
A Task Monitor Construction Algorithm

We describe our algorithm for constructing a task monitor Mφ for a given specification φ. Our
construction algorithm proceeds recursively on the structure of φ. Implicitly, our algorithm maintains
the property that every monitor-state q has a self-transition (q, true, u, q); here, the update function
u is the identity by default, but may be modified as part of the construction.

Notation. We use t to denote the disjoint union. Given v ∈ RX , v′ ∈ RX′ , we define v′′ = v⊕ v′ ∈
RXtX′ to be their concatenation—i.e.,

v′′(x) =

{
v(x) if x ∈ X
v′(x) otherwise.

Given v ∈ RX and Y ⊆ X , we define v ↓Y ∈ RY to be the restriction of v to Y . Given v ∈ RX and
Y ⊇ X , we define v′ = extend(v)Y ∈ RY to be

v′(y) =

{
v(y) if y ∈ X
0 otherwise.

We drop the subscript Y when it is clear from context. Finally, given v ∈ RX and k ∈ R, we define
v′ = v[x 7→ k] ∈ V to be

v(x′) =

{
v(x′) if x′ 6= x

k otherwise.

Also, recall that a predicate b ∈ P is defined over states s ∈ S; it can straightforwardly be extended
to a predicate in Σ over (s, v) ∈ S × V by ignoring v. Note that every predicate b ∈ P is a negation
free Boolean combination of atomic predicates p ∈ P0.

Finally, the definition of Σ depends on the set X of registers in the task monitor. When necessary,
we use the notation ΣX to make this dependence explicit. Finally, for X ⊆ X ′, any σ ∈ ΣX can be
interpreted as a predicate in ΣX′ by ignoring the components of X ′ not in X .

Objectives. Consider the case φ = achieve b, where b ∈ P . For this specification, our algorithm
constructs the following task monitor:

x← 0

Σ : b

x← JbK(s)

ρ : x

The initial state is marked with an arrow into the state. Final states are double circles. Predicates
σ ∈ Σ labeling a transition appear prefixed by “Σ :”. Rewards ρ labeling a state appear prefixed by
“ρ :”. Self loops are associated with the true predicate (omitted). Updates u ∈ U are by default the
identity function. Intuitively, the state q1 on the left encodes when subtask b is not yet completed,
and the state q2 on the right encodes when b is completed, and x1 records the degree to which b is
satisfied upon completion.

Constraints. Consider the case φ = φ1 ensuring b, where b ∈ P . Let

Mφ1 = (Q1, X1,Σ, U1,∆1, q
0
1 , v

0
1 , F1, ρ1)

Then, Mφ is the product of Mφ and M ensuring b defined as

Mφ = (Q1, X1 t {xb},Σ, U,∆, q0
1 , v0, F1, ρ),

where M ensuring b is

xb ← min(xb, JbK(s))

xb ←∞
ρ : xb

1



M1 M2

M1 M2

ρ : r1

ρ : r2

ρ : r3

Σ : r1 > 0

Σ : r1 > 0

Σ : r1 > 0
ρ : min(r2, xR)

ρ : min(r3, xR)

xR ← r1

xR ← r1

xR ← r1

M(φ1) M(φ2)

M(φ1;φ2)

M1

M2

ρ : r1

ρ : r2

ρ : r3

M (φ1 or φ2)

Figure 5: Overview of monitor construction for sequencing and choice operators.

Then, we have (q, σ, u′, q′) ∈ ∆ if and only if there is a transition (q, σ, u, q′) ∈ ∆1 such that

u′(s, v) = extend(u(s, v ↓X1))[xb 7→ min(v(xb), JbK(s))].

Furthermore, the initial register valuation v0 = extend(v0
1)[xb 7→ ∞] and the reward function ρ is

ρ(s, q, v) = min{ρ1(s, q, v ↓X1
), v(xb)}.

Intuitively, xb encodes the minimum degree to which b is satisfied during a rollout.

Sequencing. Third, consider φ = φ1;φ2. Intuitively, Mφ is constructed by concatenating the
registers of Mφ1 and Mφ2 (extending the update functions u as needed), and adding transitions
(q, σ, u, q0) from each final state q of Mφ1 to the initial state q0 of Mφ2 , where σ = true and u is
the identity on registers for Mφ1 and sets the registers of Mφ2 to their initial values. A subtle issue is
that transitioning from φ1 to φ2 takes one time step, yet it should take zero time steps. Therefore, we
add transitions from each final state of Mφ1

to all successors of the initial state of Mφ2
.

More precisely, let

Mφ1
= (Q1, X1,Σ, U1,∆1, q

0
1 , v

0
1 , F1, ρ1)

Mφ2 = (Q2, X2,Σ, U2,∆2, q
0
2 , v

0
2 , F2, ρ2).

Assume without loss of generality that X2 ⊆ X1. Then,

Mφ = (Q1 tQ2, X1 t {xR},Σ, U,∆, q0
1 , v0, F2, ρ).

Here, ∆ = ∆′1 ∪∆′2 ∪∆1→2, where (q, σ, u′, q′) ∈ ∆′i if there exists (q, σ, u, q′) ∈ ∆i such that

u′(s, v) = u(s, v ↓Xi)⊕ v ↓X\Xi ,

and (q, σ′ ∧ σR, u′, q′) ∈ ∆1→2 if q ∈ F1 and there exists (q0
2 , σ, u, q

′) ∈ ∆2 such that the atomic
predicate σR is given by

JσRK(s, v) = ρ1(s, q, v ↓X1
) > 0,

the predicate σ′ is given by

Jσ′K(s, v) = JσK(s, v0
2),

2



and u′ is given by

u′(s, v) = extend(u(s, v0
2))[xR 7→ ρ1(s, q, v ↓X1)].

The initial register valuation is v0 = extend(v0
1), and the reward function ρ is

ρ(s, q, v) = min{ρ2(s, q, v ↓X2
), v(xR)}

for all q ∈ F2.

Choice. Consider the case φ = φ1 or φ2. Intuitively, Mφ is constructed by combining the initial
states of Mφ1 and Mφ2 into a single initial state q0, and concatenating their registers. The transitions
from q0 are the union of the transitions from the initial states of Mφ1 and Mφ2 . More precisely, let

Mφ1
= (Q1, X1,Σ, U1,∆1, q

0
1 , v

0
1 , F1, ρ1)

Mφ2 = (Q2, X2,Σ, U2,∆2, q
0
2 , v

0
2 , F2, ρ2).

This construction assumes that there are self loops on the initial states of Mφ1 and Mφ2 . Then,

Mφ = (Q,X1 tX2,Σ, U,∆, q0, v
0
1 ⊕ v0

2 , F1 t F2, ρ).

Here,

Q = (Q1 \ {q0
1}) t (Q2 \ {q0

2}) t {q0},
and ∆ = ∆′1 ∪ ∆′2 ∪ ∆0, where where (q, σ, u′, q′) ∈ ∆′i if q 6= q0 and there is a transition
(q, σ, u, q′) ∈ ∆i such that

u′(s, r, v) = extend(u(s, r, v ↓Xi)).
Also, let (q0

1 ,>, u0
1, q

0
1) ∈ ∆1 and (q0

2 ,>, u0
2, q

0
2) ∈ ∆2 be the self loops on the initial states of Mφ1

and Mφ2
respectively. Let

u0(s, r, v) = u0
1(s, r, v ↓X1)⊕ u0

2(s, r, v ↓X2).

Then, (q0, σ, u
′, q) ∈ ∆0 if either (i) (q0, σ, u

′, q) = (q0,>, u0, q0), or (ii) there exists i ∈ {1, 2}
such that (q0

i , σ, u, q) ∈ ∆i, where q ∈ Qi \ {q0
i } and

u′(s, r, v) = extend(u(s, r, v ↓Xi)).
The reward function ρ for q ∈ Fi is given by:

ρ(s, q, v) = ρi(s, q, v ↓Xi).

B Proofs of Theorems

B.1 Proof of Theorem 3.1

First, the following lemma follows by structural induction:
Lemma B.1. For σ ∈ Σ, JσK(s, v) = true if and only if JσKq(s, v) > 0.

Next, let GM denote the underlying state transition graph of a task monitor M . Then,
Lemma B.2. The task monitors constructed by our algorithm satisfy the following properties:

1. The only cycles in GM are self loops.

2. The finals states are precisely those states from which there are no outgoing edges except
for self loops in GM .

3. In GM , every state is reachable from the initial state and for every state there is a final state
that is reachable from it.

4. For any pair of states q and q′, there is at most one transition from q to q′.

5. There is a self loop on every state q given by a transition (q,>, u, q) for some update
function u where > denotes the true predicate.

The first three properties ensure progress when switching from one monitor state to another. The
last two properties enable simpler composition of task monitors. The proof follows by structural
induction. Theorem 3.1 now follows by structural induction on φ and Lemmas B.1 and B.2.

3



B.2 Proof of Theorem 3.2

(i) Let ζ̃, ζ̃ ′ be two augmented rollouts such that R̃(ζ̃) > R̃(ζ̃ ′). There are three cases to consider:

• Case A. Both ζ̃ and ζ̃ ′ end in final monitor states: In this case, R̃s(ζ̃) = R̃(ζ̃) > R̃(ζ̃ ′) =

R̃s(ζ̃
′) as required.

• Case B. ζ̃ ends in a final monitor state but ζ̃ ′ ends in a monitor state q′T /∈ F : In this case,

R̃s(ζ̃
′) = max

i′≤j<T
α(s′j , q

′
T , v

′
j) + 2Cu · (dqT −D) + C`

≤ max
i′≤j<T

α(s′j , q
′
T , v

′
j)− 2Cu + C` (dqT ≤ D − 1)

≤ C` (Cu is an upper bound on α)

< R̃(ζ̃) (C` is a lower bound on R̃)

= R̃s(ζ̃).

• Case C. ζ̃ ends in non-final monitor state: In this case R̃(ζ̃) = −∞ and hence the claim is
vacuously true.

(ii) Let ζ̃, ζ̃ ′ be two augmented rollouts ending in distinct (non-final) monitor states qT and q′T such
that dqT > dq′T . Then,

R̃s(ζ̃) = max
i≤j<T

α(sj , qT , vj) + 2Cu · (dqT −D) + C`

≥ max
i≤j<T

α(sj , qT , vj) + 2Cu + 2Cu · (dq′T −D) + C` (dqT ≥ dq′T − 1 & Cu ≥ 0)

≥ Cu + 2Cu · (dq′T −D) + C` (Cu is an upper bound on −α)

≥ max
i′≤j<T

α(s′j , q
′
T , v

′
j) + 2Cu · (dq′T −D) + C` (Cu is an upper bound on α)

= R̃s(ζ̃ ′).

4


	Task Monitor Construction Algorithm
	Proofs of Theorems
	Proof of Theorem 3.1
	Proof of Theorem 3.2


