Supplementary Material:
Prediction of Spatial Point Processes:
Regularized Method with Out-of-Sample Guarantees

Spatial basis ¢(r)

For space X divided into R regions with each region X, denoted by its region
index r, the spatial basis vector evaluated at r is an R x 1 vector given by

o(r) = col{o1(r),...,or(r)}.

Here ¢(r) is the cubic b-spline in space with two parameters: center and support.
The k' component i.e ¢, (r) has its center at the center of region X} and peak
value when evaluated at k. The support of ¢ (r) determines its value at the
neighbouring regions and hence allows to control the local structure in intensity
in our model. For details on cubic b-spline see [2].
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Dual Norm f(-)
Let f(0) = ||lw®0||;. By definition of dual norm,

flgg= sup g'6
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The condition f(0) < 1 implies
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Combining this with ||0]]; < w; ! we get
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Hoeffding’s inequality for z;

We show that zj, is bounded in [—Y, Y] and hence we can make use of Hoeffding’s
inequality to get eq. (14).
The gradient of eq. (10) evaluated at 0 is

g = [En[zl],...,En[zR]]T7



where z,, = (y — Ey.[y])¢r(r). Given that the maximum number of counts is
bounded i.e. max y <Y, we have

max zp = max {(y — By, [y])dx(r)} = max{(y — By, [y])} max{gy(r)} =Y,
min 2, = min {(y — By, [y])éx(r)} = min{(y — By [y])} max{w(r)} = =Y.

forall k = 1,...,R. Here max ¢y(r) = 1.

Union bound and DeMorgan’s Law

Given that E[z;] = 0, from eq. (14) we get
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Pr([En[z][ <€) >1—2exp [ B %]

Moreover,

pr( max [E[]| <) =Pr( (}j [Enlz4]] < ).

k=1,...R

By DeMorgan’s law,
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By union bound,
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which implies that
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Eq. (15) follows from above.

Minimization Algorithm

Here we derive the majorization-minimization (MM) algorithm that is used to
solve eq. (7). Let V(0) = —n"'lnpg(y|r) and f(0) = |lw® 6|];. For the
Poisson model class considered in the paper,

v(O) =n' (X Bolyilr] — wiln(Eolyilri]) + In(w))).

where Eg[y;|r;] = exp(¢p(r;)78). V(8) is convex in  since
2V () = n'eD®" > 0.



Here,
® = [¢d(r1),...,0(rr)] and D = diag(h(6))

are an R x R basis and diagonal matrices respectively and
h(8) = col{Eg[y1|r1], ..., Eelyr|rrl}-

By convexity of V(0), given an initial estimate 6, the objective in eq. (7) can
be upper bounded as

V(0) +n 77 f(0) < Q(6;0) +nTVf(6),

where Q(8;0) is a quadratic majorization function (see [I], ch. 5) of V(6) given
by
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Q6:0)=V(0) +v'(0—0)+ %(0 —6)TH(6 - 6).

Here v = 0gV(0)|,_ 5 = n’l'@(h(a) —y)and H = max {03V (6)}. The
diagonal elements of D represent the average number of counts in different regions.

Given that the counts in any region are bounded i.e. y <Y, H<n 'Y ®d'
therefore we have

V(0)+n 1 7(0) < V(B)+n~ ' (h(B)—y) @ (0-8)+ || BT (0-B)[+n " f(6).
(SM1)
Therefore starting from an initial estimate 5\,/ one can minimize the right
hand side of to obtain 8 then update 8 = 6 and repeat until convergence
to get final solution of eq. (7) 6 = 6. The pseudocode is given in algorithm (2).
Furthermore, the right hand side of can be transformed into a weighted
lasso regression problem and hence can be efficiently solved using coordinate
descent algorithm [I]. Letting g(8) = ®T8 + Y (y — h(0)), the right hand
side of can be rewritten as

Y(2n) ' ((8) - 276)"(a(6) — 270) +n " f(6) + K(B),

where the first two terms form a weighted lasso regression problem in 6 and

~

the last term K (8) = V() — q(8) is independent of 8 and does not affect the
minimization problem. This conclude the derivation of the MM algorithm.
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