
Supplementary Material:
Prediction of Spatial Point Processes:
Regularized Method with Out-of-Sample Guarantees

Spatial basis φprq
For space X divided into R regions with each region Xr denoted by its region
index r, the spatial basis vector evaluated at r is an Rˆ 1 vector given by

φprq “ coltφ1prq, . . . , φRprqu.

Here φprq is the cubic b-spline in space with two parameters: center and support.
The kth component i.e φkprq has its center at the center of region Xk and peak
value when evaluated at k. The support of φkprq determines its value at the
neighbouring regions and hence allows to control the local structure in intensity
in our model. For details on cubic b-spline see [2].

Dual Norm rfp¨q

Let fpθq “ ||w d θ||1. By definition of dual norm,

rfpgq “ sup
θ:fpθqď1

gJθ

The condition fpθq ď 1 implies

R
ÿ

k“1

|wk||θk| ď 1, min
k“1,...,R

|wk|
R
ÿ

k“1

|θk| ď 1, ||θ||1 ď w´1
o ,

where wo “ min
k“1,...,R

|wk|. Moreover,

gJθ “

R
ÿ

i“1

gkθk ď
R
ÿ

i“1

|gk||θk| ď ||g||8||θ||1

Combining this with ||θ||1 ď w´1
o we get

rfpgq “
||g||8
wo

Hoeffding’s inequality for zk

We show that zk is bounded in r´Y, Y s and hence we can make use of Hoeffding’s
inequality to get eq. p14q.

The gradient of eq. p10q evaluated at pθ is

g “

”

Enrz1s, . . . ,EnrzRs
ıJ

,
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where zk “ py ´ Ey|rrysqφkprq. Given that the maximum number of counts is
bounded i.e. max y ď Y , we have

max zk “ max
 

py ´ Ey|rrysqφkprq
(

“ maxtpy ´ Ey|rrysqumaxtφkprqu “ Y,

min zk “ min
 

py ´ Ey|rrysqφkprq
(

“ mintpy ´ Ey|rrysqumaxtφkprqu “ ´Y,

for all k “ 1, . . . , R. Here max φkprq “ 1.

Union bound and DeMorgan’s Law
Given that Erzks “ 0, from eq. p14q we get

Prp|Enrzks| ď εq ě 1´ 2 exp
”

´
nε2

2Y 2

ı

.

Moreover,

Pr
´

max
k“1,...,R

|Enrzks| ď ε
¯

“ Pr
´

R
č

k“1

|Enrzks| ď ε
¯

.

By DeMorgan’s law,

Pr
´

R
č

k“1

|Enrzks| ď ε
¯

“ Pr
´

R
ď

k“1

|Enrzks| ě ε
¯1

.

By union bound,

Pr
´

R
ď

k“1

|Enrzks| ě ε
¯

ď

R
ÿ

i“1

Pr
´

|Enrzks| ě ε
¯

“ 2R exp
”

´
nε2

2Y 2

ı

,

which implies that

Pr
´

R
č

k“1

|Enrzks| ď ε
¯

ě 1´ 2R exp
”

´
nε2

2Y 2

ı

.

Eq. p15q follows from above.

Minimization Algorithm
Here we derive the majorization-minimization (MM) algorithm that is used to
solve eq. p7q. Let V pθq “ ´n´1 ln pθpy|rq and fpθq “ ||w d θ||1. For the
Poisson model class considered in the paper,

V pθq “ n´1
´

n
ÿ

i“1

Eθryi|ris ´ yi lnpEθryi|risq ` lnpyi!q
¯

,

where Eθryi|ris “ exppφpriq
Jθq. V pθq is convex in θ since

B2θV pθq “ n´1ΦDΦJ ľ 0.
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Here,
Φ “ rφpr1q, . . . ,φprRqs and D “ diagphpθqq

are an RˆR basis and diagonal matrices respectively and

hpθq “ coltEθry1|r1s, . . . ,EθryR|rRsu.

By convexity of V pθq, given an initial estimate rθ, the objective in eq. p7q can
be upper bounded as

V pθq ` n´γfpθq ď Qpθ; rθq ` n´γfpθq,

where Qpθ; rθq is a quadratic majorization function (see [1], ch. 5) of V pθq given
by

Qpθ; rθq “ V prθq ` vJpθ ´ rθq `
1

2
pθ ´ rθqJHpθ ´ rθq.

Here v “ BθV pθq|θ “ rθ “ n´1Φphppθq ´ yq and H “ max
θ

 

B2θV pθq
(

. The
diagonal elements of D represent the average number of counts in different regions.
Given that the counts in any region are bounded i.e. y ď Y , H ĺ n´1YΦΦJ

therefore we have

V pθq`n´γfpθq ď V ppθq`n´1phppθq´yqJΦJpθ´rθq`
Y

2n
||ΦJpθ´rθq||22`n

´γfpθq.

(SM1)
Therefore starting from an initial estimate rθ, one can minimize the right

hand side of (SM1) to obtain qθ then update rθ “ qθ and repeat until convergence
to get final solution of eq. (7) pθ “ qθ. The pseudocode is given in algorithm p2q.

Furthermore, the right hand side of (SM1) can be transformed into a weighted
lasso regression problem and hence can be efficiently solved using coordinate
descent algorithm [1]. Letting qprθq “ ΦJrθ ` Y py ´ hprθqq, the right hand
side of (SM1) can be rewritten as

Y p2nq´1pqprθq ´ΦJθqJpqprθq ´ΦJθq ` n´γfpθq `Kprθq,

where the first two terms form a weighted lasso regression problem in θ and
the last term Kprθq “ V prθq ´ qprθq is independent of θ and does not affect the
minimization problem. This conclude the derivation of the MM algorithm.
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