
Supplementary Material: Variational Bayes under Model Mis-
specification

A The LAN assumption (Assumption 3) in parametric models

The LAN of parametric models (i.e. when parametric models satisfy Assumption 3) has been
widely studied in the literature [4, 6, 10]. For example, it suffices for a parametric model to satisfy:
(1) the log density log p(x | θ) is differentiable at θ∗, (2) the log likelihood ratio is bounded by
some square integrable function mθ∗(x): | log p(x | θ1)

p(x | θ2) | ≤ mθ∗(x) ‖θ1 − θ2‖ P0-almost surely, and

(3) the KL divergence has a second order Taylor expansion around θ∗: −
∫
p0(x) log p(x | θ)

p(x | θ∗) =
1
2 (θ − θ∗)Vθ∗(θ − θ∗) + o(‖θ − θ∗‖) when θ → θ∗ (Lemma 2.1 of Kleijn et al. [6]). Under these
conditions, the parametric model satisfies Assumption 3 with δn = (

√
n)−1, which leads to the

√
n-

convergence of the exact posterior.

B Extending Theorems 1 and 2 to general probabilistic models

We study VB in general probabilistic models via the above reduction with the variational model
pVB(x | θ). We posit analogous assumptions on pVB(x | θ) as Assumptions 2 and 3 and extend the
results in § 2.1 to general probabilistic models. Consider n data points x = x1:n, but they no longer
need to be i.i.d. We define the true data-generating density of x as p0(x).

We state the asymptotic properties of the VB posterior in general probabilistic models.
Theorem 3. (Variational Bernstein–von Mises Theorem under model misspecification) Under
Assumptions 1, 4 and 5,

1. The VB posterior converges to a point mass at θ∗:

q∗(θ)
d→ δθ∗ . (25)

2. Denote θ̃ = δ−1
n (θ − θ∗) as the re-centered and re-scaled version of θ. The VB posterior of

θ̃ is asymptotically normal:∥∥∥q∗(θ̃)−N (θ̃ ; ∆n,θ∗ , V
′−1
θ∗ ))

∥∥∥
TV

P0→ 0. (26)

where V ′θ∗ is diagonal and has the same diagonal terms as Vθ∗ .

3. Denote θ̂VB =
∫
θ · q∗(θ) dθ as the mean of the VB posterior. The VB posterior mean

converges to θ∗ almost surely:

θ̂VB
a.s.→ θ∗. (27)

4. The VB posterior mean is also asymptotically normal:

δ−1
n (θ̂VB − θ∗) d→ ∆∞,θ∗ , (28)

where ∆∞,θ∗ is the limiting distribution of the random vectors ∆n,θ∗ : ∆n,θ∗
d→ ∆∞,θ∗ . Its

distribution is ∆∞,θ∗ ∼ N
(
0, V −1

θ∗ EP0

[
(log pVB(x | θ∗))′(log pVB(x | θ∗))′>

]
V −1
θ∗
)
.

Theorem 3 repeats Theorem 1 except that the limiting distribution of the VB posterior mean is
governed by pVB(x | θ∗) as opposed to p(x | θ∗). Theorem 3 reduces to Theorem 1 when the
probabilistic model we fit is parametric.

With an additional LAN assumption on the probabilistic model, we can further extend the characteri-
zation of the VB posterior predictive distribution (Theorem 2) to general probabilistic models.
Assumption 6 (LAN). For every compact set K ⊂ Rd, there exist random vectors ∆0

n,θ∗ bounded in
probability and nonsingular matrices V 0

θ∗ such that

sup
h∈K

∣∣∣∣log
p(x | θ∗ + δnh)

p(x | θ∗) − h>V 0
θ∗∆

0
n,θ∗ +

1

2
h>V 0

θ∗h

∣∣∣∣ P0→ 0. (29)
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Assumption 6 requires that the probability model p(x | θ) =
∫
p(x, z | θ) dz has a LAN expansion

at θ∗. Many models satisfy Assumption 6, including Gaussian mixture models [13], Poisson linear
mixed models [5], stochastic block models [1]. We note that the LAN expansion of the model p(x | θ)
can be different from that of the variational model pVB(x | θ∗).
Theorem 4. (The VB posterior predictive distribution) If the probabilistic model is misspecified,
i.e. ‖p0(x)− p(x | θ∗)‖TV > 0, then the model approximation error dominates the variational
approximation error: ∥∥∥ppred

VB (xnew |x)− ppred
exact(xnew |x)

∥∥∥
TV∥∥∥p0(xnew)− ppred

exact(xnew |x)
∥∥∥

TV

P0→ 0, (30)

assuming
∫
∇2
θp(x | θ∗) dx < ∞ and Assumptions 1, 4, 5 and 6. Notation wise, ppred

VB (xnew) =∫
p(xnew | θ)q∗(θ) dθ is the VB posterior predictive density, ppred

true (xnew) =
∫
p(xnew | θ)p(θ |x) dθ

is the exact posterior predictive density, p(x | θ) =
∫
p(x, z | θ) dz is the marginal density of the

model, and p0(·) is the true data generating density.

Theorem 3 and Theorem 4 generalizes the asymptotic characterizations of the VB posterior, the VB
posterior mean, and the VB posterior predictive distributions to general probabilistic models. As in
parametric probabilistic models, the VB posterior and its mean both remain asymptotically normal
and centered at θ∗ in general probabilistic models. The model misspecification error continues to
dominate the variational approximation error in the VB posterior predictive distributions.

The proofs of Theorem 3 and Theorem 4 extends those of Theorem 1 and Theorem 2 by leveraging
the connection between the variational model and the original model (Eq. 20). The full proofs are in
Appendix D and Appendix E.

C Applications of Theorems 1, 2, 3 and 4

We illustrate Theorems 1, 2, 3 and 4 with three types of model misspecification: under-dispersion
in generalized linear model, component misspecification in Bayesian mixture models, and latent
dimensionality misspecification in Bayesian stochastic block models. In all three cases, we show
that the VB posterior converges to a point mass at the value that minimizes the KL divergence to the
true data generating distribution; their VB posterior predictive distributions also converge to the true
posterior predictive distributions.

C.1 Under-dispersion in Bayesian count regression

The first type of model misspecification we consider is under-dispersion. Suppose the data is
generated by a Negative Binomial regression model but we fit Poisson regression. We characterize
the asymptotic properties of the VB posteriors of the coefficient.
Corollary 5. Consider dataD = {(Xi, Yi)}ni=1. Assume the data generating measure P0 has density

p0(Yi |Xi) = NegativeBinomial

(
r,

exp(X>i β0)

1 + exp(X>i β0)

)
for some constant r. Let q∗(β) and β̂ denote the VB posterior and its mean. We fit a Poisson
regression model to the data D

p(Yi |Xi, β) = Poisson(exp(X>i β)),

with a prior that satisfies Assumption 1. Let β∗ be the value such that
n∑
i=1

EP0

[
Yi − exp(X>i β

∗)Xi |Xi

]
= 0.

Then we have ∥∥∥∥q∗(β)−N
(
β ; β∗,

1

n
V
′−1

)∥∥∥∥
TV

P0→ 0,
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and
√
n(β̂ − β∗) d→ N (0, V

′−1),

where V
′

= diag
[
(X exp( 1

2X
>β∗))>(X exp( 1

2X
>β∗))

]
. Moreover, the model misspecification

error dominates the VB approximation error in the VB posterior predictive distribution.

Proof. First, we notice that

β∗ = arg min
β

KL(p0(Y |X) || p(Y |X,β)).

We then verify Assumptions 2 and 3. Assumption 2 is satisfied because the maximum likelihood
estimator converges to β∗ [8]. Assumption 3 is satisfied because the log likelihood of Poisson
likelihood is differentiable. Moreover, the log likelihood ratio is bounded a squared integrable function
and have a second order Taylor expansion under P0. Hence Lemma 2.1 of Kleijn et al. [6] implies
Assumption 3. Given Assumptions 1 to 3, we apply Theorems 1 and 2 and conclude Corollary 5.

C.2 Component misspecification in Bayesian mixture models

The second type of misspecification we consider is component misspecification. Suppose the data
is generated by a Bayesian mixture model where each component is Gaussian and shares the same
variance. But we fit a Bayesian mixture model where each component is a t-distribution. We
characterize the asymptotic properties of the VB posteriors.
Corollary 6. Consider data D = {(Xi)}ni=1. Assume the data generating measure P0 has density

p0(xi) =
∑

ci∈{1,...,K}
N (xi |µci ,Σ) · Categorical(ci ; 1/K),

where Σ and K are two constants. Consider a mixture model where each component is t-distribution
with ν degree of freedom,

p(xi | θ) =
∑

ci∈{1,...,K}
t(xi | θci , ν) · Categorical(ci ; 1/K),

with priors that satisfy Assumption 1. The goal is to estimate the component centers θ , (θ1, . . . , θK).
Let q∗(θ) and θ̂ denote the VB posterior and its mean. Further denote the variational log likelihood
as follows:

m(θ ; x) = sup
q(c)∈Qn

∫
q(c) log

p(x, c | θ)
q(c)

dc.

Under regularity conditions (A1-A5) and (B1,2,4) of Westling & McCormick [13], we have∥∥∥∥q∗(θ)−N (θ∗ +
Y√
n
,

1

n
V0(θ∗)

)∥∥∥∥
TV

P0→ 0,

and
√
n(θ̂ − θ∗) d→ Y,

where θ∗ satisfies
EP0
∇2
θm(θ∗ ; x) = 0.

The limiting distribution Y is Y ∼ N (0, V (θ∗)), where V (θ∗) = A(θ∗)−1B(θ∗)A(θ∗)−1, A(θ) =
EP0 [∇2

θm(θ ; x)], and B(θ) = EP0 [∇θm(θ ; x)∇θm(θ ; x)>]. The diagonal matrix V0(θ∗) satisfies
(V0(θ∗)−1)ii = (A(θ∗))ii. Moreover, the model misspecification error dominates the VB approxima-
tion error in the VB posterior predictive distribution.

The specification of a mixture model is invariant to permutation among K components; this corollary
is true up to permutations among the K components.

Proof. First, we notice that θ∗ = arg minθ KL(p0(X) || p(X | θ)). We then verify Assumptions 4,
5 and 6. Assumption 4 is satisfied because the variational log likelihood m(x ; θ) yields consistent
estimates of θ [13]. Assumptions 5 and 6 is satisfied by a standard Taylor expansion of m(x ; θ) and
p(x | θ) at θ∗ (Eq. 128 of Wang & Blei [11]). Given Assumptions 1, 4 and 5, we apply Theorems 3
and 4 and conclude Corollary 6.
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C.3 Latent dimensionality misspecification in Bayesian Stochastic Block Models

The third type of misspecification we consider is latent dimensionality misspecification. Suppose the
data is generated by a Bayesian stochastic block model with K communities. But we fit a Bayesian
stochastic block model with only K − 1 communities. We characterize the asymptotic properties of
the VB posteriors.

Corollary 7. Consider the adjacency matrix D = {(Xij)}ni,j=1 of a network with n nodes. Suppose
it is generated from the stochastic block model with K communities and parameters ν and ω. The
parameter ν represents the odds ratio for a node to belong to each of the K communities. For
simplicity, we assume the odds ratio is the same for all the K communities. The parameter ω
represents the K ×K matrix of odds ratios; the (i, j)-entry of ω is the odds ratio of two nodes being
connected if they belong to community i and j respectively.

We fit a stochastic block model with K − 1 communities, whose prior satisfies Assumption 1. Let
q∗ν(ν(k−1)), q

∗
ω(ω(k−1)) denote the VB posterior of ν(k−1) and ω(k−1), where ν(k−1) and ω(k−1) are

the odds ratios vector and matrix for the (K − 1)-dimensional stochastic block model. Similarly, let
ν̂, ω̂ be the VB posterior mean. Then∥∥∥∥q∗ν(ν)q∗ω(ω)−N

(
(ν, ω); (ν∗, ω∗) + (

Σ−1
1 Y1√
nλ0

,
Σ−1

2 Y2√
n

), Vn(ν∗, ω∗)

)∥∥∥∥
TV

P0→ 0

where ω∗(a) = log
π(k−1)(a)

1−∑K−2
b=1 π(k−1)(b)

, ν∗(a, b) = log
H(k−1)(a,b)

1−H(k−1)(a,b)
, a, b = 1, . . . ,K − 1, where

π(k−1)(a) and H(k−1)(a, b) are the community weights vector and the connectivity matrix where
two smallest communities are merged. The constant λ0 is λ0 = EP0

(degree of each node),
(log n)−1λ0 → ∞. Y1 and Y2 are two zero mean random vectors with covariance matrices Σ1

and Σ2, where Σ1,Σ2 are known functions of ν∗, ω∗. The diagonal matrix V (ν∗, ω∗) satisfies
V −1(ν∗, ω∗)ii = diag(Σ1,Σ2)ii. Also,

(
√
nλ0(ν̂ − ν∗),√n(ω̂ − ω∗)) d→ (Σ−1

1 Y1,Σ
−1
2 Y2),

Moreover, the model misspecification error dominates the VB approximation error in the VB posterior
predictive distribution.

The specification of classes in stochastic block model (SBM) is permutation invariant. So the
convergence above is true up to permutation with the K − 1 classes. We follow Bickel et al. [1] to
consider the quotient space of (ν, ω) over permutations.

Proof. First, we notice that (ν∗, ω∗) = arg minν,ω KL(p0(Xij) || p(Xij | ν, ω)). We then verify
Assumptions 4, 5 and 6. Assumption 4 is satisfied because the variational log likelihood of stochastic
block models yields consistent estimates of ν, ω even under under-fitted model [1, 12]. Assumptions 5
and 6 is established by Lemmas 2,3, and Theorem 3 of [1]. Given Assumptions 1, 4 and 5, we apply
Theorems 3 and 4 and conclude Corollary 7.

D Proof of Theorems 1 and 3

We prove Theorem 3 in this section. Theorem 1 follows directly from Theorem 3 in parametric models.

Proof. The proof of Theorem 3 mimics the proof structure of Wang & Blei [11] except we need to
take care of the additional technical complications due to model misspecification.

We first study the VB ideal π∗(θ | x), defined as

π∗(θ | x)
∆
=

p(θ)pVB(x ; θ)∫
p(θ)pVB(x ; θ) dθ

.

The VB ideal π∗(θ | x) is the posterior of θ if we only perform variational approximation on the local
latent variables. In other words, it is the exact posterior of the variational model pVB(x ; θ).

We note that the VB ideal is different from the VB posterior. However, we will show later that the
two are closely related.
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Consider a change-of-variable (re-centering and re-scaling) of θ into θ̃ = δ−1
n (θ − θ∗). Lemma 8

shows that the posterior of θ̃ is close to N (·; ∆n,θ∗ , V
−1
θ∗ ), where ∆n,θ∗ and V −1

θ∗ are two constants
in Assumption 5.

Lemma 8. The VB ideal converges in total variation to a sequence of normal distributions,

||π∗
θ̃
(· | x)−N (·; ∆n,θ∗ , V

−1
θ∗ )||TV

P0→ 0.

The proof of Lemma 8 is in Appendix F. Lemma 8 characterizes the posterior of the global latent
variables θ when we perform variational approximation on the local latent variables z under model
misspecification.

Building on Lemma 8, Lemma 9 and Lemma 10 characterize the KL minimizer to the VB ideal within
the mean field (i.e. factorizable) variational family Qd. They pave the road for characterizing the VB
posterior of the global latent variables θ.

Lemma 9. The KL minimizer of the VB ideal over the mean field family is consistent: almost surely
under P0, it converges to a point mass centered at θ∗,

arg min
q(θ)∈Qd

KL(q(θ)||π∗(θ | x))
d→ δθ∗ .

The proof of Lemma 9 is in Appendix G. Lemma 9 shows that the KL minimizer to the VB ideal
converges to a point mass centered at θ∗. Lemma 9 is intuitive in that (1) the VB ideal converges to a
point mass centered at θ∗ and (2) the point mass δθ∗ resides in the variational family Qd.

Lemma 10. The KL minimizer of the VB ideal of θ̃ converges to that of N (· ; ∆n,θ∗ , V
−1
θ∗ ) in

total variation: under mild technical conditions on the tail behavior of Qd (see Assumption 7 in
Appendix H),∥∥∥∥∥arg min

q∈Qd

KL(q(·)||π∗
θ̃
(· | x))− arg min

q∈Qd

KL(q(·)||N (· ; ∆n,θ∗ , V
−1
θ∗ ))

∥∥∥∥∥
TV

P0→ 0.

The proof of Lemma 10 is in Appendix H. Lemma 10 shows that the KL minimizer to the VB ideal
converges to the KL minimizer to N (·; ∆n,θ∗ , V

−1
θ∗ ). As with Lemma 9, Lemma 10 is also intuitive

because Lemma 8 has shown that π∗
θ̃
(· | x) andN (· ; ∆n,θ∗ , V

−1
θ∗ ) are close in the large sample limit.

The final step of the proof is to establish the connection between the VB posterior and the KL
minimizer of the VB ideal. First notice that the VB posterior is then the minimizer of the so-called
profiled ELBO:

q∗(θ) = arg max
q(θ)

ELBOp(q(θ)), (31)

which treats the variational posterior of local latent variables z’s as a function of q(θ). Technically,
the profiled ELBO is defined as follows:

ELBOp(q(θ)) := sup
q(z)

∫
q(θ)

(
log

[
p(θ) exp

{∫
q(z) log

p(x, z | θ)
q(z)

dz

}]
− log q(θ)

)
dθ. (32)

Via this representation of the VB posterior, Lemma 4 of Wang & Blei [11] shows that the VB posterior
and the KL minimizer of the VB ideal are close in the large sample limit. We restate this result here
for completeness.

Lemma 11 (Lemma 4 of Wang & Blei [11]). The negative KL divergence to the VB ideal is equivalent
to the profiled ELBO in the limit: under mild technical conditions on the tail behavior of Qd, for
q(θ) ∈ Qd,

ELBOp(q(θ)) = −KL(q(θ)||π∗(θ | x)) + oP0
(1).

Given Lemmas 8 to 11, we can prove Theorem 3.
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Theorem 3.1 and Theorem 3.2 are direct consequences of Lemmas 9 to 11. We have∥∥∥∥∥arg max
q∈Qd

ELBOp(q(θ̃))− arg min
q∈Qd

KL(q(·)||N (· ; ∆n,θ∗ , V
−1
θ∗ ))

∥∥∥∥∥
TV

P0→ 0,

which leads to the consistency and asymptotic normality of q∗(θ) due to Eq. 31.

Theorem 3.3 and Theorem 3.4 follows from Lemmas 9 to 11 via a similar proof argument with
Theorem 2.3 in Kleijn et al. [6] and Theorem 10.8 in Van der Vaart [10].

We consider three stochastic processes: fix some compact set K and for given M > 0,

t 7→ Zn,M (t) =

∫
||θ̃||≤M

(t− θ̃)2 · q∗
θ̃
(θ̃) dθ̃, (33)

t 7→Wn,M (t) =

∫
||θ̃||≤M

(t− θ̃)2 · N (θ̃; ∆n,θ∗ , (V
′
θ∗)
−1) dθ̃, (34)

t 7→WM (t) =

∫
||θ̃||≤M

(t− θ̃)2 · N (θ̃;X, (V
′
θ∗)
−1) dθ̃. (35)

The intuition behind these constructions is that (1) θ̃VB = δ−1
n (θ̂VB − θ∗) is the minimizer of the

process t 7→ Zn,∞(t) and (2) X =
∫
θ̃ · N (θ̃ ; X,V

′−1
θ∗ ) dθ̃ is the minimizer of t 7→W∞(t).

To prove Theorem 3.3 and Theorem 3.4, we have

Zn,M −Wn,M = oP0
(1) in `∞(K)

due to Theorem 3.2 and supt∈K,||h||≤M (t− h)2 <∞. Then we have

Wn,M −WM = oP0
(1) in `∞(K)

due to ∆n,θ∗
d→ X and the continuous mapping theorem. Finally, we have

WM −W∞ = oP0
(1) in `∞(K)

as M →∞ because of
∫
θ · q∗(θ) <∞, and

Zn,pVB − Zn,∞ = oP0
(1) in `∞(K)

due to
∫
||θ̃||>pVB ||θ̃||2q∗(θ̃) dθ̃

P0→ 0 for for any pVB →∞ ensured by Assumption 7.1. Therefore,
we have

Zn,∞ −W∞ = oP0
(1) in `∞(K),

which implies

θ̃VB d→ X

due to the continuity and convexity of the squared loss and the argmax theorem.

E Proof of Theorems 2 and 4

We prove Theorem 4 here. Theorem 2 is a direct consequence of Theorem 4.

Proof. We next study the posterior predictive distribution resulting from the VB posterior. For
notational simplicity, we abbreviate ppred

VB (xnew |x1:n) as ppred
VB (xnew).
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∥∥∥ppred
VB (xnew)− ppred

true (xnew)
∥∥∥

TV
(36)

=

∥∥∥∥∫ p(xnew | θ)q∗(θ) dθ −
∫
p(xnew | θ)p(θ |x) dθ

∥∥∥∥
TV

(37)

=
1

2

∫ ∣∣∣∣∫ p(xnew | θ)q∗(θ) dθ −
∫
p(xnew | θ)p(θ |x) dθ

∣∣∣∣ dxnew (38)

=
1

2

∫ ∣∣∣∣∫ p(xnew | θ) (q∗(θ)− p(θ |x)) dθ

∣∣∣∣dxnew (39)

≤1

2

∫ ∣∣∣∣∫ p(xnew | θ∗) (q∗(θ)− p(θ |x)) dθ

∣∣∣∣dxnew (40)

+
1

2

∫ ∣∣∣∣∫ (p(xnew | θ)− p(xnew | θ∗)) · (q∗(θ)− p(θ |x)) dθ

∣∣∣∣ dxnew (41)

The first equality is due to the definition of posterior predictive densities. The second equality is due
to the definition of the total variation (TV) distance. The third equality collects the two integrals into
one. The fourth equality is due to pθ(xnew) ≥ 0 and triangle inequality.

If each term in Eq. 41 goes to zero in the large sample limit, we have∥∥∥ppred
VB (xnew)− ppred

true (xnew)
∥∥∥

TV

P0→ 0. (42)

Moreover, we assume the model {pθ : θ ∈ Θ} is misspecified, which implies∥∥∥p0(xnew)− ppred
true (xnew)

∥∥∥
TV

(43)

≥‖p0(xnew)− p(xnew | θ∗)‖TV −
∥∥∥ppred

true (xnew)− p(xnew | θ∗)
∥∥∥

TV
(44)

P0→‖p0(xnew)− p(xnew | θ∗)‖TV (45)
>0. (46)

The first inequality is due to triangle inequality. The second equation is due to a similar argument
with

∥∥∥ppred
VB (xnew)− ppred

true (xnew)
∥∥∥

TV

P0→ 0. The intuition is that the posterior p(θ |x)
P0→ δθ∗ in

the large sample limit, so the posterior predictive distribution should converge to p(xnew | θ∗) =∫
pθ(xnew)δθ∗(θ) dθ. The last step ‖p0(xnew)− p(xnew | θ∗)‖TV > 0 is due to the assumption that

the model p(· | θ) is misspecified.

Eq. 42 and Eq. 43 together imply Theorem 4:∥∥∥ppred
VB (xnew)− ppred

true (xnew)
∥∥∥

TV∥∥∥p0(xnew)− ppred
true (xnew)

∥∥∥
TV

P0→ 0.

Below we show that each term in Eq. 41 goes to zero in the large sample limit, which completes the
proof.

For the first term in Eq. 41, we have.∫ ∣∣∣∣∫ p(xnew | θ∗) (q∗(θ)− p(θ |x)) dθ

∣∣∣∣dxnew

=

∫ ∣∣∣∣p(xnew | θ∗)
∫

(q∗(θ)− p(θ |x)) dθ

∣∣∣∣dxnew

=

∫
|p(xnew | θ∗) · 0|dxnew

=0.
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The first equality is due to p(xnew | θ∗) not depending on θ. The second equality is due to both q∗(θ)
and p(θ |x) being probability density functions. The third equality is due to integration of zero equal
to zero.

Next we note that

∫ ∣∣∣∣∫ (p(xnew | θ)− p(xnew | θ∗)) · (q∗(θ)− p(θ |x)) dθ

∣∣∣∣dxnew

≤
∫ ∣∣∣∣∫ (p(xnew | θ)− p(xnew | θ∗)) ·

(
q∗(θ)−N (θ ; θ∗, δ>n V

′−1
θ∗ δn)

)
dθ

∣∣∣∣dxnew

+

∫ ∣∣∣∣∫ (p(xnew | θ)− p(xnew | θ∗)) ·
(
N (θ ; θ∗, δ>n V

′−1
θ∗ δn)−N (θ ; θ∗, δ>n V

−1
θ∗ δn)

)
dθ

∣∣∣∣dxnew

+

∫ ∣∣∣∣∫ (p(xnew | θ)− p(xnew | θ∗)) ·
(
N (θ ; θ∗, δ>n V

−1
θ∗ δn)− p(θ |x)

)
dθ

∣∣∣∣dxnew.

We apply the Taylor’s theorem to p(xnew | θ)− p(xnew | θ∗): There exists some function hθ∗(θ) such
that

p(xnew | θ)− p(xnew | θ∗)
=(θ − θ∗) · ∇θp(xnew | θ)

∣∣
θ=θ∗

+∇2
θp(xnew | θ)

∣∣
θ=θ∗

· (θ − θ∗)(θ − θ∗)>

+ hθ∗(θ) · (θ − θ∗)(θ − θ∗)>,

where limθ→θ∗ hθ∗(θ) = 0. We apply this expansion to each of the term above:

∫ ∣∣∣∣∫ (p(xnew | θ)− p(xnew | θ∗)) ·
(
q∗(θ)−N (θ ; θ∗, δ>n V

′−1
θ∗ δn)

)
dθ

∣∣∣∣dxnew

≤
∫ ∣∣∣∣∫ ((θ − θ∗) · ∇θp(xnew | θ)

∣∣
θ=θ∗

)
·
(
q∗(θ)−N (θ ; θ∗, δ>n V

′−1
θ∗ δn)

)
dθ

∣∣∣∣dxnew

+

∫ ∣∣∣∣∫ (∇2
θp(xnew | θ)

∣∣
θ=θ∗

· (θ − θ∗)(θ − θ∗)>
)
·
(
q∗(θ)−N (θ ; θ∗, δ>n V

′−1
θ∗ δn)

)
dθ

∣∣∣∣ dxnew

+

∫ ∣∣∣∣∫ (hθ∗(θ) · (θ − θ∗)(θ − θ∗)>) · (q∗(θ)−N (θ ; θ∗, δ>n V
′−1
θ∗ δn)

)
dθ

∣∣∣∣ dxnew

→0 ·
∫ ∣∣∇θp(xnew | θ)

∣∣
θ=θ∗

∣∣ dxnew + 0 ·
∫ ∣∣∇2

θp(xnew | θ)
∣∣
θ=θ∗

∣∣dxnew + 0 ·
∫
|hθ∗(θ)|dxnew

=0

The key property that enables the calculation above is that q∗(θ) and N (θ ; θ∗, δ>n V
′−1
θ∗ δn) share the

same first and second moments.

With the same argument, we can show that

∫ ∣∣∣∣∫ (p(xnew | θ)− p(xnew | θ∗)) ·
(
N (θ ; θ∗, δ>n V

−1
θ∗ δn)− p(θ |x)

)
dθ

∣∣∣∣dxnew → 0.
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Finally, we work with the middle term.∫ ∣∣∣∣∫ (p(xnew | θ)− p(xnew | θ∗)) ·
(
N (θ ; θ∗, δ>n V

′−1
θ∗ δn)−N (θ ; θ∗, δ>n V

−1
θ∗ δn)

)
dθ

∣∣∣∣dxnew

≤
∫ ∣∣∣∣∫ ((θ − θ∗) · ∇θp(xnew | θ)

∣∣
θ=θ∗

)
·
(
N (θ ; θ∗, δ>n V

′−1
θ∗ δn)−N (θ ; θ∗, δ>n V

−1
θ∗ δn)

)
dθ

∣∣∣∣dxnew

+

∫ ∣∣∣∣∫ (∇2
θp(xnew | θ)

∣∣
θ=θ∗

· (θ − θ∗)(θ − θ∗)>
)

·
(
N (θ ; θ∗, δ>n V

′−1
θ∗ δn)−N (θ ; θ∗, δ>n V

−1
θ∗ δn)

)
dθ
∣∣∣dxnew

+

∫ ∣∣∣∣∫ (hθ∗(θ) · (θ − θ∗)(θ − θ∗)>) · (N (θ ; θ∗, δ>n V
′−1
θ∗ δn)−N (θ ; θ∗, δ>n V

−1
θ∗ δn)

)
dθ

∣∣∣∣dxnew

=0 ·
∫ ∣∣∇θp(xnew | θ)

∣∣
θ=θ∗

∣∣dxnew

+ (δ>n V
−1
θ∗ δn − δ>n V

′−1
θ∗ δn) ·

∫ ∣∣∇2
θp(xnew | θ)

∣∣
θ=θ∗

∣∣dxnew

+ (δ>n V
−1
θ∗ δn − δ>n V

′−1
θ∗ δn) ·

∫
|hθ∗(θ)|dxnew

→0

The last step is because δn → 0 and
∫
∇2
θp(xnew | θ)

∣∣
θ=θ∗

dxnew <∞.

F Proof of Lemma 8

In this proof, we only need to show that Assumption 4 implies Assumption (2.3) in Kleijn et al. [6]:∫
θ̃>pVB π

∗
θ̃
(θ̃ | x) dθ̃

P0→ 0 for every sequence of constants pVB →∞, where θ̃ = δ−1
n (θ − θ∗).

To prove this implication, we repeat Theorem 3.1, Theorem 3.3, Lemma 3.3, Lemma 3.4 of Kleijn
et al. [6]. The only difference is that we prove it for the general convergence δn instead of the
parametric convergence rate

√
n. The idea is to consider test sequences of uniform exponential power

around θ∗. We omit the proof here; see Kleijn et al. [6] for details.

This proof also resembles the proof of Lemma 1 in Wang & Blei [11].

G Proof of Lemma 9

We focus on the VB posterior of θ which converges with the δn rate. Without loss of generality, we
consider the subset of mean field variational family that also shrinks with the rate δn. The rationale of
this step is that the KL divergence between exact posterior and the VB posterior will blow up to∞ for
other classes of variational families. More precisely, we assume the following variational family Q

qθ̌(θ̌) = q(µ+ δnθ̌)|det(δn)|, (47)

where θ̌ := δ−1
n (θ − µ), for some µ ∈ Θ.

Note the variational family is allowed to center at any value, not necessarily at θ∗.

We now characterize the limiting distribution of the KL minimizer of the VB ideal. In other words,
the mass of the KL minimizer concentrates near θ∗ as n→∞:

q‡(θ) := arg min
q(θ)∈Qd

KL(q(θ)||π∗(θ | x))
d→ δθ∗ .

It suffices to show
∫
B(θ∗,ξn)

q‡(θ) dθ
P0→ 1, for some ξn → 0 as n→∞ due to the Slutsky’s theorem.

The proof below mimics the proof of Lemma 2 of [11] (also the Step 2 in the proof of Lemma 3.6
along with Lemma 3.7 in Lu et al. [7]) except we take care of the extra technicality due to model
misspecification. We include the proof for completeness here.
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We start with two claims that we will prove later.

lim sup
n→∞

min KL(q(θ)||π∗(θ | x)) ≤M, (48)

∫
Rd\K

q‡(θ) dθ → 0, (49)

where M > 0 is some constant and K is the compact set assumed in the local asymptotic normality
condition. We will use them to upper bound and lower bound

∫
B(θ∗,ξn)

q‡,K(θ) dθ.

The upper bound of
∫
B(θ∗,ξn)

q‡,K(θ) dθ is due to the LAN condition,∫
q‡,K(θ)pVB(θ ; x) dθ

=

∫
q‡,K(θ)

[
pVB(θ∗ ; x) + δ−1

n (θ − θ∗)>Vθ∗∆n,θ∗

−1

2
[δ−1
n (θ − θ∗)]>Vθ∗ [δ−1

n (θ − θ∗)] + oP (1)

]
dθ

≤pVB(θ∗ ; x)− C1

d∑
i=1

η2

δ2
n,ii

∫
B(θ∗,η)c

q‡,K(θ) dθ + oP (1),

for large enough n and η << 1 and some constant C1 > 0.

The lower bound of the integral is due to the first claim:∫
q‡,K(θ)pVB(θ ; x) dθ ≥ pVB(θ∗ ; x)−M0, (50)

for some large constant M0 > M . This is due to two steps. First, Eq. 31 of Wang & Blei [11] gives

KL(q‡,K(θ)||π∗(θ | x)) (51)

= log |det(δn)|−1 +

d∑
i=1

H(q‡,Kh,i (h))−
∫
q‡,K(θ) log π∗(θ | x) dθ. (52)

Then we approximate the last term by the LAN condition:∫
q‡,K(θ) log π∗(θ | x) dθ (53)

=

∫
q‡,K(θ) log p(θ) dθ +

∫
q(θ)pVB(θ ; x) dθ − log

∫
p(θ) exp(pVB(θ ; x)) dθ (54)

=

∫
q‡,K(θ) log p(θ) dθ +

∫
q‡,K(θ)pVB(θ ; x) dθ

−
[
d

2
log(2π)− 1

2
log detVθ∗ + log det(δn) + pVB(θ∗ ; x) + log p(θ∗) + oP (1)

]
. (55)

The above approximation leads to the following approximation to the KL divergence:

KL(q‡,K(θ)||π∗(θ | x)) (56)

= log |det(δn)|−1 +

d∑
i=1

H(q‡,Kh,i (h))−
∫
q‡,K(θ) log p(θ) dθ −

∫
q‡,K(θ)pVB(θ ; x) dθ

+

[
d

2
log(2π)− 1

2
log detVθ∗ + log det(δn) + pVB(θ∗ ; x) + log p(θ∗) + oP (1)

]
(57)

=

d∑
i=1

H(q‡,Kh,i (h))−
∫
q‡,K(θ) log p(θ) dθ −

∫
q‡,K(θ)pVB(θ ; x) dθ

+
d

2
log(2π)− 1

2
log detVθ∗ + pVB(θ∗ ; x) + log p(θ∗) + oP (1). (58)
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Then via the first claim above, we have∫
q‡,K(θ)pVB(θ ; x) dθ (59)

≥−M +

d∑
i=1

H(q‡,Kh,i (h))−
∫
q‡,K(θ) log p(θ) dθ

+
d

2
log(2π)− 1

2
log detVθ∗ + pVB(θ∗ ; x) + log p(θ∗) + oP (1) (60)

≥−M0 + pVB(θ∗ ; x) + oP (1) (61)
for some constant M0 > 0. The last step is because the only term that depends on n is∫
q‡,K(θ) log p(θ) dθ which is finite due to Assumption 1.

Combining the lower and upper bounds of the integral gives

pVB(θ∗ ; x)− C1

d∑
i=1

η2

δ2
n,ii

∫
B(θ∗,η)c

q‡,K(θ) dθ + oP (1) ≥ −M0 + pVB(θ∗ ; x)

⇒
∫
B(θ∗,η)c

q‡,K(θ) dθ + oP (1) ≤ M0 · (mini δn,ii)
2

C2η2
,

for some constant C2 > 0. By choosing η =
√
M0(mini δn,ii)/C2 → 0, this term go to zero as n

goes to infinity. In other words, we have shown
∫
B(θ∗,ξn)

q‡(θ) dθ
P0→ 1 with ξn = η.

We now prove the two claims made at the beginning. To show Eq. 48, it suffices to show that there
exists a choice of q(θ) such that

lim sup
n→∞

KL(q(θ)||π∗(θ | x)) <∞.

We choose q̃(θ) =
∏d
i=1N(θi; θ0,i, δ

2
n,iivi) for vi > 0, i = 1, ..., d. We thus have

KL(q̃(θ)||π∗(θ | x)) (62)

=

d∑
i=1

1

2
log(vi) +

d

2
+ d log(2π)−

∫
q̃(θ) log p(θ) dθ −

∫
q̃(θ)pVB(θ ; x) dθ

− 1

2
log detVθ∗ + pVB(θ∗ ; x) + log p(θ∗) + oP (1) (63)

=

d∑
i=1

1

2
log(vi) +

d

2
+ d log(2π)− 1

2
log detVθ∗ + C6 + oP (1), (64)

for some constant C6 > 0. The finiteness of limsup is due to the boundedness of the last term. The
second equality is due to the limit of q̃(θ) concentrating around θ∗. Specifically, we expand log p(θ)
to the second order around θ∗,∫

q̃(θ) log p(θ) dθ

= log p(θ∗) +

∫
q̃(θ)

[
(θ − θ∗)(log p(θ∗))′ +

(θ − θ∗)2

2

∫ 1

0

(log p(ξθ + (1− ξ)θ∗))′′(1− ξ)2 dξ

]
dθ

≤ log p(θ∗) +
1

2!
max
ξ∈[0,1]

{∫
q̃(θ)(θ − θ∗)2(log p(ξθ + (1− ξ)θ∗))′′ dθ

}
≤ log p(θ∗) +

Mp√
(2π)d det(δ2

n)
∏
i vi

∫
Rd

|θ|2e(|θ|+|θ∗|)2 · e− 1
2 θ
>(δnV δn)−1θ dθ

≤ log p(θ∗) +
Mp√

(2π)d det(δ2
n)
∏
i vi

eθ
∗2
∫

Rd

|θ|2e− 1
2 θ
>[(δnV δn)−1−2Id]θ

≤ log p(θ∗) + C3Mpe
θ∗2 max

d
(δ2
n,ii) det(V −1 − 2δ2

n)−1

≤ log p(θ∗) + C4 max
d

(δ2
n,ii)
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where maxd(δ
2
n,ii)→ 0 and C3, C4 > 0. The first two equalities are due to Taylor expansion. The

third inequality is due to the tail condition in Assumption 1. The fourth and fifth are due to rescaling
θ appealing to the mean of a Chi-squared distribution with d degrees of freedom. The last inequality
is due to det(V −1 − 2δ2

n)−1 > 0 for large enough n.

We apply the same Taylor expansion argument to the
∫
q̃(θ)pVB(θ ; x) dθ leveraging the LAN

condition∫
Kn

q̃(θ)pVB(θ ; x) dθ

=pVB(θ∗ ; x) +

∫
Kn

q̃(θ)

[
δ−1
n (θ − θ∗)>Vθ∗∆n,θ∗ +

1

2
(δ−1
n (θ − θ∗))>Vθ∗δ−1

n (θ − θ∗) + oP (1)

]
dθ

≤pVB(θ∗ ; x) + C6 + oP (1)

where Kn is a compact set and C6 > 0 is some constant.

For the set outside of this compact set Kn, choose q̃(θ) = N (θ; θ∗ + ∆n,θ∗ , δnVθ∗δn).∫
Rd\Kn

q̃(θ)(log p(θ) + pVB(θ ; x)) dθ (65)

≤C7

∫
Rd\Kn

N (θ; θ∗ + ∆n,θ∗ , δnVθ∗δn)(log p(θ) + pVB(θ ; x)) dθ (66)

≤C8[det(δn)−1 log(det(δn)−1)]

∫
Rd\Kn

N (θ̃; ∆n,θ∗ , Vθ∗) log π∗(θ̃ | x) det(δn) dθ̃ (67)

≤C9 log(det(δn)−1)]

∫
Rd\Kn

[π∗(θ̃ | x) + oP (1)] log π∗(θ̃ | x), Vθ∗) dθ̃ (68)

≤C10 log(det(δn)−1)]

∫
Rd\Kn

[N (θ̃; ∆n,θ∗ , Vθ∗) + oP (1)] logN (θ̃; ∆n,θ∗ , Vθ∗) dθ̃ (69)

≤oP (1) (70)

for some C7, C8, C9, C10 > 0. The first two inequalities are due to q̃(θ) centering at θ∗ and a change
of variable step. The third and fourth inequality is due to Lemma 8 and Theorem 2 in Piera & Parada
[9]. The fifth inequality is due to a choice of fast enough increasing sequence of compact sets Kn.

We repeat this argument for the lower bound of
∫
q̃(θ)(log p(θ) + pVB(θ ; x)) dθ. Hence the first

claim is proved.

To prove the second claim Eq. 49, we note that, for each ε > 0, there exists an N such that for all
n > N we have

∫
||θ−µ||>M q(θ) dθ < ε because Qd has a shrinking-to-zero scale. It leads to∫

Rd\K
q‡(θ) dθ ≤

∫
Rd\B(µ,M)

q‡(θ) dθ ≤ ε.

H Proof of Lemma 10

Proof. To show the convergence of optimizers from two minimization problems, we invoke Γ-
convergence: if two functionals Γ−converge, then their minimizer also converge. We refer the readers
to Appendix C of Wang & Blei [11] for a review of Γ-convergence.

For notation convenience, we index the variational family by some finite dimensional parameter m.
The goal is to show

Fn(m) := KL(q(θ;m)||π∗(θ | x))

Γ-converges to

F0(m) := KL(q(θ;m)||N (θ; θ∗ + δn∆n,θ∗ , δnV
−1
θ∗ δn))−∆>n,θ∗Vθ∗∆n,θ∗

in P0-probability as n→ 0.

Write the densities in the mean field variational family in the following form: q(θ) =∏d
i=1 δ

−1
n,iiqh,i(h), where h = δ−1

n (θ − µ) for some µ ∈ Θ. This form of density is consistent with
the change of variable step in Appendix G.
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Assumption 7. We assume the following conditions on qh,i:

1. qh,i, i = 1, ..., d have continuous densities, positive and finite entropies, and
∫
q′h,i(h) dh <

∞, i = 1, ..., d.

2. If qh is has zero mean, we assume
∫
h2 · qh(h) dh < ∞ and supz,x |(log p(z, x | θ))′′| ≤

C11 · qh(θ)−C12 for some C11, C12 > 0; |pVB(θ ; x)′′| ≤ C13 · qh(θ)−C14 for some
C13, C14 > 0.

3. If qh has nonzero mean, we assume
∫
h · qh(h) dh < ∞ and supz,x |(log p(z, x | θ))′| ≤

C11 · qh(θ)−C12 for some C11, C12 > 0; |pVB(θ ; x)′ ≤ C13| · qh(θ)−C14 for some
C13, C14 > 0.

Assumption 7.1 ensures that convergence in the finite-dimensional parameter implied convergence in
TV distance due to Eqs 64-68 of Wang & Blei [11]. Assumption 7 is analogous to Assumptions 2
and 3 of Wang & Blei [11].

Leveraging the fundamental theorem of Γ−convergence [2, 3], the Γ-convergence of the two func-
tionals implies mn

P0→ m0; mn minimizes Fn and m0 minimizes F0. Importantly, this is true because
∆>n,θ∗Vθ∗∆n,θ∗ is a constant bounded in P0 probability and does not depend on m. The convergence
in total variation then follows from Assumption 7.

Therefore, what remains is to prove the Γ-convergence of the two functionals.

We first rewrite Fn(m,µ).

Fn(m,µ) := KL(q(θ;m,µ)||π∗(θ | x)) (71)

= log |det(δn)|−1 +

d∑
i=1

H(qh,i(h;m))−
∫
q(θ;m,µ) log p(θ) dθ −

∫
q(θ;m,µ)pVB(θ ; x) dθ

+ log

∫
p(θ) exp(pVB(θ ; x)) dθ (72)

= log |det(δn)|−1 +

d∑
i=1

H(qh,i(h;m))−
∫
q(θ;m,µ) log p(θ) dθ −

∫
q(θ;m,µ)pVB(θ ; x) dθ

+

[
d

2
log(2π)− 1

2
log detVθ∗ + log det(δn) + pVB(θ∗ ; x) + log p(θ∗) + oP (1)

]
(73)

=

d∑
i=1

H(qh,i(h;m))−
∫
q(θ;m,µ)pVB(θ ; x) dθ + log p(θ∗)− log p(µ)

+

[
d

2
log(2π)− 1

2
log detVθ∗ + pVB(θ∗ ; x) + oP (1)

]
(74)

=

d∑
i=1

H(qh,i(h;m))−
∫
δ−1
n (θ − θ∗)>Vθ∗∆n,θ∗ · q(θ;m,µ) dθ

+

∫
1

2
(δ−1
n (θ − θ∗))>Vθ∗δ−1

n (θ − θ∗) · q(θ;m,µ) dθ −
[
d

2
log(2π)− 1

2
log detVθ∗ + oP (1)

]
,

(75)

due to algebraic operations and the LAN condition of pVB(θ ; x). To extend from the compact set K
to the whole space Rd, we employ the same argument as in Eq. 64.
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Next we rewrite F0(m,µ).

KL(q(θ;m,µ)||N (θ; θ∗ + δn∆n,θ∗ , δnV
−1
θ∗ δn))

= log |det(δn)|−1 +

d∑
i=1

H(qh,i(h;m)) +

∫
q(θ;m,µ) logN (θ; θ∗ + δn∆n,θ∗ , δnV

−1
θ∗ δn) dθ

= log |det(δn)|−1 +

d∑
i=1

H(qh,i(h;m)) +
d

2
log(2π)− 1

2
log detVθ∗ + log det(δn)

+

∫
q(θ;m,µ) · (θ − θ∗ − δn∆n,θ∗)

>δ−1
n Vθ∗δ

−1
n (θ − θ∗ − δn∆n,θ∗) dθ

=

d∑
i=1

H(qh,i(h;m)) +
d

2
log(2π)− 1

2
log detVθ∗ + ∆>n,θ∗Vθ∗∆n,θ∗

−
∫
δ−1
n (θ − θ∗)>Vθ∗∆n,θ∗ · q(θ;m,µ) dθ +

∫
1

2
(δ−1
n (θ − θ∗))>Vθ∗δ−1

n (θ − θ∗) · q(θ;m,µ) dθ.

These representations of F0(m,µ) and Fn(m,µ) leads to

F0(m,µ)−∆>n,θ∗Vθ∗∆n,θ∗ (76)

=

d∑
i=1

H(qh,i(h;m))− d

2
log(2π) +

1

2
log detVθ∗

−
∫
δ−1
n (θ − θ∗)>Vθ∗∆n,θ∗ · q(θ;m,µ) dθ

+

∫
1

2
(δ−1
n (θ − θ∗))>Vθ∗δ−1

n (θ − θ∗) · q(θ;m,µ) dθ (77)

= +∞ · (1− Iµ(θ∗)) + [

d∑
i=1

H(qh,i(h;m))− d

2
log(2π) +

1

2
log detVθ∗

−
∫
δ−1
n (θ − θ∗)>Vθ∗∆n,θ∗ · q(θ;m,µ) dθ

+

∫
1

2
(δ−1
n (θ − θ∗))>Vθ∗δ−1

n (θ − θ∗) · q(θ;m,µ) dθ] · Iµ(θ∗) (78)

where the last equality is due to Assumption 7.

Comparing Eq. 75 and Eq. 78, we can prove the Γ convergence.

Let mn → m. When µ 6= θ∗, lim infn→∞ Fn(mn, µ) = +∞. When µ = θ∗, we have Fn(m,µ) =
F0(m,µ)−∆>n,θ∗Vθ∗∆n,θ∗ + oP (1), which implies F0(m,µ) ≤ limn→∞ Fn(mn, µ) in P0 proba-
bility by Assumption 7. These implies the limsup inequality required by Γ-convergence.

We then show the existence of a recovery sequence. When µ 6= θ∗, F0(m,µ) = +∞. When µ = θ∗,
we can simply choose mn = θ∗. Then we have F0(m,µ) ≤ limn→∞ Fn(pVB, µ) in P0 probability
and the continuity of Fn. The Γ-convergence of the F functionals then follows from the limsup
inequalities above and the existence of recovery sequence.

Finally, we have
arg minF0 = arg minF0 −∆>n,θ∗Vθ∗∆n,θ∗

because ∆>n,θ∗Vθ∗∆n,θ∗ does not depend on m or µ. The convergence of KL minimizers are proved.

I Details of the Simulations

We follow the protocol as implemented in Stan. For HMC, we run four parallel chains and use 10,000
burn-in samples, and determine mixing using the R-hat convergence diagnostic (R-hat<1.01). For

14



variational Bayes, we run optimization until convergence (i.e. a local optimum). We cannot confirm
if the local optimal we reached is global. Further, we conduct multiple parallel runs under each
simulation setup and report the mean and the standard deviation of “RMSE” or “Mean KL.” The
error bars in Figure 2 are the standard deviation across different runs of the same simulation.
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