30’. (b) sign “70’.(c) sign ‘80’. (d) frequency plot of predicted labels for universum samples using SVM
model. MU-SVM decision functions (with C*/C = 1, A = 0.05) for (e) sign ‘30°. (f) sign ‘70’.(g) sign ‘80’. (h) frequency plot of predicted labels for universum
samples using MU-SVM model.

Table [8]shows that MU-SVM with priority-road universum provides the best performance. Further, the performance gains due to MU-SVM reduces with the increase
in the number of training samples. For further analysis of this result we use the HOP visualization. The histogram of projections for the priority-road universum with
increased training samples n = 750, 1500 are provided in Figs. D]Jand [I0]respectively. As seen from the figures when the number of training samples is large, the
estimation problem becomes well-posed using M-SVM. This is also indicated from the fact that different from Fig[3]Jnow we do not see a huge data-piling effect about
the +1 margin borders for the training samples. Such data-piling affect generally happens for ill-posed high-dimensional low sample size settings and has also been
previously reported in [4,40] for binary classification problems. For the current setting with well-posed M-SVM solution, application of MU-SVM does not provide a
significant improvement over the M-SVM solution. This shows that MU-SVM (similar to binary U-SVM in [4-13,16]) is typically effective for (ill-conditioned) high
dimension low sample size settings.



B.5 Model Selection using Leave-One-Out vs. 5-Fold CV vs. Theorem @ using GTSRB
dataset

We provide additional performance comparisons for model selection using stratified 5-Fold CV and
Theorem ] vs. the leave-one-out procedure. We adopt the same experiment setting as in Table [3]

Table 9: Model selection using leave-one-out (L.O.0O) vs. 5 Fold CV vs. Theorem No. of
universum samples (m = 500). Model parameters used C*/C' = - A = [0,0.01,0.05,0.1]. The
test error using M-SVM = 7.24 4 1.16.

L.0.0 5-FoLp CV THEOREM

MU-SVM TEST ERROR TIME TEST ERROR TIME TEST ERROR TIME
(IN %) (x10%sec) (IN%)  (x10%sec) (N%) (x10%sec)
U1(RANDOM AVERAGING) 6.8+ 0.9 186.74+284 69+09 3.1+05 694+09 08=£0.2
U2 (OTHERS) 71409 2021+439 74+09 32409 71+£08 09+0.3
U3 (PRIORITY RD.) 5.24+0.6 190.7+£58.7 55+06 294+03 52+04 09=£0.1

As seen from Table [9] model selection using Theorem 4] ~ 100x faster than the leave-one-out
procedure and providing similar test errors. Comparisons using the leave-one-out procedure is
prohibitively slow and hence could not be reported for the other datasets.
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XIX

B.6 Additional Histograms of Projections

This section provides the HOPs for the other universum types for all datasets.

B.6.1 GTSRB dataset

Sign 30 Sign 70 Sign 80 Sign 30 Sign 70 Sign 80
ign ; ign ) ign 200 ; ign ; ign ) ign 200
501 IL hos : 05/ | J\ 100 05] ! 05] l l 05| | 1 J 100
1 8 1 . 1 1 B 1 8 1
i i IL i i i i
1 1| 1 1 1 1 1
ot M oL o 0 0 ot i 0
4 0 A 40 1 4 0 A1 30 70 80 4 0 4 0 A1 4 0 1 30 70 80
(a) (b) () (d) (e) ) (9) (h)

Figure 11: Typical histogram of projection for training samples (n = 300) (shown in blue) and universum samples ‘Random Averaging’ (m = 500) (shown in red).
SVM decision functions (with C' = 1) for (a) sign ‘30’. (b) sign “70’.(c) sign ‘80’. (d) frequency plot of predicted labels for universum samples using SVM model.
MU-SVM decision functions (with C*/C = 0.2, A = 0) for (e) sign ‘30°. () sign ‘70’.(g) sign ‘80’. (h) frequency plot of predicted labels for universum samples
using MU-SVM model.

Sign 70 . Sign 80 Sign 30 Sign 70 Sign 80

Sign 30
1 1 200 1 1 1 200
501 05! 05/ ! 100 05| 1 05! i 05 1 100
! ! ! ! AL
0 ot 0 0 ol ot ol 0
4 0 1 4 0 1 4 0 1 30 70 80 4 0 1 4 0 4 0 30 70 80
(a) (b) () (d) (e) () (9) (h)

Figure 12: Typical histogram of projection for training samples (n = 300) (shown in blue) and universum samples ‘Others’ (m = 500) (shown in red). M-SVM
decision functions (with C' = 1) for (a) sign ‘30’. (b) sign “70’.(c) sign ‘80’. (d) frequency plot of predicted labels for universum samples using M-SVM model.
MU-SVM decision functions (with C*/C = 0.2, A = 0.05) for (e) sign ‘30°. (f) sign ‘70’.(g) sign ‘80’. (h) frequency plot of predicted labels for universum samples
using MU-SVM model.

Fig[IT]shows the histograms and the frequency plots for M-SVM and MU-SVM models for RA universum. As shown in Fig[TT](a), the M-SVM model already
results in a narrow distribution of the universum samples and in turn provides near random prediction on the universum samples (Fig. [[T{d)). Applying MU-SVM for
this case provides no significant change to the M-SVM solution and hence no additional improvement in generalization (also see Table |Z|in @and Figﬂl'l(e)—(h)).

Finally, we provide the histograms and the frequency plots for M-SVM and MU-SVM models for the Others Universum samples. In this case, although the universum
samples are widely spread about the M-SVM margin-borders (Figs [I2{a)-(c)), yet the uncertainity on the universum samples’ class membership is uniform across



XX

all the classes (Fig[T2]d)). Applying MU-SVM reduces the spread of the universum samples (Figs. [I2[e) - (g)). However, it does not significantly increase the

contradiction (uncertainity) on the universum samples (compare Figs. [I2](d) vs. (h)). Hence, applying MU-SVM does not provide any significant improvement over
the M-SVM model (see Table[7]in [B.3).

B.6.2 ABCDETC Dataset

Dig.0 Dig.1 Dig.2 Dig.0 Dig.1 Dig.2 Dig.3
1 1 1 1 1 1 1
D.E D.E D.E D. D.E ‘ D.E ﬂll D.E D.E Em
0 0 0 0 o 0 0 o4 0
10 1 10 1 10 1 10 1 0123 10 1 10 1 10 1 10 1 0123
(a) (b) (c) (d) (e) (f) (9) (h) (i) (i

Figure 13: Typical histogram of projection of training samples (n = 600) (shown in blue) and universum samples ‘upper case’ letters (m = 1000) (shown in red).
SVM decision functions (with C' = 1,y = 277) for (a) digit ‘0’. (b) digit ‘1’.(c) digit 2’. (d) digit ‘3’. (e) frequency plot of predicted labels for universum samples
using SVM model. MU-SVM decision functions (with C*/C' = 0.15, A = 0) for (f) digit ‘0’. (g) digit ‘1°.(h) digit 2’. (i) digit ‘3’.(j) frequency plot of predicted
labels for universum samples using MU-SVM model.

Dig.0 Dig.1 Dig.2 Dig.3 Dig.0 Dig.1 Dig.2 Dig.3
1 1 g L | | g L g | | | | g | | 1':”:”:' 1 L g L | | g | | g L 1 | | g | | 1':”:”:'
1 I B 1] 1] | 1] B
0.5|] 0.5]] 0511 0.5} 500 0511 l 05| 0511 i 0.5} i 500
0 0 I o U o o H 0
40 1 10 1 10 1 40 1 0123 10 1 10 1 10 1 10 1 0123
(a) s} (c) (d) (e) (f) (@) (h) (i) @

Figure 14: Typical histogram of projection of training samples (n = 600) (shown in blue) and universum samples ‘lower case’ letters (m = 1000) (shown in red).
SVM decision functions (with C' = 1,y = 277) for (a) digit ‘0’. (b) digit ‘1’.(c) digit 2’. (d) digit ‘3’. (e) frequency plot of predicted labels for universum samples
using SVM model. MU-SVM decision functions (with C*/C = 0.15, A = 0) for (f) digit ‘0’. (g) digit ‘1’.(h) digit 2’. (i) digit ‘3’.(j) frequency plot of predicted
labels for universum samples using MU-SVM model.

As seen from Figs[13]-[16]
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DIg.0 Dig.2 Dig.3 Dig.0 Dig.1 Dig.2 Dig.3
1:‘[": igi T 1i]i 1i] 1igi 1i]i1mﬂ
05 iJ I 05|} I 05 B“ 500 05|} l 05|} ‘ 051 ‘ I 05| I 500
Sl ol LA 0 g L | e o o4 0

10 1 10 1 10 1 10 1 0123 10 1 10 1 10 1 10 1 0123

(a) (b) (c) (d) (e) (f () (h) (i) (i)

Figure 15: Typical histogram of projection of training samples (n = 600) (shown in blue) and universum samples ‘symbols’ (m = 1000) (shown in red). SVM
decision functions (with C' = 1,~ = 2-7) for (a) digit ‘0’. (b) digit ‘1’.(c) digit 2. (d) digit ‘3’. (e) frequency plot of predicted labels for universum samples using
SVM model. MU-SVM decision functions (with C*/C = 0.15, A = 0) for (f) digit ‘0’. (g) digit ‘1°.(h) digit 2°. (i) digit ‘3°.(j) frequency plot of predicted labels
for universum samples using MU-SVM model.

DIg.0 DIg.1 DIg.2 DIg.3 DIg.0 DIg.1 DIg.2 DIg.3
1EI 1;9 1EI 1919043 1i]i 1i] 1i]i 1i].1cm
05 B“ 05 .J\ 0.5 05 B'I 500 05 | I 05 | 05 . | 05 | | 500
o WA oH 0 0 0 o H-A8 okl oH oH 0
10 1 10 1 10 1 10 1 0123 10 1 10 1 10 1 10 1 0123
(a) (b) (c) (d) (e) () (a) (h) (i) (i)

Figure 16: Typical histogram of projection of training samples (n = 600) (shown in blue) and universum samples ‘random averaging’ (RA) (m = 1000) (shown in
red). SVM decision functions (with C' = 1,y = 277) for (a) digit ‘0’. (b) digit ‘1°.(c) digit ‘2’. (d) digit ‘3’. (e) frequency plot of predicted labels for universum
samples using SVM model. MU-SVM decision functions (with C*/C' = 0.15, A = 0) for (f) digit ‘0’. (g) digit ‘1°.(h) digit 2’. (i) digit ‘3’.(j) frequency plot of
predicted labels for universum samples using MU-SVM model.

* Upper : the M-SVM model results in a narrow distribution of the universum samples and in turn provides near random prediction on the universum samples.
Applying MU-SVM for this case provides no significant change to multiclass SVM solution and hence no additional improvement in generalization (see
Table[7).

e Lower : the M-SVM model results in a relatively wider distribution of the universum samples (compared to Upper). Applying MU-SVM for this case
provides some improvement to the M-SVM (see Table 7).

* Symbol and RA : the SVM model results in a wide distribution of the universum samples. Further, in both the cases the universum samples are mostly
predicted as digit ‘1’. Applying MU-SVM for this case results to a narrow distribution of the universum samples and increases the uncertainity on the
universum samples. This results to a significant improvement to the M-SVM solution (see Table [7]in[B-3).
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B.6.3 ISOLET Dataset

0 0 0 0 0 0 0 0 0 0 0 0
10 1 10 1 10 1 -10 1 -10 1 abode 10 1 -10 1 10 1 10 1 -10 1 abode
(a) (b) (c) (d) (e) (f) (g) (h) (1) i) (k) n

Figure 17: Typical histogram of projection of training samples (n = 500) (shown in blue) and universum samples ‘Others’ (m = 1000) (shown in red). SVM
decision functions (with C' = 1,v = 277 for (a) letter ‘a’. (b) letter ‘b’.(c) letter ‘c’. (d) letter “d’. (e) letter ‘e’. (f) frequency plot of predicted labels for universum
samples using SVM model. MU-SVM decision functions (with C*/C = 0.1, A = 0.05) for (g) letter ‘a’. (h) letter ‘b’.(i) letter ‘c’. (j) letter ‘d’. (k) letter ‘e’. (1)
frequency plot of predicted labels for universum samples using MU-SVM model.

0 0 0 0 0 0 0 0 0 0 0 0
-10 1 -10 1 -10 1 -10 1 -10 1 abcde -10 1 -10 1 -10 1 -10 1 -10 1 abode
(a) (b) (c) (d) (e) (f) (a) (h) 0 1) (k) 0

Figure 18: Typical histogram of projection of training samples (n = 500) (shown in blue) and universum samples ‘RA’ (m = 1000) (shown in red). SVM decision
functions (with C' = 1,y = 277) for (a) letter ‘a’. (b) letter ‘b’.(c) letter ‘c’. (d) letter ‘d’. (e) letter ‘e’. (f) frequency plot of predicted labels for universum samples
using SVM model. MU-SVM decision functions (with C*/C = 0.1, A = 0.1) for (g) letter ‘a’. (h) letter ‘b’.(i) letter ‘c’. (j) letter ‘d’. (k) letter ‘e’. (1) frequency
plot of predicted labels for universum samples using MU-SVM model.

As seen from Figs [17}{18]

* Others : the M-SVM model results in a near random prediction on the universum samples. Applying MU-SVM for this case reduces the projection of the
universum samples but does not result to a significant increase in the uncertaininty of the universum samples, and hence no additional improvement in
generalization (see Table[7]in[B.3).

* RA : the M-SVM model results in a wide distribution of the universum samples. Further, the universum samples are mostly predicted as letter ‘d’. Applying
MU-SVM for this case results to a narrow distribution of the universum samples and increases the uncertainity on the universum samples. This results to a
significant improvement to the multiclass SVM solution (see Table [7]in[B-3).
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